Supporting Information

Renhe Li^a, Feipeng Liu^{a,b} and Guangbin Dong^{*a}

^aDepartment of Chemistry, University of Chicago, Chicago, Illinois 60637, United States ^bDepartment of Applied Chemistry, China Agricultural University, Beijing 100193, China Email: gbdong@uchicago.edu

Table of Content

1. General Information	S2
2. Experimental Procedures and Characterization Data	S3
2.1 Chiral Resolution of Ester Substituted NBE	S3
2.2 General Procedure for Synthesis of Chiral NBEs	S4
2.3 Enantioselective Transformation Using Chiral NBE-CO ₂ <i>i</i> Pr (N1*)	S11
2.4 Matched/Mismatched Experiments for the Stereochemistry of NBE and Epoxide .	S18
3. NMR Spectra	S20
4. Crystallographic Data	S38
5. Reference	S40

1. General Information

Unless noted otherwise, all solvents were dried by filtration through a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). Dimethylformamide was then vacuum-distilled freshly over calcium hydride and carefully freeze-pump-thawed. Reaction temperatures were reported as the temperatures of the bather surrounding the flasks or vials. Sensitive reagents and solvents were transferred under nitrogen into a nitrogen-filled glovebox with standard techniques. Sodium acetate was purchased from STREM, stored and used directly in the glovebox. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD chemical). Vials (15 x 45 mm 1 dram (4 mL) with PTFE lined cap attached) were purchased from Qorpak and flame-dried and cooled in a desiccator prior to usage. Mass spectra were recorded on an Agilent 6530 LC Q-TOF mass spectrometer using electrospray ionization with fragmentation voltage set at 115 V and processed with an Agilent MassHunter Operating System. X-ray diffraction data were collected at 100(2) K on a Bruker-Nonius Kappa CCD or Agilent SuperNova AtlasS2 CCD. Infrared spectra were recorded on a Nicolet 380 FTIR using neat thin film technique. Nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded with a Bruker (400 MHz, ¹H at 400 MHz, ¹³C at 101 MHz) or Bruker Model DMX 500 (500 MHz, ¹H at 500 MHz, ¹³C at 126 MHz). Chemical shifts were reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, δ =0.00ppm) and were referenced to residual solvent (CDCl₃, δ =7.26 ppm (¹H) and 77.00 ppm (¹³C)). All the ¹⁹F chemical shifts were not referenced. Coupling constants were reported in Hertz (Hz). Data for ¹H NMR spectra were reported as follows: chemical shift (ppm, referenced to protium, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublets, m = multiplet, coupling constant (Hz), and integration). All other materials were obtained from Aldrich Chemical Company or Combi-blocks and were used as received.

2. Experimental Procedures and Characterization Data

To a solution of NBE-CO₂H (700 mg, 5.1 mmol, 1.0 equiv) and 1 drop of DMF in DCM (5 mL) was added oxalyl chloride (648 mg, 5.1 mmol, 1.0 equiv) dropwise at 0 $^{\circ}$ C.¹ The reaction mixture was stirred at room temperature for another 1 h until the bubbling stopped. To another flame-dried round bottom flask was added sulfonamide (1.65g, 7.65 mmol, 1.5 equiv) and dry toluene (50 mL). Then NaH (3.06g, 76.5 mmol, 15 equiv) was added slowly to the flask and the reaction mixture was stirred at room temperature for another 30 min. After that, the generated acid chloride from the first flask was transferred into the second flask dropwise and the reaction mixture was stirred at room temperature until the reaction was completed. Then the reaction was quenched by 1M HCl and the aqueous lays was extracted by DCM for three times. The combined organic layers were dried over MgSO₄. Sulfonamide **A** and **B** were isolated via silica gel chromatography as a pair of diastereomers.

A: White solid (666 mg, 39%). R_f = 0.4 (hexane/ethyl acetate = 5:1). Mp = 125.7 – 127.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.11 (d, J = 3.4 Hz, 1H), 4.06 (dd, J = 7.7, 4.7 Hz, 1H), 3.47 (d, J = 13.6 Hz, 1H), 3.37 (d, J = 13.7 Hz, 2H), 3.03 (s, 1H), 2.03 (dd, J = 13.7, 7.7 Hz, 1H), 1.99 – 1.84 (m, 4H), 1.79 – 1.65 (m, 2H), 1.61 (dt, J = 8.6, 2.2 Hz, 1H), 1.45 – 1.24 (m, 5H), 1.21 (s, 3H), 0.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.30, 148.53, 141.13, 65.84, 53.81, 49.80, 47.96, 47.82, 45.28, 43.72, 43.08, 38.49, 33.34, 26.65, 24.21, 24.03, 21.36, 20.06. IR (KBr): v 2960,

2874, 1671, 1590, 1332, 1286, 1172, 1140, 754, 536 cm⁻¹. **HRMS** (ESI): Calculated for $C_{18}H_{26}NO_3S$ (M+H⁺): 336.1628, found: 336.1631.

