Trifluoromethylation of α -Diazoesters and α -Diazoketones

with Fluoroform-Derived CuCF₃: Synergistic Effects of Co-solvent and Pyridine as a Promoter Qiao Ma and Gavin Chit Tsui*

Table of Contents

General Experimental	S1
Materials	S1
Instrumentation	S1
Experimental Procedures	S2
Table S1. Optimization studies for the trifluoromethylation of α -diazoester 1a	S3
Table S2. Optimization studies for the trifluoromethylation of α -diazoketone 3a	S5
Table S3. Data for Figure 1	S5
Characterization data of substrates	S6
Characterization data of products	S10
References	S21
Spectra of substrates	S22
Spectra of products	S39

General Experimental. Reactions were monitored using thin-layer chromatography (TLC) on EM Science silica gel 60 F254 plates. Visualization of the developed plates was performed under UV light (254 nm) and/or with KMnO4 or PMA stain followed by heating. Organic solvents were evaporated by rotary evaporation at 23–40 °C. Reaction products were purified by silica gel flash column chromatography using Grace Materials Technologies 230–400 mesh silica gel.

Materials. Fluoroform (Research Grade, Purity: 99.999% min., 9.1kg in 16 L size cylinder) was purchased from SynQuest Laboratories, USA. Copper(I) chloride (extra pure, 99.99%) was purchased from Acros. Et₃N·3HF (97%) and Potassium *tert*-butoxide (97%) were purchased from Alfa Aesar. DMF from Solvent Purification System was further dried with 5Å molecular sieves then bubbled with argon for 24 h. Other reagents and solvents were purchased from commercial sources and used as received. α -Diazoesters 1¹ and ketones^{2,3} (for the synthesis of α -diazoketones 3) were prepared according to literature procedures.

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra, carbon nuclear magnetic resonance (¹³C NMR) spectra and fluorine nuclear magnetic resonance (¹⁹F NMR) spectra were recorded at 23 °C on a Bruker 400 or 500 MHz NMR spectrometer. Chemical shifts of ¹H NMR spectra were reported using either residual solvent signal of CDCl₃ (δ = 7.26 ppm) or TMS (δ = 0.00 ppm) as internal standard. Chemical shifts of ¹³C NMR spectra were reported using residual solvent signal of CDCl₃ (δ = 77.16 ppm) as internal standard. Chemical shifts of ¹⁹F NMR spectra were reported using benzotrifluoride (δ = -63.72 ppm) as internal standard. Data are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (*J*, Hz), and integration. High resolution mass spectra (HRMS) were recorded on a Thermo Scientific Q Exactive Focus Mass Spectrometer.

Experimental Procedures.

Procedure for the preparation of fluoroform-derived CuCF₃ reagent:⁴

In a glove box, to a test tube (16*100 mm) was added CuCl (297.0 mg, 3.0 mmol), *t*-BuOK (673.3 mg, 6.0 mmol) and a stirrer bar. The tube was sealed with a septum, brought out of the glove box and put under an argon atmosphere. Degassed DMF (6.0 mL) was added *via* syringe and the mixture was stirred at room temperature for 30 min under argon. Then fluoroform was quickly bubbled into the mixture by using a needle connected to the fluoroform cylinder at room temperature for 2-3 min. The mixture was stirred for 5 min and Et₃N·3HF (246 μ L, 1.50 mmol) was added under argon and the mixture was stirred for another 5 min. A colorless/slightly brown solution with some white solid was obtained as the [CuCF₃] solution in DMF (~0.42 M). The yield of [CuCF₃] was generally >90% determined by ¹⁹F NMR analysis (DMF, unlocked) using benzotrifluoride as the internal standard.

General experimental procedure for the synthesis of α -diazoketones (3a-r):

$$R^{1} \xrightarrow{R^{2}} \frac{TsN_{3}, DBU}{CH_{3}CN, 0^{\circ}C - rt} R^{1} \xrightarrow{N_{2}} R^{2}$$

S3a-r 3a-r

DBU (6.0 mmol) was added dropwise to a stirred solution of ketones **S3a-r** (5.0 mmol) and *p*-MeC₆H₄SO₂N₃ (6.0 mmol) in acetonitrile (50 mL) at 0 °C. The reaction was stirred at 0°C for 1h and then at room temperature for 5 h. Sat. NaHCO₃/Et₂O (1:1 v/v, 50 mL) was then added and the layers were separated. The aq. layer was then extracted with Et₂O (2 x 25 mL) and the organic layers were combined. The organic layers were then dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was then purified by flash column chromatography quickly (SiO₂, hexanes/ethyl acetate = 15:1) to give pure *α*-diazoketones **3a-r**. *α*-Diazoketone **3s** was a known compound and prepared according to literature procedures.⁵

General procedure for trifluoromethylation of α -diazoesters (cf. Table 2):

To a 25 mL flask equipped with a stir bar was added 1,4-dioxane (7 mL) and pyridine (100 μ L, 1.25 mmol), the flask was sealed with a septum then charged with argon. CuCF₃ in DMF (3 mL, 1.25 mmol) was added via a syringe under argon followed by adding a solution of α -diazoesters **1** (0.5 mmol) in 1,4-dioxane (0.5 mL). The resulting mixture was stirred under argon for 12 h. The reaction mixture was extracted with DCM (3 × 20 mL), combined organic layer was washed with H₂O (2 × 20 mL), then brine (20 mL), dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to afford α -trifluoromethyl esters **2**.

General procedure for trifluoromethylation of α-diazoketones (cf. Table 3):

$$R^{1} \xrightarrow{R^{2}} O$$

$$R^{1} \xrightarrow{R^{2}} O$$

$$R^{1} \xrightarrow{R^{2}} O$$

$$DMF/1,4-dioxane O$$

$$R^{1} \xrightarrow{CF_{3}} R^{2}$$

To a 10 mL flask equipped with a stir bar was added 1,4-dioxane (4.5 mL), pyridine (36 μ L, 0.45 mmol) and α -diazoketones **3** (0.3 mmol). The flask was sealed with a septum then charged with argon, after that the mixture was cooled to 0 °C with ice bath. CuCF₃ in DMF (1.1 mL, 0.45 mmol) was then added via a syringe under argon. The resulting mixture was kept stirring at 0 °C for ~3 h, then warmed up to room temperature naturally and stirred for another 9 h. The reaction mixture was extracted with DCM (3 × 10 mL), combined organic layers were washed with H₂O (2 × 10 mL), then brine (10 mL), dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to afford α -trifluoromethyl ketones **4**.

