Supporting Information for

Mild dealkylative N-nitrosation of N,N-dialkylaniline derivatives for convenient preparation of photo-triggered and photo-calibrated NO donors

Authors: Shaobing Qiu², Chunlei Guo², Mingkang Wang², Zhenglong Sun³, Hui Li³, Xuhong

Qian^{1,2,*}, Youjun Yang^{1,2,*}

Address: 1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. 2. Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
3. Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.

Page	Content
S2	General Methods
S3-S5	Synthetic scheme, procedures and characterizations of all compounds
S6-S9	Table S1-S3 and Figure S1-S3 . Crystal data and structure refinement, as well asortep drawings and the packing modes of N1, N2 and N3.
S10	Figure S4. Confirmation of the photolysis product, NO of N1 and N2
S11-S19	The ¹ H-NMR, ¹³ C-NMR and HRMS characteristics of all compounds.

General Methods

Chemicals and solvents of analytical grade were used in experiments as purchased without further purification. ¹H-NMR and ¹³C-NMR spectra were taken over a Bruker AV-400 spectrometer and chemical shifts were given in ppm with the residue solvent peaks as reference. ESI and EI HRMS spectra were taken on a Micromass GCT spectrometer.

Spectroscopic methods. UV-Vis absorption spectra were taken on a SHIMADZU UV-2600 spectrophotometer while fluorescence spectra were collected using a PTI-QM4 steady-state fluorimeter, which is equipped with a model 810 type PMT and a75 W Xeon arc lamp. Voltage of the PMT was set to 950 V. All the excitation and emission slits were set at 0.5 nm.

Photodegradation experiment. Three photo-controlled NO donors were dissolved in phosphate buffer (50 mM at pH = 7.4) with 5% DMSO as co-solvent in a 1-cm quartz cuvette equipped with a closing screw (10 μ M for N1, N2 and 50 μ M for N3). The cuvette was put in a water bath, stirred on a magnetic stirrer and irradiated with a 375 nm mercury lamp. The change of the UV–vis absorption as well as the fluorescence turn-on were recorded every one minute.

Confocal Imaging. The supernatant of the substratum was discarded after the finishment of the cell culture. Fresh medium was added to the substratum followed with 5 μ M N1 and N2 in DMSO. 10 mins later, the culture mediums were washed 3 times with PBS buffer to remove the excess photo-controlled NO donors. Confocal images were recorded one shutter per second on a Leica ICS SP5 II confocal microscope using a 488 nm laser.

Synthetic scheme, procedures and characterizations.

N,N'-(3-oxo-3H-spiro[isobenzofuran-1,9'-xanthene]-3',6'-diyl)bis(N-ethylnitrous amide) (N1). Rhodamine B (1.00 g, 2.25 mmol) was dissolved in 100 mL dichloromethane and diluted with 5% NaOH (aq.) (100 mL, 3 times). The organic layer was dried with Na₂SO₄, filtered, and evaporated under reduced pressure to afford a yellow oil. To the stirred solution of the yellow oil in 50 mL THF was added butyl nitrite (0.70 g, 6.76 mmol). The mixture was heated to 60 °C and stirred for 10 hours before evaporated under reduced pressure. Crude product was purified by a column chromatography with PE and EA (20:1 v/v) as the eluent to afford a white solid (0.83 g) in an 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, *J* = 6.7, 0.9 Hz, 1H), 7.73 (td, *J* = 7.4, 1.4 Hz, 1H), 7.68 (td, *J* = 7.4, 1.1 Hz, 1H), 7.52 (d, *J* = 2.2 Hz, 2H), 7.34 (dd, *J* = 8.7, 2.3 Hz, 2H), 7.23 (d, *J* = 8.7 Hz, 2H), 4.07 (q, *J* = 7.2 Hz, 4H), 1.18 (t, *J* = 7.2 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 169.18, 152.84, 151.83, 143.45, 135.61, 130.42, 129.51, 126.23, 125.59, 123.94, 117.26, 114.44, 106.78, 81.49, 38.58, 11.83. HRMS (ES⁺) Calcd for [M+Na]⁺, 467.1326; Found, 467.1330.

N,N'-(3H-spiro[isobenzofuran-1,9'-xanthene]-3',6'-diyl)bis(N-ethylnitrous amide) (N2). This compound was synthesized in a manner analogous to that of **N1**, from 9-(2-hydroxylmethylphenyl)-3, 6-bis(diethylamino)- xanthylium chloride (1.00 g, 2.33 mmol) and butyl nitrite (0.72 g, 7.00 mmol). The compound **N2** (0.73g) was obtained as a yellow solid and recrystallized with methanol to afford a white solid (0.58 g) in a 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 2.4 Hz, 4H), 7.35 (dd, $J_1 = 8.7$ Hz, $J_2 = 2.2$ Hz, 1H), 7.14 (d, J = 8.6 Hz, 2H), 6.95 (d, J = 7.6 Hz, 1H), 5.42 (s, 2H), 4.08 (q, J = 7.2 Hz, 4H), 1.19 (t, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.95, 144.47, 142.31, 138.80, 130.28, 128.87, 128.80, 123.83, 123.21, 121.13, 114.52, 106.76, 83.09, 73.02, 38.85, 11.86. HRMS (ES⁺) Calcd for [M+H]⁺, 431.1714; Found, 431.1718.