B: White solid (652 mg, 38%) $R_f = 0.3$ (hexane/ethyl acetate = 5:1). Mp = 169.2 – 170.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.91 (d, J = 3.2 Hz, 1H), 4.04 (dd, J = 7.7, 4.7 Hz, 1H), 3.49 (d, J = 13.6 Hz, 1H), 3.39 (d, J = 13.6 Hz, 1H), 3.23 (s, 1H), 3.08 (s, 1H), 2.05 – 1.91 (m, 3H), 1.90 – 1.83 (m, 2H), 1.76 (ttd, J = 12.8, 9.4, 3.6 Hz, 2H), 1.56 (dt, J = 8.8, 2.2 Hz, 1H), 1.41 (ddd, J = 10.9, 9.1, 2.3 Hz, 1H), 1.37 (s, 1H), 1.21 (s, 4H), 1.19 – 1.12 (m, 1H), 1.11 – 1.05 (m, 1H), 0.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.12, 148.31, 142.38, 65.78, 53.74, 48.07, 47.81, 46.72, 45.36, 44.34, 43.99, 38.65, 33.34, 26.64, 25.24, 25.20, 21.44, 20.05. IR (KBr): v 2962, 2876, 1668, 1586, 1334, 1288, 1139, 1054, 748, 536 cm⁻¹. HRMS (ESI): Calculated for C₁₈H₂₆NO₃S (M+H⁺): 336.1628, found: 336.1632.

2.2 General Procedure for Synthesis of Chiral NBEs

To a solution (18 mL, $H_2O/THF = 1:2$) of sulfonamide (565 mg, 1.69 mmol, 1.0 equiv) was added LiOH • H_2O (354 mg, 8.42 mmol, 5.0 equiv). The reaction was stirred at 60 °C for 48 h until the reaction mixture became clear. Then the aqueous layer was washed by diethyl ether for two times and then acidified by 1 M hydrochloric acid until pH < 7. Then the reaction mixture was extracted by dichloromethane for three times and the combined organic layers were dried over MgSO₄. The solvent was removed under vacuum to afford the chiral NBE-CO₂H as a colorless oil, which was used directly in the next step without further purification.

To a solution of NBE-CO₂H (276 mg, 2.0 mmol, 1.0 equiv) in DCM (2 mL) with 1 drop of DMF was added oxalyl chloride (254 mg, 2.0 mmol, 1.0 equiv) dropwise at 0 °C. The reaction mixture was stirred at room temperature for another 1 h until the bubbling stopped. Then a mixture of the corresponding alcohol (6.0 mmol, 3.0 equiv) and pyridine (949.2 mg, 12.0 mmol, 6.0 equiv) was added dropwise and the reaction mixture was stirred at room temperature for another 3 h until the reaction was completed. The organic layer was washed with 1 M hydrochloric acid and then concentrated under vacuum. The corresponding ester substituted NBE was isolated by silica gel chromatography (hexane/Et₂O = 20:1) as a colorless oil.

N1*: Colorless oil (151 mg, 42%). $R_f = 0.6$ (hexane/ethyl acetate = 20:1). ¹**H NMR** (500 MHz, CDCl₃) δ 6.88 (d, *J* = 3.2 Hz, 1H), 5.05 (hept, *J* = 6.1 Hz, 1H), 3.24 (s, 1H), 3.00 (s, 1H), 1.74 (th, *J* = 13.0, 3.3 Hz, 2H), 1.52 – 1.43 (m, 1H), 1.26 (dd, *J* = 6.3, 4.1 Hz, 6H), 1.18 (d, *J* = 8.7 Hz, 1H), 1.07 (dt, *J* = 7.4, 2.3 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.7, 146.4, 141.6, 67.3, 48.3, 43.6, 42.0, 24.8, 24.7, 22.1. IR (KBr): υ 2978, 2874, 1707, 1279, 1259, 1163, 1110, 1076, 753 cm⁻¹. **HRMS** (ESI): Calculated for C₁₁H₁₇O₂ (M+H⁺): 181.1223, found: 181.1219. **Chiral HPLC** (Chiralpak IC, hexane/isopropanol = 98:2, 0.5 mL/min, 230 nm): t_{minor} = 12.308 min, t_{major} = 12.778. [α]_D = -139.6 (c = 0.53, dichloromethane, 21.0 °C) at 98% ee.