	N ₂ Ph CO ₂ Et 1a	$\begin{array}{c} CuCF_{3} \\ (from CF_{3}H) \\ \hline co-solvent \\ additive \\ 23 \ ^{\circ}C, 12 \ h \end{array} \xrightarrow{CF_{3}} Ph \begin{array}{c} CO_{2}Et \\ CO_{2}Et \\ 2a \end{array}$	
entry	co-solvent (mL)	additive (equiv)	yield $(\%)^b$
1	none	none	21
2^d	none	none	12
3	NMP	none	16
4	THF (0.6)	none	22
5	Et ₂ O (0.6)	none	22
6	toluene (0.6)	none	32
7	CH ₂ Cl ₂ (0.6)	none	32
8	CH ₃ CN (0.6)	none	52
9	CH ₃ CN (0.25)	none	42
10	CH ₃ CN (0.75)	none	56
11	CH ₃ CN (1.5)	none	66
12	CH ₃ CN (2.0)	none	67
13	toluene (1.5)	none	37
14	THF (1.5)	none	23
15	CH ₃ CN (1.5)	Et ₃ N (2.5)	55
16	CH ₃ CN (1.5)	TMEDA (2.5)	47
17	CH ₃ CN (1.5)	piperidine (2.5)	25
18	CH ₃ CN (1.5)	HTMP (2.5)	22
19	CH ₃ CN (1.5)	imidazole (2.5)	6
20	CH ₃ CN (1.5)	1,10-phenanthroline (2.5)	15
21	CH ₃ CN (1.5)	PPh ₃ (2.5)	6
22	CH ₃ CN (1.5)	$K_2CO_3(2.5)$	17

Table S1. Optimization studies for the trifluoromethylation of α-diazoester 1a (cf. Table 1).^a

23	CH ₃ CN (1.5)	Na_2CO_3 (2.5)	32
24	CH ₃ CN (1.5)	pyridine (2.5)	81
25	CH ₃ CN (1.5)	DMAP (2.5)	31
26	CH ₃ CN (1.5)	2-acetylpyridine (2.5)	60
27	CH ₃ CN (1.5)	3-acetylpyridine (2.5)	73
28	CH ₃ CN (1.5)	2-phenylpyridine (2.5)	56
29	CH ₃ CN (1.5)	4-methylpyridine (2.5)	81
30	toluene (1.5)	pyridine (2.5)	80
31	CH ₂ Cl ₂ (1.5)	pyridine (2.5)	69
32	THF (1.5)	pyridine (2.5)	76
33	Et ₂ O (1.5)	pyridine (2.5)	78
34	1,4-dioxane (1.5)	pyridine (2.5)	86, 83 ^c
34 35 ^e	1,4-dioxane (1.5) none	pyridine (2.5) pyridine (2.5)	86, 83 ^c 24
34 35 ^e 36	1,4-dioxane (1.5) none 1,4-dioxane (1.5)	pyridine (2.5) pyridine (2.5) pyridine (1.25)	86, 83 ^c 24 60
34 35 ^e 36 37	1,4-dioxane (1.5) none 1,4-dioxane (1.5) 1,4-dioxane (1.5)	pyridine (2.5) pyridine (2.5) pyridine (1.25) pyridine (5.0)	86, 83 ^c 24 60 86
34 35 ^e 36 37 38	1,4-dioxane (1.5) none 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5)	pyridine (2.5) pyridine (2.5) pyridine (1.25) pyridine (5.0) none	86, 83 ^c 24 60 86 37
34 35 ^e 36 37 38 39 ^f	1,4-dioxane (1.5) none 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5)	pyridine (2.5) pyridine (2.5) pyridine (1.25) pyridine (5.0) none pyridine (2.5)	86, 83 ^c 24 60 86 37 62
34 35 ^e 36 37 38 39 ^f 40 ^g	1,4-dioxane (1.5) none 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5)	pyridine (2.5) pyridine (2.5) pyridine (1.25) pyridine (5.0) none pyridine (2.5) pyridine (2.5)	86, 83 ^c 24 60 86 37 62 64
34 35 ^e 36 37 38 39 ^f 40 ^g 41 ^h	1,4-dioxane (1.5) none 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5)	pyridine (2.5) pyridine (2.5) pyridine (1.25) pyridine (5.0) none pyridine (2.5) pyridine (2.5) pyridine (2.5)	86, 83 ^c 24 60 86 37 62 64 62
34 35 ^e 36 37 38 39 ^f 40 ^g 41 ^h 42 ⁱ	1,4-dioxane (1.5) none 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5)	pyridine (2.5) pyridine (2.5) pyridine (1.25) pyridine (5.0) none pyridine (2.5) pyridine (2.5) pyridine (2.5) none	86, 83 ^c 24 60 86 37 62 64 62 19
34 35 ^e 36 37 38 39 ^f 40 ^g 41 ^h 42 ⁱ 43 ^j	1,4-dioxane (1.5) none 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5) 1,4-dioxane (1.5)	pyridine (2.5) pyridine (2.5) pyridine (1.25) pyridine (5.0) none pyridine (2.5) pyridine (2.5) pyridine (2.5) none pyridine (2.5)	86, 83 ^c 24 60 86 37 62 64 62 19 0

^{*a*}Unless specified otherwise, reactions were carried out using **1a** (0.1 mmol), CuCF₃ (0.42 M in DMF solution, 0.6 mL, 2.5 equiv, prepared from CuCl/*t*-BuOK/CF₃H and stabilized with Et₃N·3HF), under argon. ^{*b*}Yield was determined by ¹⁹F NMR analysis using benzotrifluoride as the internal standard. ^{*c*}Isolated yield. ^{*d*}Added 0.6 mL DMF. ^{*e*}Added 1.5 mL DMF. ^{*f*}At 50 °C. ^{*g*}Using 1.5 equiv of CuCF₃. ^{*b*}Using 3.5 equiv of CuCF₃. ^{*i*}CuCF₃ was stabilized with HF-pyridine (Olah's reagent). ^{*j*}Reaction was open to air.

		$\begin{array}{c} N_2 \\ Ph & Ph \\ 3a \\ O \end{array} \begin{array}{c} Ph \\ \hline \end{array}$	CuCF ₃ <u>from CF₃H)</u> co-solvent pyridine temp, 12 h	Ph	
entry	equiv of	as solvent (mL)	equiv of	temp (°C)	yield (%) ^b
	CuCF ₃	co-solvent (IIIL)	pyridine		
1	2.5	1,4-dioxane (1.5)	2.5	23	60
2	2.5	CH ₃ CN (1.5)	2.5	23	56
3^d	2.5	none	2.5	23	30
4	2.5	1,4-dioxane (0.75)	2.5	23	55
5	2.5	1,4-dioxane (2.25)	2.5	23	61
6	2.5	1,4-dioxane (1.5)	2.5	50	42
7	2.5	1,4-dioxane (1.5)	2.5	0 to 23	72
8	1.5	1,4-dioxane (1.5)	2.5	0 to 23	80
9	3.0	1,4-dioxane (1.5)	2.5	0 to 23	71
10	1.5	1,4-dioxane (1.5)	1.5	0 to 23	82, 80 ^c
11	1.5	1,4-dioxane (1.5)	0	0 to 23	60

Table S2. Optimization studies for the trifluoromethylation of α-diazoketone 3a.^a

^{*a*}Unless specified otherwise, reactions were carried out using **3a** (0.1 mmol), CuCF₃ (0.42 M in DMF solution, prepared from CuCl/*t*-BuOK/CF₃H and stabilized with Et₃N·3HF), under argon. ^{*b*}Yield was determined by ¹⁹F NMR analysis using benzotrifluoride as the internal standard. ^{*c*}Isolated yield. ^{*d*}Added 1.5 mL DMF.