N-ethyl-N-(4-methyl-2-oxo-2H-chromen-7-yl)nitrous amide (N3). To the stirred solution of 7-Diethylamino-4-methylcoumarin (1.00 g, 4.32 mmol) in 50 mL THF was added butyl nitrite(1.34g, 12.97 mmol). The mixture was heated to 60 °C and stirred for 2 hours before evaporated under reduced pressure. Crude product was purified by a column chromatography with PE and EA (20:1 v/v) as the eluent to afford a white solid (0.92 g) in an 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.7 Hz, 1H), 7.63 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.44 (d, *J* = 2.1 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 2.46 (d, *J* = 1.1 Hz, 3H), 1.17 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.49, 154.44, 151.98, 144.10, 125.98, 118.38, 114.81, 114.16, 106.01, 38.36, 18.77,

11.78. HRMS (ES⁺) Calcd for [M+Na]⁺, 255.0740; Found, 255.0747.

N-ethyl-N-phenylnitrous amide (3) was prepared from N,N-diethylaniline (1.00 g, 6.70 mmol) as a yellow solid (0.87 g, 86%). ¹H NMR (400 MHz, CDCl₃) & 7.56 - 7.52 (m, 2H), 7.50 -7.45 (m, 2H), 7.39 – 7.33 (m, 1H), 4.08 (q, J = 7.2 Hz, 2H), 1.18 (t, J = 7.2 Hz, 3H).

N-ethyl-N-(4-methoxyphenyl)nitrous amide (4). To the stirred solution of N,N-diethyl-4methoxyaniline (1.00 g, 5.58 mmol) in 50 mL THF was added butyl nitrite(1.73 g, 16.74 mmol). The mixture was heated to 60 °C and stirred for 4 hours before evaporated under reduced pressure. Crude product was purified by a column chromatography with PE and EA (20:1 v/v) as the eluent to afford a brown oil (0.80 g) in an 80% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.45 (m, 2H), 7.02 – 6.96 (m, 2H), 4.04 (q, J = 7.2 Hz, 2H), 3.85 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H).

N-ethyl-N-(p-tolyl)nitrous amide (5) was prepared from N,N-diethyl-4-methylaniline (1.00 g, 6.13 mmol) as a yellow solid (0.90 g, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.3 Hz, 2H), 4.06 (q, J = 7.2 Hz, 2H), 2.40 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H).

N-(3-bromophenyl)-N-ethylnitrous amide (6) was prepared from 3-bromo-N,N -diethylaniline (1.00 g, 4.38 mmol) as a yellow solid (0.88 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (t, J = 2.0 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.31 (dd, J = 9.1, 7.1 Hz, 1H), 4.01 (q, J = 7.2 Hz, 2H), 1.13 (t, J = 7.2 Hz, 3H).

N-(4-bromophenyl)-N-ethylnitrous amide(7) was prepared from 4-bromo-N,N

-diethylaniline (1.00 g, 4.38 mmol) as a yellow solid (0.92 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.64 - 7.56 (m, 2H), 7.47 - 7.39 (m, 2H), 4.04 (q, J = 7.2 Hz, 2H), 1.16 (t, J = 7.2 Hz, 3H).

N-ethyl-N-(4-formylphenyl)nitrous amide (8) was prepared from 4-(diethylamino)benzaldehyde (1.00 g, 5.64 mmol) as a yellow solid (0.95 g, 94%). ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 8.00 (d, J = 8.6 Hz, 2H), 7.75 (d, J = 8.7 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.90, 146.01, 134.50, 131.24, 118.17, 38.21, 11.72.

4-(Ethyl(nitroso)amino)benzoic acid (9) was prepared from 4-(diethylamino)benzoic acid (1.00 g, 5.17 mmol) as a yellow solid (0.96 g, 96%). ¹H NMR (400 MHz, DMSO) δ 8.09 (d, *J* = 8.4 Hz, 2H), 7.79 (d, *J* = 8.7 Hz, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 1.06 (t, *J* = 7.1 Hz, 3H).