Racemic N1

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
		-				
1	12.512	BV	0.2362	1.61599e4	1045.99609	49.6824
2	13.073	VB	0.2588	1.63666e4	970.13281	50.3176
Total	ls :			3.25265e4	2016.12891	

Enantiomeric N1*

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	12.308	BV	0.2035	637.26788	47.82213	1.1954
2	12.778	VB		5.26707e4	3034.12402	98.8046
Total	ls :			5.33080e4	3081.94615	

N2*: Colorless oil (47%). R_f = 0.5 (hexane/ethyl acetate = 20:1). ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 3.1 Hz, 1H), 4.53 (q, J = 7.0 Hz, 2H), 3.61 (s, 1H), 3.36 (s, 1H), 2.09 (dtt, J = 15.1, 11.6, 7.6 Hz, 2H), 1.83 (d, J = 8.5 Hz, 1H), 1.64 (t, J = 7.1 Hz, 3H), 1.54 (d, J = 8.6 Hz, 1H), 1.44 (tdt, J = 7.6, 5.1, 2.3 Hz, 2H). ¹³C NMR (101 MHz, 101 MHz,

CDCl₃) δ 165.1, 146.8, 141.2, 60.2, 48.3, 43.6, 42.0, 24.8, 24.6, 14.5. **IR** (KBr): υ 2977, 2874, 1712, 1596, 1370, 1341, 1278, 1258, 1160, 1079, 753 cm⁻¹. **HRMS** (ESI): Calculated for C₁₀H₁₅O₂ (M+H⁺): 167.1067, found: 167.1061. [α]_D = 155.6 (c = 0.32, dichloromethane, 22.0 °C).

N3*: White solid (48%). $R_f = 0.6$ (hexane/ethyl acetate = 20:1). Mp = 52.0 – 54.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.79 (d, J = 3.1 Hz, 1H), 3.19 (s, 1H), 2.98 (s, 1H), 1.78 – 1.68 (m, 2H), 1.48 (s, 10H), 1.16 (d, J = 8.5 Hz, 1H), 1.07 (qd, J = 8.5, 2.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 145.6, 142.8, 80.0, 48.3, 43.5, 42.0, 28.4, 24.9, 24.7. IR (KBr): v 2976, 2873, 1702, 1596, 1284, 1260, 1154, 1077, 756 cm⁻¹. HRMS (ESI): Calculated for C₁₂H₁₈O₂Na (M+Na⁺): 217.1199, found: 217.1184. [α]_D = 148.9 (c = 0.91, dichloromethane, 22.0 °C).

N4*: Colorless oil (50%, dr = 1:1). R_f = 0.5 (hexane/ethyl acetate = 20:1). ¹H NMR (500 MHz, CDCl₃) δ 6.89 (dd, J = 6.6, 3.2 Hz, 1H), 4.88 (h, J = 6.1, 5.7 Hz, 1H), 3.24 (s, 1H), 3.00 (s, 1H), 1.74 (tt, J = 9.6, 1.9 Hz, 2H), 1.68 – 1.60 (m, 1H), 1.48 (d, J = 8.5 Hz, 1H), 1.23 (dd, J = 6.3, 5.2 Hz, 4H), 1.20 – 1.16 (m, 1H), 1.11 – 1.04 (m, 2H), 0.90 (td, J = 7.5, 5.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.86, 164.83, 146.45, 146.31, 141.64, 141.59, 71.85, 71.82, 48.28, 48.23, 43.57, 43.55, 42.04, 42.01, 29.08, 29.05, 24.83, 24.80, 24.67, 19.73, 19.67, 9.86, 9.85. IR (KBr): v 2974, 1708, 1596, 1449, 1364, 1337, 1278, 1257, 1162, 933, 752 cm⁻¹. HRMS (ESI): Calculated for C₁₂H₁₉O₂ (M+H⁺): 195.1380, found: 195.1370. [α]_D = -133.3 (c = 0.95, dichloromethane, 21.8 °C).

N5*: White solid (45%). $R_f = 0.5$ (hexane/ethyl acetate = 20:1). Mp = 60.2 – 60.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.79 (d, J = 3.2 Hz, 1H), 5.14 (dq, J = 6.0, 3.1 Hz, 1H), 3.16 (s, 1H), 2.92 (s, 1H), 1.80 (dtd, J = 12.5, 6.6, 6.0, 3.0 Hz, 2H), 1.71 – 1.60 (m, 6H), 1.58 – 1.47 (m, 2H), 1.40 (dt, J = 8.6, 2.1 Hz, 1H), 1.11 (d, J = 8.5 Hz, 1H), 1.04 – 0.96 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 146.3, 141.6, 76.6, 48.2, 43.5, 42.0, 32.9, 32.8, 24.8, 24.6, 23.91, 23.90. IR (KBr): v 2871, 1703, 1593, 1449, 1369, 1341, 1277, 1217, 1116, 1078, 879, 753 cm⁻¹. HRMS (ESI): Calculated for C₁₃H₁₉O₂ (M+H⁺): 207.1380, found: 207.1374. [α]_D = -130.1 (c = 0.99, dichloromethane, 22.0 °C).