Table S3. Data for Figure 1.

		CuCF ₃ (2.5 equiv, 0.42 M in DM Et <u>toluene</u> pyridine (2.5 equiv) o no pyridine 23 °C, argon	$\xrightarrow{r} \begin{array}{c} CF_3 \\ CO_2Et \\ 2a \end{array}$	
	¹⁹ F NMR yield of	¹⁹ F NMR yield of	molar ratio of	molar ratio of
time (min)	2a with pyridine	2a without pyridine	CuCF ₃ without	CuCF ₃ with
	(%)	(%)	pyridine	pyridine
5	10	2	1.0	1.0
14	19	5	0.71	0.63
24	27	9	0.65	0.50
37	40	13	0.60	0.41
63	53	20	0.55	0.30
101	66	28	0.48	0.21
163	72	35	0.42	0.12

Characterization data of substrates

2-diazo-1,2-diphenylethanone (3a)

Following the general procedure, ketone **S3a** (1.0 g, 5.1 mmol) was converted to **3a** as a red solid (627 mg, 55% yield), $R_f = 0.44$ (hexanes/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.62 (d, J = 8.0 Hz, 2H), 7.53 – 7.39 (m, 7H), 7.28 – 7.26 (m, 1H). The spectral data are in full accordance with the literature report.⁶

2-(4-chlorophenyl)-2-diazo-1-phenylethanone (3b)

Following the general procedure, ketone **S3b** (461 mg, 2.0 mmol) was converted to **3b** as a red solid (430 mg, 84% yield), $R_f = 0.46$ (hexanes/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.62 – 7.60 (m, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.46 – 7.37 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 188.3, 137.8, 132.8, 132.0, 129.4, 128.8, 127.8, 127.1, 124.8. HRMS *m/z* (APCI) calcd. for C₁₄H₉ClN₂O [M-N₂+H]⁺: 229.04147; found: 229.04233.

2-(3-chlorophenyl)-2-diazo-1-phenylethanone (3c)

Following the general procedure, ketone **S3c** (461 mg, 2.0 mmol) was converted to **3c** as a yellow solid (450 mg, 88% yield), $R_{\rm f} = 0.37$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.63 – 7.61 (m, 2H), 7.56 (t, J = 1.7 Hz, 1H), 7.53 (t, J = 7.3 Hz, 1H), 7.45 (t, J = 7.7 Hz, 2H), 7.38 – 7.36 (m, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.23 (dt, J = 7.8, 1.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 188.1, 137.8, 135.2, 132.1, 130.3, 128.8, 128.3, 127.7, 127.1, 125.6, 123.8. HRMS *m/z* (APCI) calcd. for C₁₄H₉ClN₂O [M-N₂+H]⁺: 229.04147; found: 229.04219.

2-(2-chlorophenyl)-2-diazo-1-phenylethanone (3d)

Following the general procedure, ketone **S3d** (461 mg, 2.0 mmol) was converted to **3d** as a yellow solid (370 mg, 72% yield), $R_f = 0.34$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.52 – 7.43 (m, 4H), 7.36 – 7.24 (m, 5H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 195.4, 138.8, 136.6, 133.9, 131.3, 130.20, 130.19, 129.3, 128.8, 126.8, 121.8. HRMS *m/z* (APCI) calcd. for C₁₄H₉ClN₂O [M-N₂+H]⁺: 229.04147; found: 229.04194.

2-(4-bromophenyl)-2-diazo-1-phenylethanone (3e)

Following the general procedure, ketone **S3e** (550 mg, 2.0 mmol) was converted to **3e** as a yellow solid (480 mg, 80% yield), $R_f = 0.56$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.62 – 7.60 (m, 2H), 7.54 – 7.51 (m, 3H), 7.44 (t, J = 7.8 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 188.3, 137.8, 132.3, 132.1, 128.8, 127.8, 127.4, 125.4, 120.8. HRMS *m/z* (APCI) calcd. for C₁₄H₉BrN₂O [M-N₂+H]⁺: 272.99272; found: 272.99177.

2-diazo-2-(4-fluorophenyl)-1-phenylethanone (3f)

Following the general procedure, ketone **S3f** (428 mg, 2.0 mmol) was converted to **3f** as a yellow solid (140 mg, 30% yield), $R_f = 0.46$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.62 – 7.60 (m, 2H), 7.54 – 7.51 (m, 3H), 7.44 (t, J = 7.8 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 188.2, 137.8, 132.3, 132.1, 128.8, 127.8, 127.4, 125.4, 120.8. HRMS *m/z* (APCI) calcd. for C₁₄H₉FN₂O [M-N₂+H]⁺: 213.07102; found: 213.07144.

2-diazo-2-phenyl-1-(p-tolyl)ethenone (3g)

Following the general procedure, ketone **S3g** (210 mg, 1.0 mmol) was converted to **3g** as a red solid (126 mg, 53% yield), $R_f = 0.54$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.52 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 188.4, 142.5, 135.4, 129.3, 129.2, 128.0, 127.0, 126.5, 126.2, 21.7. HRMS *m/z* (APCI) calcd. for C₁₅H₁₂N₂O [M-N₂+H]⁺: 209.09609; found: 209.09627.

2-diazo-2-phenyl-1-(*m*-tolyl)ethenone (3h)

Following the general procedure, ketone **S3h** (210 mg, 1.0 mmol) was converted to **3h** as a red oil (113 mg, 48% yield), $R_f = 0.58$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.49 (d, J = 7.5 Hz, 2H), 7.45 (s, 1H), 7.42 – 7.38 (m, 3H), 7.31 – 7.27 (m, 2H), 7.18 – 7.16 (m, 1H), 2.38 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 188.8, 138.7, 138.1, 132.6, 129.2, 128.5, 128.4, 127.1, 126.3, 126.1, 124.9, 21.5. HRMS *m/z* (APCI) calcd. for C₁₅H₁₂N₂O [M-N₂+H]⁺: 209.09609; found: 209.09628.

2-diazo-2-phenyl-1-(o-tolyl)ethenone (3i)

Following the general procedure, ketone **S3i** (210 mg, 1.0 mmol) was converted to **3i** as a red oil (65 mg, 28% yield), $R_f = 0.58$ (hexanes/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.53 (d, J = 7.7 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.36 – 7.33 (m, 2H), 7.25 – 7.21 (m, 3H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 190.4, 138.4, 135.6, 131.2, 130.4, 129.2, 127.0, 126.7, 126.0, 125.7, 125.4, 19.2. HRMS *m/z* (APCI) calcd. for C₁₅H₁₂N₂O [M-N₂+H]⁺: 209.09609; found: 209.09648.

2-diazo-1-(4-methoxyphenyl)-2-phenylethanone (3j)

Following the general procedure, ketone **S3j** (226 mg, 1.0 mmol) was converted to **3j** as a yellow solid (88 mg, 35% yield), $R_f = 0.56$ (hexanes/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.61 (d, J = 8.7 Hz, 2H), 7.45 – 7.38 (m, 4H), 7.27 – 7.26 (m, 1H), 6.90 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 187.5, 162.6, 130.6, 130.2, 129.2, 127.0, 126.7, 126.3, 113.8, 55.6. HRMS *m/z* (APCI) calcd. for C₁₅H₁₂N₂O₂ [M-N₂+H]⁺: 225.09101; found: 225.09116.