Table S1. Crystal data and structure refinement for N1.				
Identification code	d8v17683			
Empirical formula	C24 H20 N4 O5			
Formula weight	444.44			
Temperature	173(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/c			
Unit cell dimensions	a = 13.1450(5) Å	<i>α</i> = 90°.		
	b = 14.0218(6) Å	β=		
114.4160(10)°.				
	c = 12.9264(5) Å	$\gamma = 90^{\circ}$.		
Volume	2169.47(15) Å ³			
Ζ	4			
Density (calculated)	1.361 Mg/m ³			
Absorption coefficient	0.098 mm ⁻¹			
F(000)	928			
Crystal size	0.180 x 0.150 x 0.100 n	nm ³		
Theta range for data collection	2.359 to 26.000°.			
Index ranges	-16<=h<=16, -17<=k<=	=17, - 15<=l<=15		
Reflections collected	47168			
Independent reflections	4256 [R(int) = 0.0732]			
Completeness to theta = 25.242°	99.8 %			
Absorption correction	Semi-empirical from eq	uivalents		
Max. and min. transmission	0.7456 and 0.6733			
Refinement method	Full-matrix least-square	es on F ²		
Data / restraints / parameters	4256 / 0 / 301			
Goodness-of-fit on F ²	1.028			
Final R indices [I>2sigma(I)]	R1 = 0.0411, $wR2 = 0.0$)889		
R indices (all data)	R1 = 0.0592, wR2 = 0.1	R1 = 0.0592, $wR2 = 0.1004$		
Extinction coefficient	0.0152(12)			
Largest diff. peak and hole	0.205 and -0.196 e.Å ⁻³	0.205 and -0.196 e.Å ⁻³		

Figure S1. Ortep drawings and the packing mode of N1 in its solid state.

Table S2. Crystal data and structure refine	ement for N2.	
Identification code	d8v17444	
Empirical formula	C24 H22 N4 O4	
Formula weight	430.45	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 18.2546(6) Å	α= 90°.
	b = 9.1982(3) Å	β=
108.2310(10)°.		
	c = 13.3199(4) Å	$\gamma = 90^{\circ}$.
Volume	2124.27(12) Å ³	
Z	4	
Density (calculated)	1.346 Mg/m ³	
Absorption coefficient	0.094 mm ⁻¹	
F(000)	904	
Crystal size	0.160 x 0.140 x 0.100 mm ³	
Theta range for data collection	2.738 to 25.495°.	
Index ranges	-22<=h<=21, -11<=k<=10, -1	l6<=l<=16
Reflections collected	31544	
Independent reflections	3944 [R(int) = 0.0522]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	0.7456 and 0.6975	

S7

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3944 / 0 / 292
Goodness-of-fit on F^2	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0494, wR2 = 0.1184
R indices (all data)	R1 = 0.0736, wR2 = 0.1352
Extinction coefficient	0.015(2)
Largest diff. peak and hole	0.310 and -0.275 e.Å ⁻³

Figure S2. Ortep drawings and the packing mode of N2 in its solid state.

Table S3. Crystal data and struc	cture refinement for N3.	
Identification code	d8v17769	
Empirical formula	C12 H12 N2 O3	
Formula weight	232.24	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 11.2278(5) Å	<i>α</i> = 90°.
	b = 13.7389(6) Å	β=
107.1730(10)°.		
	c = 7.4364(3) Å	$\gamma = 90^{\circ}$.
Volume	1095.98(8) Å ³	
Z	4	
Density (calculated)	1.407 Mg/m ³	
Absorption coefficient	0.103 mm ⁻¹	
F(000)	488	

Crystal size	0.200 x 0.160 x 0.100 mm ³	
Theta range for data collection	2.409 to 25.996°.	
Index ranges	-13<=h<=12, -16<=k<=16, -9<=l<=9	
Reflections collected	18997	
Independent reflections	2146 [R(int) = 0.0617]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6637	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2146 / 0 / 157	
Goodness-of-fit on F ²	1.042	
Final R indices [I>2sigma(I)]	R1 = 0.0387, wR2 = 0.0914	
R indices (all data)	R1 = 0.0500, wR2 = 0.0998	
Extinction coefficient	0.032(6)	
Largest diff. peak and hole 0.211 and -0.154 e.Å ⁻³		

Figure S3. Ortep drawings and the packing mode of N3 in its solid state.

Figure S4. Fluorescence turn-on monitoring of the formation of NAT and corresponding dyes upon excitation of **N1** (A) and **N2** (C) with a 375 nm mercury lamp. The enhancement of the NAT' fluorescence emission intensity at 415 nm by excitation at 360 nm upon solvents of DAN and **N1** (C), **N2** (D).

Fig S6. The ¹H NMR of compound C2 in CDCl₃

Fig S10. The HRMS(ESI) of compound N2 in CDCl₃

Fig S11. The ¹H NMR of compound N3 in CDCl₃

Fig S12. The ¹³C NMR of compound N3 in CDCl₃

Fig S14. The ¹H NMR of compound 8 in CDCl₃

Fig S15. The ¹³C NMR of compound 8 in CDCl₃

Fig S16. The HRMS(EI) of compound 8

Fig S17. The ¹H NMR of compound 4 in CDCl₃

Fig S18. The ¹H NMR of compound 5 in CDCl₃

Fig S19. The ¹H NMR of compound 3 in CDCl₃

Fig S20. The ¹H NMR of compound 6 in CDCl₃

Fig S21. The ¹H NMR of compound 7 in CDCl₃

Fig S22. The ¹H NMR of compound 8 in DMSO