NBE-CO₂H (138 mg, 1.0 mmol, 1.0 equiv), amine (1.1 mmol, 1.1 equiv), 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (230 mg, 1.2 mmol, 1.2 equiv) and 4-dimethylaminopyridine (12.2 mg, 0.1 mmol, 10 mol%) were dissolved in dichloromethane (5 mL). The reaction mixture was stirred at room temperature overnight. Then it was diluted with diethyl ether, washed with water and brine, dried over MgSO₄, and purified on silica gel chromatography (hexanes/ethyl acetate = 2:1) to afford the corresponding amide-derived norbornene N7* and N8*.

N7*: Colorless oil (49%). $R_f = 0.3$ (hexane/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 6.30 (d, J = 3.1 Hz, 1H), 3.65 – 3.33 (m, 4H), 3.26 (s, 1H), 2.99 (s, 1H), 1.99 – 1.76 (m, 4H), 1.71 (d, J = 6.0 Hz, 2H), 1.37 (d, J = 8.3 Hz, 1H), 1.29 – 1.20 (m, 1H), 1.15 – 1.00 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 144.4, 139.4, 48.4, 47.1, 46.3, 44.3, 43.8, 26.6, 25.3, 25.2, 24.2. **IR** (KBr): v 2968, 2871, 1722, 1612, 1577, 1426, 1341, 1311, 1166, 875, 748 cm⁻¹. **HRMS** (ESI): Calculated for C₁₂H₁₈NO (M+H⁺): 192.1383, found: 192.1374. [α]_D = 76.9 (c = 1.27, dichloromethane, 21.6 °C).

N8*: Colorless oil (50%). $R_f = 0.3$ (hexane/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 6.10 (d, J = 3.1 Hz, 1H), 3.54 – 3.39 (m, 2H), 3.31 (dq, J = 14.1, 7.1 Hz, 2H), 3.12 (s, 1H), 2.97 (s, 1H), 1.76 – 1.66 (m, 2H), 1.44 – 1.33 (m, 2H), 1.13 (t, J = 7.1 Hz, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 143.2, 135.8, 47.4, 45.5, 43.5, 42.7, 39.4, 25.5, 25.4, 14.8, 13.0. IR (KBr): v 2971, 2872, 1620, 1585, 1427, 1379, 1285, 1150, 1064, 812, 743 cm⁻¹. HRMS (ESI): Calculated for C₁₂H₂₀NO (M+H⁺): 194.1539, found: 194.1535. [α]_D = 125.7 (c = 0.97, dichloromethane, 22.0 ^oC).

To a solution of NBE-CO₂H (138 mg, 1.0 mmol, 1.0 equiv) in DCM (1 mL) with1 drop of DMF was added oxalyl chloride (152 mg, 1.2 mmol, 1.2 equiv) dropwise at 0 °C. The reaction mixture was stirred at room temperature for another 1 h until the bubbling stopped. To another flame-dried round bottom flask was added 2-oxazolidinone (95.8 mg, 1.1 mmol, 1.1 equiv) and dry THF (10 mL). Then, *n*BuLi (0.81 mL, 1.6 M in hexane, 1.3 mmol, 1.3 equiv) was added dropwise to the flask at -78 °C and the reaction mixture was stirred at -78 °C for another 30 min. After that, the generated acyl chloride from the first flask was transferred into the second flask dropwise using dry THF. Then the reaction mixture was warmed to room temperature slowly and stirred for another 2 h. The reaction was quenched by 5 mL H₂O and the aqueous lays was extracted by ethyl acetate for three times. The combined organic layers were dried over MgSO₄ and then purified by silica gel chromatography to afford **N9***.