1-(4-bromophenyl)-2-diazo-2-phenylethanone (3k)

Following the general procedure, ketone **S3k** (275 mg, 1.0 mmol) was converted to **3k** as a red soild (90 mg, 30% yield), $R_f = 0.59$ (hexanes/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.55 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.42 – 7.38 (m, 4H), 7.30 – 7.27 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 188.6, 138.1, 131.9, 129.3, 129.2, 128.7, 127.9, 127.2, 126.2. HRMS *m/z* (APCI) calcd. for C₁₄H₉BrN₂O [M-N₂+H]⁺: 272.99095; found: 272.99121.

1-(4-chlorophenyl)-2-diazo-2-phenylethanone (3l)

Following the general procedure, ketone **S3I** (1.3 g, 5.6 mmol) was converted to **3I** as a red solid (300 mg, 21% yield), $R_f = 0.57$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.55 (d, J = 8.5 Hz, 2H), 7.42 – 7.37 (m, 6H), 7.30 – 7.26 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 187.1, 138.1, 136.3, 129.5, 129.3, 128.9, 127.4, 126.5, 126.0. HRMS *m/z* (APCI) calcd. for C₁₄H₉ClN₂O [M-N₂+H]⁺: 229.04147; found: 229.04173.

1-(4-acetylphenyl)-2-diazo-2-phenylethanone (3m)

Following the general procedure, ketone **S3m** (1.17 g, 4.91 mmol) was converted to **3m** as a red solid (400 mg, 31% yield), $R_f = 0.27$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.99 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.45 – 7.39 (m, 4H), 7.32 – 7.27 (m, 1H), 2.63 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 197.5, 187.5, 141.8, 139.3, 129.3, 128.6, 128.2, 127.5, 126.5, 125.7, 26.9. HRMS *m/z* (APCI) calcd. for C₁₆H₁₂N₂O₂ [M-N₂+H]⁺: 237.09101; found: 237.09122.

methyl 4-(2-diazo-2-phenylacetyl)benzoate (3n)

Following the general procedure, ketone **S3n** (1.4 g, 5.5 mmol) was converted to **3n** as a yellow solid (863 mg, 56% yield), $R_f = 0.60$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.08 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.44 – 7.39 (m, 4H), 7.31 – 7.26 (m, 1H), 3.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 187.7, 166.3, 141.8, 132.9, 129.9, 129.3, 127.9, 127.5, 126.4, 125.8, 52.6. HRMS *m/z* (APCI) calcd. for C₁₆H₁₂N₂O₃ [M-N₂+H]⁺: 253.08592; found: 253.08597.

1-([1,1'-biphenyl]-4-yl)-2-diazo-2-phenylethanone (30)

Following the general procedure, ketone **S30** (200 mg, 0.73 mmol) was converted to **30** as a yellow solid (103 mg, 47% yield), $R_f = 0.38$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.70 (d, J = 8.4 Hz, 2H), 7.65 – 7.61 (m, 4H), 7.51 – 7.38 (m, 7H), 7.28 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 188.1, 144.7, 140.0, 136.8, 129.2, 129.1, 128.6, 128.3, 127.4, 127.3, 127.2, 126.34, 126.33. HRMS *m/z* (APCI) calcd. for C₂₀H₁₄N₂O [M-N₂+H]⁺: 271.11174; found: 271.11184.

4-(2-diazo-2-phenylacetyl)benzonitrile (3p)

Following the general procedure, ketone **S3p** (180 mg, 0.81 mmol) was converted to **3p** as a yellow solid (125 mg, 62% yield), $R_{\rm f} = 0.51$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.69 (q, J = 8.2 Hz, 4H), 7.44 – 7.38 (m, 4H), 7.32 – 7.29 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 186.5, 141.6, 132.5, 129.4, 128.6, 127.9, 126.8, 125.4, 118.0, 115.3. HRMS *m/z* (APCI) calcd. for C₁₅H₉N₃O [M-N₂+H]⁺: 220.07569; found: 220.07591.

2-diazo-1-(naphthalen-2-yl)-2-phenylethanone (3q)

Following the general procedure, ketone **S3q** (427 mg, 1.73 mmol) was converted to **3q** as a red soild (310 mg, 66% yield), $R_f = 0.44$ (hexanes/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.14 (s, 1H), 7.88 (d, J = 8.4 Hz, 3H), 7.68 (dd, J = 8.6, 1.7 Hz, 1H), 7.61 – 7.54 (m, 2H), 7.52 – 7.49 (m, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 188.4, 135.4, 134.9, 132.6, 129.23, 129.19, 128.61, 128.60, 128.1, 128.0, 127.2, 127.0, 126.4, 126.3, 124.5. HRMS *m/z* (APCI) calcd. for C₁₈H₁₂N₂O [M-N₂+H]⁺: 245.09609; found: 245.09621.

2-diazo-2-phenyl-1-(thiophen-3-yl)ethenone (3r)

Following the general procedure, ketone S3r (648 mg, 3.2 mmol) was converted to 3r as a red oil (306 mg, 42% yield), $R_f = 0.34$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.70 (dd, J = 2.9, 1.3 Hz, 1H), 7.50 – 7.48 (m, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.34 – 7.29 (m, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 181.7, 140.4, 130.1, 129.3, 127.6, 127.5, 127.0, 126.2, 126.1. HRMS *m/z* (APCI) calcd. for C₁₂H₈N₂OS [M-N₂+H]⁺: 201.03686; found: 201.03707.

Characterization data of products

ethyl 3,3,3-trifluoro-2-phenylpropanoate (2a)

Following the general procedure, reaction was run using α -diazoester **1a** (190 mg, 1.0 mmol), pyridine (200 µL, 2.5 mmol), 1,4-dioxane (15 mL) and CuCF₃ in DMF (6 mL, 2.5 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a light green oil (197 mg, 85% yield), $R_r = 0.7$ (hexane/dichloromethane = 5:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.46 – 7.38 (m, 5H), 4.34 – 4.15 (m, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 166.2 (q, $J_{CF} = 2.8$ Hz), 129.61, 129.60, 129.3, 129.0, 123.9 (q, $J_{CF} = 279.5$ Hz), 62.2, 55.6 (q, $J_{CF} = 28.9$ Hz), 13.9. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -68.7 (d, J = 8.6 Hz, 3F). The spectral data are in full accordance with the literature report.^{1a}

tert-butyl 3,3,3-trifluoro-2-phenylpropanoate (2b)

Following the general procedure, reaction was run using α -diazoester **1b** (109 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (120 mg, 92% yield), $R_f = 0.71$ (hexane/dichloromethane = 2:1). ¹H NMR (400 MHz,

CDCl₃): δ (ppm) 7.44 – 7.38 (m, 5H), 4.21 (q, J = 8.7 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 165.3 (q, $J_{CF} = 2.7$ Hz), 130.0 (q, $J_{CF} = 1.8$ Hz), 129.5, 129.1, 128.9, 124.0 (q, $J_{CF} = 279.6$ Hz), 83.2, 56.6 (q, $J_{CF} = 28.5$ Hz), 27.9. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -68.6 (d, J = 8.7 Hz, 3F). HRMS *m*/*z* (ESI) calcd. for C₁₃H₁₅F₃O₂ [M+Na]⁺: 283.09164; found: 283.09155.

ethyl 3,3,3-trifluoro-2-(o-tolyl)propanoate (2c)

Following the general procedure, reaction was run using α -diazoester **1c** (102 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (107 mg, 87% yield), R_t = 0.64 (hexane/dichloromethane = 2:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.53 (d, J = 7.7 Hz, 1H), 7.30 – 7.21 (m, 3H), 4.64 (q, J = 8,5 Hz, 1H), 4.29 – 4.13 (m, 2H), 2.43 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 166.7 (q, J_{CF} = 2.9 Hz), 137.5, 131.1, 129.2, 128.5, 128.4 (q, J_{CF} = 1.4 Hz), 126.7, 124.2 (q, J_{CF} = 279.7 Hz), 62.1, 50.7 (q, J_{CF} = 28.7 Hz), 20.0, 14.1. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -68.2 (d, J = 8.5 Hz, 3F). The spectral data are in full accordance with the literature report.^{1a}

ethyl 3,3,3-trifluoro-2-(p-tolyl)propanoate (2d)

Following the general procedure, reaction was run using α -diazoester **1d** (102 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a yellow oil (108 mg, 88% yield), $R_r = 0.4$ (hexane/dichloromethane = 2:1). ¹**H** NMR (500 MHz, CDCl₃): δ (ppm) 7.32 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 8 Hz, 2H), 4.29 – 4.15 (m, 3H), 2.36 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (126 MHz, CDCl₃): δ (ppm) 166.4 (q, $J_{CF} = 2.8$ Hz), 139.3, 129.7, 129.4, 126.6 (q, $J_{CF} = 1.8$ Hz), 123.9 (q, $J_{CF} = 279.6$ Hz), 62.1, 55.3 (q, $J_{CF} = 28.8$ Hz), 21.3, 14.1. ¹⁹**F** NMR (471 MHz, CDCl₃): δ (ppm) -68.8 (d, J = 8.6 Hz, 3F). The spectral data are in full accordance with the literature report.^{1a}

ethyl 2-(3,4-dimethoxyphenyl)-3,3,3-trifluoropropanoate (2e)

Following the general procedure, reaction was run using α -diazoester **1e** (125 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 5:1) and obtained as a colorless oil (126 mg, 86% yield), $R_{\rm f} = 0.50$ (hexane/dichloromethane = 2:1). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 6.98 (t, J = 2.7 Hz, 2H), 6.88 – 6.85 (m, 1H), 4.31 – 4.16 (m, 3H), 3.89 (d, J = 2.6 Hz, 6H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 166.4 (q, $J_{\rm CF} = 2.7$ Hz), 149.8, 149.2, 123.8 (q, $J_{\rm CF} = 280.3$ Hz), 122.3, 121.7 (q, $J_{\rm CF} = 1.7$ Hz), 112.1, 111.2, 62.1, 56.0, 55.9, 55.0 (q,

 $J_{\rm CF} = 28.8$ Hz), 14.0. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -68.9 (d, J = 8.6 Hz, 3F). The spectral data are in full accordance with the literature report.^{1a}

ethyl 3,3,3-trifluoro-2-(4-methoxyphenyl)propanoate (2f)

Following the general procedure, reaction was run using α -diazoester **1f** (110 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 10:1) and obtained as a colorless oil (111 mg, 84% yield), R_r = 0.50 (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.36 (d, J = 8.7 Hz, 2H), 6.92 – 6.90 (m, 2H), 4.31 – 4.16 (m, 3H), 3.81 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 166.5 (q, J_{CF} = 2.7 Hz), 160.4, 130.8, 123.9 (q, J_{CF} = 280.0 Hz), 121.5 (q, J_{CF} = 1.8 Hz), 114.4, 62.1, 55.4, 54.9 (q, J_{CF} =28.9 Hz), 14.1. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -69.1 (d, J = 8.6 Hz, 3F). The spectral data are in full accordance with the literature report.^{1a}

ethyl 3,3,3-trifluoro-2-(2-methoxyphenyl)propanoate (2g)

OMe CF₃ CO₂Et

Following the general procedure, reaction was run using α -diazoester **1g** (110 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (77 mg, 59% yield), R_r = 0.61 (hexane/dichloromethane = 2:1). ¹**H** NMR (500 MHz, CDCl₃): δ (ppm) 7.50 (d, J = 7.7 Hz, 1H), 7.37 – 7.34 (m, 1H), 7.0 – 6.93 (m, 2H), 5.03 (q, J = 8.9 Hz, 1H), 4.27 – 4.15 (m, 2H), 3.86 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³**C** NMR (126 MHz, CDCl₃): δ (ppm) 166.9 (q, J_{CF} = 2.7 Hz), 157.5, 130.5, 129.8, 124.1 (q, J_{CF} = 279.8 Hz), 120.9, 118.4, 111.2, 61.9, 55.9, 47.1 (q, J_{CF} = 29.0 Hz), 14.1. ¹⁹**F** NMR (471 MHz, CDCl₃): δ (ppm) -68.3 (d, J = 8.9 Hz, 3F). **HRMS** m/z (ESI) calcd. for C₁₂H₁₃F₃O₃ [M+Na]⁺: 285.07090; found: 285.07073.

ethyl 2-(2-chlorophenyl)-3,3,3-trifluoropropanoate (2h)

Following the general procedure, reaction was run using *a*-diazoester **1h** (112 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (95 mg, 71% yield), $R_f = 0.60$ (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.65 (d, J = 8.1 Hz, 1H), 7.47 – 7.46 (m, 1H), 7.35 – 7.29 (m, 2H), 5.10 (q, J = 8.5 Hz, 1H), 4.30 – 4.17 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 165.9 (q, $J_{CF} = 2.7$ Hz), 135.3, 130.5, 130.2, 130.1, 127.9 (q, $J_{CF} = 1.7$ Hz), 127.4, 123.8 (q, $J_{CF} = 279.8$ Hz), 62.4, 50.9 (q, $J_{CF} = 29.2$ Hz), 14.0. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -68.0 (d, J = 8.6 Hz, 3F). The spectral data are in full accordance with the literature report.^{1a}

ethyl 2-(3-chlorophenyl)-3,3,3-trifluoropropanoate (2i)

Following the general procedure, reaction was run using α -diazoester **1i** (112 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (97 mg, 73% yield), $R_r = 0.60$ (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.46 (s, 1H), 7.40 – 7.37 (m, 1H), 7.34 – 7.33 (m, 2H), 4.31 – 4.15 (m, 3H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 165.7 (q, $J_{CF} = 2.7$ Hz), 134.9, 131.3 (q, $J_{CF} = 1.8$ Hz), 130.3, 129.8, 129.7, 127.8, 123.6 (q, $J_{CF} = 279.8$ Hz), 62.5, 55.2 (q, $J_{CF} = 29.1$ Hz), 14.0. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -68.5 (d, J = 8.5 Hz, 3F). The spectral data are in full accordance with the literature report.^{1a}

ethyl 2-(4-chlorophenyl)-3,3,3-trifluoropropanoate (2j)