N9*: White solid (48%). $R_f = 0.2$ (hexane/ethyl acetate = 2:1). Mp = 85.4 - 87.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.83 (d, J = 3.3 Hz, 1H), 4.41 - 4.27 (m, 2H), 4.02 (ddd, J = 10.9, 9.0, 7.9 Hz, 1H), 3.91 (ddd, J = 10.8, 8.6, 5.9 Hz, 1H), 3.21 (s, 1H), 3.03 (s, 1H), 1.76 - 1.64 (m, 2H), 1.55 (dt, J = 8.6, 2.1 Hz, 1H), 1.20 - 1.00 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 153.3, 148.3, 140.1, 62.2, 47.3, 44.2, 44.0, 43.6, 25.10, 25.06. IR (KBr): υ 2971, 2872, 1783, 1664, 1587, 1478, 1383, 1301, 1199, 1115, 1080, 1039, 987, 746, 698 cm⁻¹. HRMS (ESI): Calculated for C₁₁H₁₄NO₃ (M+H⁺): 208.0968, found: 208.0966. [α]_D = -65.9 (c = 0.97, dichloromethane, 22.0 °C).

N10*: White solid (63%). $R_f = 0.2$ (hexane/ethyl acetate = 2:1). Mp = 105.9 – 107.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 3H), 7.19 – 7.13 (m, 2H), 6.89 (d, J = 3.0 Hz, 1H), 4.80 (tdd, J = 8.7, 5.1, 3.6 Hz, 1H), 4.25 (t, J = 8.6 Hz, 1H), 4.13 (dd, J = 8.9, 5.2 Hz, 1H), 3.32 – 3.21 (m, 2H), 3.11 (s, 1H), 2.83 (dd, J = 13.5, 8.9 Hz, 1H), 1.86 – 1.73 (m, 2H), 1.61 (dq, J = 6.4, 2.1 Hz, 1H), 1.28 – 1.18 (m, 2H), 1.17 – 1.10 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 153.4, 148.9, 140.7, 135.4, 129.6, 129.0, 127.4, 66.3, 55.5, 47.1, 44.3, 44.0, 38.0, 25.3, 25.3. IR (KBr): υ 2972, 2872, 1785, 1660, 1497, 1453, 1348, 1290, 1212, 1114, 746, 702 cm⁻¹. HRMS (ESI): Calculated for C₁₈H₂₀NO₃ (M+H⁺): 298.1438, found: 298.1439. [α]_D = -7.5 (c = 0.99, dichloromethane, 22.0 °C).

N11*: White solid (47%). R_f = 0.2 (hexane/ethyl acetate = 2:1). Mp = 92.4 – 93.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.30 – 7.25 (m, 1H), 7.24 – 7.20 (m, 2H), 6.86 (d, *J* = 3.2 Hz, 1H), 4.64 (ddt, *J* = 9.6, 7.3, 3.6 Hz, 1H), 4.24 – 4.11 (m, 2H), 3.40 (dd, *J* = 13.4, 3.3 Hz, 1H), 3.32 (s, 1H), 3.09 (s, 1H), 2.80 (dd, *J* = 13.4, 9.6 Hz, 1H), 1.85 – 1.73 (m, 2H), 1.68 (dt, *J* = 8.6, 2.1 Hz, 1H), 1.28 – 1.10 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 153.3, 147.6, 140.6, 135.6, 129.6, 129.0, 127.4, 66.3, 56.4, 47.7, 44.2, 44.1, 37.6, 25.1, 25.0. IR (KBr): v 2973, 1785, 1659, 1453, 1350, 1293, 1211, 1114, 1084, 745, 702 cm⁻¹. **HRMS** (ESI): Calculated for $C_{18}H_{20}NO_3$ (M+H⁺): 298.1438, found: 298.1441. [α]_D = -128.7 (c = 0.97, dichloromethane, 22.0 °C).

N12*: White solid (61%). $R_f = 0.3$ (hexane/ethyl acetate = 2:1). Mp = 84.1 – 86.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.88 (dt, J = 3.4, 1.0 Hz, 1H), 4.56 (dt, J = 9.0, 4.7 Hz, 1H), 4.30 (t, J = 8.9 Hz, 1H), 4.15 (dd, J = 9.0, 4.9 Hz, 1H), 3.24 (s, 1H), 3.09 (s, 1H), 2.27 (pd, J = 7.0, 4.4 Hz, 1H), 1.83 – 1.70 (m, 2H), 1.60 (dt, J = 8.6, 2.1 Hz, 1H), 1.22 – 1.15 (m, 2H), 1.12 – 1.05 (m, 1H), 0.87 (dd, J = 9.7, 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 153.9, 148.6, 140.9, 63.5, 58.4, 46.9, 44.4, 44.0, 28.8, 25.4, 25.3, 17.9, 15.2. IR (KBr): v 2965, 2873, 1783, 1665, 1587, 1485, 1388, 1363, 1289, 1203, 886, 764, 745 cm⁻¹. HRMS (ESI): Calculated for C₁₄H₂₀NO₃ (M+H⁺): 250.1438, found: 250.1433. [α]_D = 37.2 (c = 1.13, dichloromethane, 22.0 °C).

N13*: White solid (54%). $R_f = 0.3$ (hexane/ethyl acetate = 2:1). Mp = 85.5 – 89.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, J = 3.3 Hz, 1H), 4.45 (dt, J = 8.6, 4.3 Hz, 1H), 4.28 (t, J = 8.7 Hz, 1H), 4.17 (dd, J = 8.9, 4.5 Hz, 1H), 3.28 (s, 1H), 3.05 (s, 1H), 2.42 (pd, J = 7.0, 4.1 Hz, 1H), 1.82 – 1.66 (m, 3H), 1.24 (dd, J = 8.6, 1.1 Hz, 1H), 1.19 – 1.11 (m, 2H), 0.90 (dd, J = 8.2, 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 154.0, 146.8, 141.1, 63.5, 59.0, 48.3, 44.2, 43.8, 28.4, 24.9, 24.8, 18.0, 15.0. IR (KBr): v 2965, 2672, 1783, 1672, 1589, 1465, 1387, 1341, 1293, 1201, 1079, 888, 766, 744 cm⁻¹. HRMS (ESI): Calculated for C₁₄H₂₀NO₃ (M+H⁺): 250.1438, found: 250.1429. [α]_D = 132.5 (c = 1.02, dichloromethane, 22.0 °C).

2.3 Enantioselective Transformation Using Chiral NBE-CO2iPr (N1*)

A flame-dried 4.0 mL vial was charged with aryl iodide **1a** (43.6 mg, 0.2 mmol, 1.0 equiv), NaOAc (24.6 mg, 0.3 mmol, 1.5 equiv) and RuPhos-Pd-G4 (8.5 mg, 0.01 mmol, 5 mol%). Then the vial was directly transferred into a nitrogen-filled glovebox without caps. After enantiomeric NBE- CO_2iPr **N1*** (7.2 mg, 0.04 mmol, 20 mol%) and 1,2-epoxyhexane (80 mg, 0.8 mmol, 4.0 equiv) was added to the vial, 2 mL of degassed DMF was added. Then the vial was tightly sealed, transferred out of glovebox and stirred on a pie-block preheated to 120 °C for 24 hours. After completion of the reaction, the mixture was filtered through a thin pad of celite. The filter cake was washed with dichloromethane and diethyl ether, and the combined filtrate was concentrated. The residue was absorbed onto a small amount of silica gel and then purified by flash column chromatography on silica gel to give the desired product.

3aa*: Pale yellow oil (68%). $R_f = 0.4$ (hexane/ethyl acetate = 40:1). ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, J = 6.9 Hz, 1H), 6.93 (ddq, J = 7.5, 1.5, 0.8 Hz, 1H), 6.74 (t, J = 7.4 Hz, 1H), 4.76 (dddd, J = 8.9, 7.8, 6.9, 6.2 Hz, 1H), 3.28 (dd, J = 15.4, 8.9 Hz, 1H), 2.86 (dd, J = 15.4, 7.8 Hz, 1H), 2.22 (s, 3H), 1.93 – 1.79 (m, 1H), 1.73 – 1.62 (m, 1H), 1.55 – 1.34 (m, 4H), 0.95 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.2, 129.2, 126.3, 122.4, 120.0, 119.6, 83.1, 36.0, 35.9, 27.7, 22.8, 15.4, 14.2. IR (KBr): υ 3025, 2956, 2931, 2859, 1599, 1467, 1260, 1186, 759 cm-1. HRMS (ESI): Calculated for C₁₃H₁₉O (M+H⁺): 191.1430, found: 191.1428. Chiral HPLC (Chiralpak OD-H, hexane/isopropanol = 99:1, 0.5 mL/min, 230 nm): $t_{minor} = 11.161$, $t_{major} = 10.094$. 42% ee.

Racemic 3aa

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak Re #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	9.339	VV	0.2748	1.14719e4	653.63702	49.4863
2	9.886	VBA	0.2817	1.17100e4	645.41187	50.5137
Totals	:			2.31819e4	1299.04889	

Enantiomeric 3aa*

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.094	BV	0.3827	8513.32520	348.88733	71.0521
2	11.161	VB	0.4418	3468.47949	123.45961	28.9479
Tota	ls :			1.19818e4	472.34694	