Following the general procedure, reaction was run using α -diazoester **1j** (112 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a light green oil (106 mg, 80% yield), $R_r = 0.61$ (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.40 – 7.36 (m, 4H), 4.31 – 4.17 (m, 3H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 165.9 (q, $J_{CF} = 2.7$ Hz), 135.6, 130.9, 129.3, 128.0 (q, $J_{CF} = 1.9$ Hz), 123.6 (q, $J_{CF} = 280.5$ Hz), 62.4, 55.0 (q, $J_{CF} = 29.1$ Hz), 14.0. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -68.7 (d, J = 8.4 Hz, 3F). The spectral data are in full accordance with the literature report.^{1a}

ethyl 2-(4-bromophenyl)-3,3,3-trifluoropropanoate (2k)

Following the general procedure, reaction was run using α -diazoester **1k** (135 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (122 mg, 79% yield), R_t = 0.60 (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.54 – 7.52 (m, 2H), 7.33 (d, J = 8.4 Hz, 2H), 4.30 – 4.17 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 165.8 (q, J_{CF} = 2.7 Hz), 132.3, 131.2, 128.5 (q, J_{CF} = 1.8 Hz), 123.8, 123.5 (q, J_{CF} = 279.8 Hz), 62.4, 55.1 (q, J_{CF} = 29.1 Hz), 14.0. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -68.7 (d, J = 8.5 Hz, 3F). The spectral data are in full accordance with the literature report.^{1a}

ethyl 3,3,3-trifluoro-2-(thiophen-3-yl)propanoate (21)

Following the general procedure, reaction was run using *a*-diazoester **11** (98 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (104 mg, 87% yield), R_r = 0.47 (hexane/dichloromethane = 2:1). ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.43 – 7.42 (m, 1H), 7.36 – 7.34 (m, 1H), 7.17 (d, J = 5.0 Hz, 1H), 4.47 (q, J = 8.5 Hz, 1H), 4.30 – 4.19 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 166.0 (q, J_{CF} = 2.8 Hz), 128.9 (q, J_{CF} = 2.0 Hz), 127.9, 126.5, 126.0, 123.6 (q, J_{CF} = 280.6 Hz), 62.3, 51.4 (q, J_{CF} = 29.7 Hz), 14.1. ¹⁹**F NMR** (471 MHz, CDCl₃): δ (ppm) -69.0 (d, J = 8.5 Hz, 3F). The spectral data are in full accordance with the literature report.^{1b}

ethyl 3,3,3-trifluoro-2-(naphthalen-2-yl)propanoate (2m)

Following the general procedure, reaction was run using α -diazoester **1m** (120 mg, 0.5 mmol), pyridine (100 µL, 1.25 mmol), 1,4-dioxane (7.5 mL) and CuCF₃ in DMF (3 mL, 1.25 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a yellow solid (120 mg, 85% yield), R_t = 0.50 (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.92 (s, 1H), 7.88 – 7.84 (m, 3H), 7.55 – 7.51 (m, 3H), 4.48 (q, *J* = 8.6 Hz, 1H), 4.32 – 4.18 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 166.3 (q, *J*_{CF} = 2.7 Hz), 133.5, 133.3, 129.5, 128.9, 128.3, 127.8, 127.0, 126.9 (q, *J*_{CF} = 1.7 Hz), 126.8, 126.4, 124.0 (q, *J*_{CF} = 279.9 Hz), 62.3, 55.8 (q, *J*_{CF} = 29.0 Hz), 14.1. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -68.4 (d, *J* = 8.6 Hz, 3F). The spectral data are in full accordance with the literature report.^{1b}

3,3,3-trifluoro-1,2-diphenylpropan-1-one (4a)

Following the general procedure, reaction was run using α -diazoketone **3a** (222 mg, 1.0 mmol), pyridine (120 µL, 1.5 mmol), 1,4-dioxane (15 mL) and CuCF₃ in DMF (3.6 mL, 1.5 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a white solid (219 mg, 83% yield), R_r = 0.71 (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.90 (d, J = 7.6 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.46 (d, J = 6.8 Hz, 2H), 7.42 – 7.36 (m, 5H), 5.28 (q, J = 8.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 191.3, 135.5, 133.9, 130.0, 129.8 (q, J_{CF} = 1.9 Hz), 129.4, 129.3, 128.93, 128.90, 124.4 (q, J_{CF} = 280.6 Hz), 56.7 (q, J_{CF} = 26.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.5 (d, J = 7.6 Hz, 3F). HRMS *m/z* (APCI) calcd. for C₁₅H₁₁F₃O [M+H]⁺: 265.08348; found: 265.08368.

2-(4-chlorophenyl)-3,3,3-trifluoro-1-phenylpropan-1-one (4b)

Following the general procedure, reaction was run using α -diazoketone **3b** (77 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (76 mg, 85% yield), $R_{\rm f}$ = 0.61 (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.88 (d, J = 7.8 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.44 – 7.35 (m, 6H), 5.27 (q, J = 8.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 190.9, 135.7, 135.3, 134.2, 131.3, 129.7, 129.1, 128.9, 128.3 (q, $J_{\rm CF}$ = 1.9 Hz), 124.1 (q, $J_{\rm CF}$ =280.4 Hz), 55.8 (q, $J_{\rm CF}$ = 26.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.5 (d, J = 7.6 Hz, 3F). HRMS *m*/*z* (APCI) calcd. for C₁₅H₁₀ClF₃O [M+H]⁺: 299.04450; found: 299.04488.

2-(3-chlorophenyl)-3,3,3-trifluoro-1-phenylpropan-1-one (4c)

Following the general procedure, reaction was run using α -diazoketone **3c** (77 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (75 mg, 83% yield), $R_{\rm f}$ = 0.69 (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.81 (d, J = 8.0 Hz, 2H), 7.48 (t, J = 7.3 Hz, 1H), 7.40 (s, 1H), 7.35 (t, J = 7.8 Hz, 2H), 7.29 – 7.17 (m, 3H), 5.19 (q, J = 8.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 190.7, 135.3, 134.25, 134.24, 131.6 (q, $J_{\rm CF}$ = 1.9 Hz), 130.6, 130.0, 129.7, 129.1, 128.9, 128.2, 124.1 (q, $J_{\rm CF}$ = 280.9 Hz), 56.0 (q, $J_{\rm CF}$ = 26.9 Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.3 (d, J = 7.5 Hz, 3F). HRMS m/z (APCI) calcd. for Cl₁₅H₁₀ClF₃O [M+H]⁺: 299.04450; found: 299.04431.