3ba*: Pale yellow oil (54%). $R_f = 0.2$ (hexane/ethyl acetate = 40:1). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.65 (m, 2H), 4.89 – 4.78 (m, 1H), 3.85 (s, 3H), 3.28 (dd, J = 15.5, 9.0 Hz, 1H), 2.85 (dd, J = 15.5, 7.7 Hz, 1H), 2.21 (s, 3H), 1.90 – 1.78 (m, 1H), 1.74 – 1.62 (m, 1H), 1.54 – 1.32 (m, 4H), 0.93 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.4, 162.4, 131.9, 126.6, 124.4, 122.2, 119.3, 84.4, 51.8, 36.0, 35.3, 27.6, 22.7, 15.3, 14.1. IR (KBr): υ 2954, 2860, 1715, 1607, 1434, 1306, 1161, 954, 771 cm⁻¹. HRMS (ESI): Calculated for C₁₅H₂₁O₃ (M+H⁺): 249.1485, found: 249.1492. Chiral HPLC (Chiralpak OD-H, hexane/isopropanol = 99:1, 0.5 mL/min, 260 nm): t_{minor} = 21.892, t_{major} = 14.268. 31% ee.

Racemic 3ba

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.106	BB	0.3649	3900.03076	166.73305	49.9833
2	21.501	BB	0.5676	3902.63062	108.50792	50.0167
Total	ls :			7802.66138	275.24097	

Enantiomeric 3ba*

S14

Signal 5: DAD1 E, Sig=260,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	14.268	BB	0.3624	1039.04126	44.82608	65.5087
2	21.892	BB	0.5756	547.07068	14.99671	34.4913
Total	ls :			1586.11194	59.82279	

3ab*: White solid (92%). $R_f = 0.3$ (hexane/ethyl acetate = 40:1). Mp = 77.8 – 78.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 2H), 7.04 (ddd, J = 7.3, 1.4, 0.7 Hz, 1H), 7.03 – 6.91 (m, 4H), 6.79 (t, J = 7.4 Hz, 1H), 5.15 (dddd, J = 9.4, 7.0, 5.9, 5.3 Hz, 1H), 4.24 (dd, J = 9.9, 5.9 Hz, 1H), 4.10 (dd, J = 9.9, 5.3 Hz, 1H), 3.40 (dd, J = 15.7, 9.4 Hz, 1H), 3.17 (dd, J = 15.7, 7.1 Hz, 1H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 157.9, 129.6, 129.5, 125.4, 122.5, 121.2, 120.6, 120.0, 114.8, 80.2, 69.9, 32.9, 15.4. IR (KBr): υ 3040, 2920, 2857, 1599, 1497, 1468, 1243, 1193, 1050, 754, 691 cm⁻¹. HRMS (ESI): Calculated for C₁₆H₁₇O₂ (M+H⁺): 241.1223, found: 241.1221. Chiral HPLC (Chiralpak OD-H, hexane/isopropanol = 98:2, 0.5 mL/min, 230 nm): t_{minor} = 23.912, t_{major} = 34.968. 38% ee.

Racemic 3ab

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	23.799	BB	0.6346	2908.75586	72.41602	49.9844
2	35.024	BB	0.9928	2910.56860	46.59019	50.0156
Total	ls :			5819.32446	119.00621	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Enantiomeric 3ab*

3ac*: Yellow oil (78%). R_f = 0.2 (hexane/ethyl acetate = 40:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (dd, J = 1.8, 0.9 Hz, 1H), 7.00 (d, J = 7.0 Hz, 1H), 6.94 (ddq, J = 7.5, 1.5, 0.8 Hz, 1H), 6.76 (t, J = 7.4 Hz, 1H), 6.38 – 6.32 (m, 2H), 4.94 (dddd, J = 9.4, 7.5, 6.3, 4.8 Hz, 1H), 4.65 – 4.52 (m, 2H), 3.73 (dd, J = 10.4, 6.3 Hz, 1H), 3.64 (dd, J = 10.4, 4.8 Hz, 1H), 3.26 (dd, J = 15.6, 9.4 Hz, 1H), 3.00 (dd, J = 15.6, 7.5 Hz, 1H), 2.23 (d, J = 0.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.0, 151.7, 143.0, 129.3, 125.6, 122.4, 120.4, 119.8, 110.4, 109.6, 81.2, 72.1, 65.4, 32.8, 15.4. **IR** (KBr): v 3119, 3049, 2919, 2857, 1599, 1468, 1261, 1194, 1151, 1073. 920, 758, 600 cm⁻¹. **HRMS** (ESI):

Calculated for $C_{15}H_{17}O_3$ (M+H⁺): 245.1172, found: 245.1174. **Chiral HPLC** (Chiralpak OD-H, hexane/isopropanol = 95:5, 0.5 mL/min, 230 nm): t_{minor} = 27.530, t_{major} = 44.530. 34% ee.

Racemic 3ac

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Area	Height	Area
[mAU*s]	[mAU]	90
-		
1.17421e4	239.31871	49.8019
1.18355e4	131.60634	50.1981
2.35776e4	370,92505	
	Area [mAU*s] 	Area Height [mAU*s] [mAU] . 1.17421e4 239.31871 1.18355e4 131.60634 2.35776e4 370.92505

Enantiomeric 3ac*

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	00
1	27.530 BB	0.7585	912.32776	18.72223	33.0027
2	44.530 BB	1.2981	1852.07678	22.31998	66.9973
Total	s:		2764.40454	41.04220	

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

2.4 Matched/Mismatched Experiments for the Stereochemistry of NBE and Epoxide

A flame-dried 4.0 mL vial was charged with aryl iodide **1a** (21.8 mg, 0.1 mmol, 1.0 equiv), NaOAc (12.3 mg, 0.15 mmol, 1.5 equiv) and RuPhos-Pd-G4 (8.5 mg, 0.01 mmol, 10 mol%). Then the vial was directly transferred into a nitrogen-filled glovebox without caps. After (+) or (-) NBE- CO_2iPr **N1*** (3.6 mg, 0.02 mmol, 20 mol%) and chiral epoxide (*S*)-**2b** (60 mg, 0.4 mmol, 4.0 equiv) were transferred to the vial, 1 mL of degassed DMF was added. Then the vial was tightly sealed, transferred out of glovebox and stirred on a pie-block preheated to 120 °C. After completion of the reaction, the mixture was filtered through a thin pad of celite. The filter cake was washed with dichloromethane and diethyl ether, and the combined filtrate was concentrated. The residue was absorbed onto a small amount of silica gel and then purified by flash column chromatography on silica gel to give the desired product.

	1 h	2.5 h	7.0 h	20.5 h
Yield w/	88%	90%	91%	92%
(-) N1*				
Yield w/	19%	33%	48%	46%
(+) N1*				

3. NMR Spectra

CO₂Et

LRH-2-73-1-pure.1.fid

-7.61< 7.267.25

 $<_{6.79}^{6.79}$

 $<_{6.30}^{6.31}$

 $<_{6.10}^{6.11}$

LRH-3-295-@@@A&A&A & A&A & A&A&A & A&A & A

N13*

4. Crystallographic Data

Empirical formula	$C_{18}H_{25}NO_3S$	
Formula weight	335.45	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 7.8259(6) Å	α= 90°.
	b = 9.5135(8) Å	β= 90°.
	c = 22.6470(18) Å	$\gamma = 90^{\circ}$.
Volume	1686.1(2) Å ³	
Ζ	4	
Density (calculated)	1.321 Mg/m ³	
Absorption coefficient	0.207 mm ⁻¹	
F(000)	720	
Crystal size	0.510 x 0.380 x 0.320 mm ³	
Theta range for data collection	2.754 to 30.819°.	
Index ranges	-11<=h<=11, -13<=k<=13, -32	2<=1<=32
Reflections collected	60626	
Independent reflections	5259 [R(int) = 0.0409]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalent	nts
Max. and min. transmission	1.00 and 0.912	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	5259 / 0 / 214	
Goodness-of-fit on F ²	1.044	
Final R indices [I>2sigma(I)]	R1 = 0.0304, wR2 = 0.0758	
R indices (all data)	R1 = 0.0350, wR2 = 0.0771	
Absolute structure parameter	0.039(12)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.295 and -0.406 e.Å ⁻³	

Identification code Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å α/° β/° γ/° Volume/Å³ Ζ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000) Crystal size/mm³ Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma(I)]$ Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ Flack parameter

LRH 2-21-2 C₁₈H₂₅NO₃S 335.45 100.0 monoclinic P2₁ 7.9608(8) 9.0050(9) 11.9856(12) 90 105.827(2) 90 826.64(14) 2 1.348 0.211 360.0 $0.1 \times 0.06 \times 0.05$ MoK α ($\lambda = 0.71073$) 5.318 to 54.998 $-10 \le h \le 10, -11 \le k \le 11, -15 \le l \le 14$ 12941 $3792 [R_{int} = 0.0422, R_{sigma} = 0.0432]$ 3792/1/210 1.053 $R_1 = 0.0393$, $wR_2 = 0.0827$ $R_1 = 0.0478, wR_2 = 0.0864$ 0.30/-0.27 0.02(3)

5. Reference

[1] M. Inai, T. Nishii, A. Tanaka, H. Kaku, M. Horikawa, T. Tsunoda, *Eur. J. Org. Chem.* 2011, 2011, 2719-2729.