2-(2-chlorophenyl)-3,3,3-trifluoro-1-phenylpropan-1-one (4d)

Following the general procedure, reaction was run using α -diazoketone **3d** (77 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (52 mg, 58% yield), $R_r = 0.67$ (hexane/dichloromethane = 2:1). ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.92 (d, J = 7.6 Hz, 2H), 7.56 – 7.48 (m, 3H), 7.43 (t, J = 7.8 Hz, 2H), 7.30 (td, J = 7.6, 1.3 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 5.96 (q, J = 7.9 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 191.1, 135.1, 134.9, 134.2, 130.8, 130.7, 130.5, 129.1, 128.7, 127.9 (q, $J_{CF} = 1.7$ Hz), 127.7, 124.4 (q, $J_{CF} = 280.8$ Hz), 52.1 (q, $J_{CF} = 27.1$ Hz). ¹⁹**F NMR** (471 MHz, CDCl₃): δ (ppm) -67.3 (d, J = 7.5 Hz, 3F). **HRMS** *m/z* (APCI) calcd. for C₁₅H₁₀ClF₃O [M+H]⁺: 299.04450; found: 299.04495.

2-(4-bromophenyl)-3,3,3-trifluoro-1-phenylpropan-1-one (4e)

Following the general procedure, reaction was run using α -diazoketone **3e** (90 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a white solid (93 mg, 91% yield), R_t = 0.67 (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.89 – 7.87 (m, 2H), 7.57 – 7.50 (m, 3H), 7.42 (t, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 5.26 (q, *J* = 8.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 190.9, 135.2, 134.2, 132.7, 131.5, 129.1, 128.9, 128.8 (q, *J*_{CF} = 1.8 Hz), 124.1 (q, *J*_{CF} = 280.4 Hz), 123.9, 55.9 (q, *J*_{CF} = 26.9 Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.5 (d, *J* = 8.3 Hz, 3F). HRMS *m/z* (APCI) calcd. for C₁₅H₁₀BrF₃O [M+H]⁺: 342.99399; found: 342.99319.

3,3,3-trifluoro-2-(4-fluorophenyl)-1-phenylpropan-1-one (4f)

Following the general procedure, reaction was run using α -diazoketone **3f** (72 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (74 mg, 88% yield), R_r = 0.65 (hexane/dichloromethane = 2:1). ¹**H** NMR (500 MHz, CDCl₃): δ (ppm) 7.90 – 7.88 (m, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.46 – 7.41 (m, 4H), 7.08 (t, J = 8.6 Hz, 2H), 5.28 (q, J = 8.2 Hz, 1H). ¹³**C** NMR (126 MHz, CDCl₃): δ (ppm) 191.2, 164.3, 162.4, 135.4, 134.1, 131.8 (d, J_{CF} = 8.5 Hz), 129.0 (d, J_{CF} = 17.5 Hz), 125.6 (q, J_{CF} = 1.5 Hz), 124.2 (q, J_{CF} = 280.8 Hz), 116.6 (d, J_{CF} = 21.7 Hz), 55.7 (q, J_{CF} = 26.9 Hz). ¹⁹**F** NMR (471 MHz, CDCl₃): δ (ppm) -67.7 (d, J = 8.3 Hz, 3F). HRMS *m/z* (APCI) calcd. for C₁₅H₁₀F₄O [M+H]⁺: 283.07405; found: 283.07416.

3,3,3-trifluoro-2-phenyl-1-(p-tolyl)propan-1-one (4g)

Following the general procedure, reaction was run using α -diazoketone **3g** (71 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a green oil (74 mg, 89% yield), $R_r = 0.4$ (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.80 (d, J = 8.3 Hz, 2H), 7.46 – 7.45 (m, 2H), 7.39 – 7.35 (m, 3H), 7.20 (d, J = 8.0 Hz, 2H), 5.25 (q, J = 8.3 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 190.8, 145.0, 133.9, 133.0 (q, $J_{CF} = 1.7$ Hz), 130.0, 129.6, 129.4, 129.2, 129.1, 124.5 (q, $J_{CF} = 279.7$ Hz), 56.5 (q, $J_{CF} = 26.5$ Hz), 21.8. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.5 (d, J = 8.5 Hz, 3F). HRMS *m/z* (APCI) calcd. for C₁₆H₁₃F₃O [M+H]⁺: 279.09913; found: 279.09912.

3,3,3-trifluoro-2-phenyl-1-(m-tolyl)propan-1-one (4h)

Following the general procedure, reaction was run using α -diazoketone **3h** (71 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (60 mg, 72% yield), R_r = 0.43 (hexane/dichloromethane = 2:1). ¹**H** NMR (500 MHz, CDCl₃): δ (ppm) 7.50 (d, J = 7.8 Hz, 1H), 7.45 – 7.44 (m, 2H), 7.38 – 7.32 (m, 4H), 7.22 – 7.16 (m, 2H), 5.16 (q, J = 8.4 Hz, 1H), 2.47 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃): δ (ppm) 194.6, 139.5, 136.6, 132.4, 132.2, 130.0, 129.6 (q, J_{CF} = 1.8 Hz), 129.33, 129.30 128.5, 125.9, 124.4 (q, J_{CF} = 280.5 Hz), 58.9 (q, J_{CF} = 26.5 Hz), 21.3. ¹⁹**F** NMR (471 MHz, CDCl₃): δ (ppm) -67.5 (d, J = 8.2 Hz, 3F). **HRMS** *m/z* (APCI) calcd. for C₁₆H₁₃F₃O [M+H]⁺: 279.09913; found: 279.09910.

3,3,3-trifluoro-2-phenyl-1-(o-tolyl)propan-1-one (4i)

Following the general procedure, reaction was run using α -diazoketone **3i** (71 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (50 mg, 60% yield), R_r = 0.50 (hexane/dichloromethane = 2:1). ¹**H** NMR (500 MHz, CDCl₃): δ (ppm) 7.73 (s, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.46 (d, J = 6.8 Hz, 2H), 7.38 – 7.25 (m, 5H), 5.28 (q, J = 8.2 Hz, 1H), 2.35 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃): δ (ppm) 191.4, 138.9, 135.6, 134.7, 130.0, 129.9 (q, J_{CF} = 1.8 Hz), 129.41, 129.39, 129.3, 128.8, 126.1, 124.4 (q, J_{CF} = 280.5 Hz), 56.6 (q, J_{CF} = 26.6 Hz), 21.5. ¹⁹**F** NMR (471 MHz, CDCl₃): δ (ppm) -67.4 (d, J = 8.5 Hz, 3F). **HRMS** *m/z* (APCI) calcd. for C₁₆H₁₃F₃O [M+H]⁺: 279.09913; found: 279.09918.

3,3,3-trifluoro-1-(4-methoxyphenyl)-2-phenylpropan-1-one (4j)

Following the general procedure, reaction was run using *α*-diazoketone **3j** (76 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a colorless oil (72 mg, 81% yield), $R_r = 0.46$ (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.88 (d, J = 8.9 Hz, 2H), 7.46 (d, J = 7.3 Hz, 2H), 7.39 – 7.35 (m, 3H), 6.87 (d, J = 9.0 Hz, 2H), 5.23 (q, J = 8.3 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 189.7, 164.1, 131.3, 130.3 (q, $J_{CF} = 1.9$ Hz), 129.9, 129.4, 129.2, 128.4, 124.5 (q, $J_{CF} = 279.5$ Hz), 114.1, 56.3 (q, $J_{CF} = 26.4$ Hz), 55.6. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.4 (d, J = 8.6 Hz, 3F). HRMS *m/z* (APCI) calcd. for C₁₆H₁₃F₃O₂ [M+H]⁺: 295.09404; found: 295.09419.

1-(4-bromophenyl)-3,3,3-trifluoro-2-phenylpropan-1-one (4k)

Following the general procedure, reaction was run using α -diazoketone **3k** (90 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a light green solid (57 mg, 55% yield), $R_r = 0.53$ (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.74 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.42 – 7.38 (m, 5H), 5.20 (q, J = 8.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 190.3, 134.2 (q, $J_{CF} = 1.7$ Hz), 132.32, 132.31 130.4, 129.9, 129.6, 129.5, 129.3, 124.2 (q, $J_{CF} = 280.6$ Hz), 56.8 (q, $J_{CF} = 26.7$ Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.6 (d, J = 8.3 Hz, 3F). HRMS *m*/z (APCI) calcd. for C₁₅H₁₀BrF₃O [M+H]⁺: 342.99399; found: 342.99314.

1-(4-chlorophenyl)-3,3,3-trifluoro-2-phenylpropan-1-one (41)

Following the general procedure, reaction was run using α -diazoketone **31** (77 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a yellow solid (78 mg, 87% yield), $R_r = 0.44$ (hexane/dichloromethane = 2:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.82 (d, J = 8.7 Hz, 2H), 7.44 – 7.36 (m, 7H), 5.21 (q, J = 8.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 190.1, 140.5, 133.7, 130.3, 129.9, 129.6, 129.5, 129.3, 128.9 (q, $J_{CF} = 3.9$ Hz), 124.3 (q, $J_{CF} = 280.2$ Hz), 56.8 (q, $J_{CF} = 26.7$ Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.6 (d, J = 8.3 Hz, 3F). HRMS *m/z* (APCI) calcd. for C₁₅H₁₀ClF₃O [M+H]⁺: 299.04450; found: 299.04435.

1-(4-acetylphenyl)-3,3,3-trifluoro-2-phenylpropan-1-one (4m)

Following the general procedure, reaction was run using α -diazoketone **3m** (79 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 15:1) and obtained as a yellow solid (73 mg, 79% yield), $R_r = 0.28$ (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.89 (s, 4H), 7.38 – 7.31 (m, 5H), 5.20 (q, J = 8.1 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 197.2, 190.7, 140.7, 138.5, 135.3, 130.0, 129.61, 129.58, 129.1, 128.7, 124.2 (q, $J_{CF} = 280.8$ Hz), 57.2 (q, $J_{CF} = 26.8$ Hz), 27.0. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.6 (d, J = 8.3 Hz, 3F). HRMS m/z (APCI) calcd. for C₁₇H₁₃F₃O₂ [M+H]⁺: 307.09404; found: 307.09425.

methyl 4-(3,3,3-trifluoro-2-phenylpropanoyl)benzoate (4n)

Following the general procedure, reaction was run using α -diazoketone **3n** (84 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexane/dichloromethane = 15:1) and obtained as a white solid (83 mg, 86% yield), R_t = 0.44 (hexane/dichloromethane = 2:1). ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 8.05 (d, J = 8.7 Hz, 2H), 7.93 (d, J = 8.7 Hz, 2H), 7.45 – 7.38 (m, 5H), 5.27 (q, J = 8.1 Hz, 1H), 3.92 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 190.8, 166.0, 138.6, 134.6, 130.1, 130.0, 129.6, 129.5, 129.3 (q, J_{CF} = 1.7 Hz), 128.8, 124.2 (q, J_{CF} = 280.4 Hz), 57.1 (q, J_{CF} = 26.8 Hz), 52.7. ¹⁹**F NMR** (471 MHz, CDCl₃): δ (ppm) -67.6 (d, J = 7.5 Hz, 3F). **HRMS** *m/z* (APCI) calcd. for C₁₇H₁₃F₃O₃ [M+H]⁺: 323.08896; found: 323.08827.

1-([1,1'-biphenyl]-4-yl)-3,3,3-trifluoro-2-phenylpropan-1-one (40)

Following the general procedure, reaction was run using α -diazoketone **30** (90 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 15:1) and obtained as a yellow solid (87 mg, 85% yield), R_r = 0.37 (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.88 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 7.4 Hz, 2H), 7.40 (d, J = 7.0 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.32 – 7.27 (m, 4H), 5.23 (q, J = 8.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 190.8, 146.6, 139.5, 134.1, 130.0, 129.9 (q, J_{CF} = 1.7 Hz), 129.53, 129.46, 129.3, 129.1, 128.6, 127.5, 127.4, 124.5 (q, J_{CF} = 280.1 Hz), 56.7 (q, J_{CF} = 26.6 Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.5 (d, J = 8.5 Hz, 3F). HRMS *m*/*z* (APCI) calcd. for C₂₁H₁₅F₃O [M+H]⁺: 341.11478; found: 341.11449.

4-(3,3,3-trifluoro-2-phenylpropanoyl)benzonitrile (4p)

Following the general procedure, reaction was run using α -diazoketone **3p** (74 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 15:1) and obtained as a yellow oil (53 mg, 61% yield), R_t = 0.38 (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.96 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.5 Hz, 2H), 7.41 (s, 5H), 5.22 (q, J = 7.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 189.9, 138.3, 132.8, 129.9, 129.80, 129.76, 129.3, 128.9 (q, J_{CF} = 1.7 Hz), 124.0 (q, J_{CF} = 280.2 Hz), 117.7, 117.2, 57.2 (q, J_{CF} = 27.2 Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.7 (d, J = 8.0 Hz, 3F). HRMS *m*/*z* (APCI) calcd. for C₁₆H₁₀F₃NO [M+H]⁺: 290.07873; found: 290.07859.

3,3,3-trifluoro-1-(naphthalen-2-yl)-2-phenylpropan-1-one (4q)

Following the general procedure, reaction was run using α -diazoketone **3q** (82 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 15:1) and obtained as a yellow solid (78 mg, 83% yield), R_r = 0.39 (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.33 (s, 1H), 7.89 (dd, J = 8.7, 1.8 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.76 (t, J = 8.4 Hz, 2H), 7.53 – 7.50 (m, 1H), 7.46 (t, J = 7.2 Hz, 3H), 7.33 – 7.27 (m, 3H), 5.37 (q, J = 8.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 191.2, 135.8, 132.8, 132.4, 131.0, 130.0, 129.83, 129.77, 129.4, 129.3, 129.2, 128.9, 127.9, 127.2, 124.5 (q, J_{CF} = 280.2 Hz), 124.1, 56.7 (q, J_{CF} = 26.6 Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.4 (d, J = 8.5 Hz, 3F). HRMS *m*/*z* (APCI) calcd. for C₁₉H₁₃F₃O [M+H]⁺: 315.09913; found: 315.09925.

3,3,3-trifluoro-2-phenyl-1-(thiophen-3-yl)propan-1-one (4r)

Following the general procedure, reaction was run using α -diazoketone **3r** (69 mg, 0.3 mmol), pyridine (36 µL, 0.45 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.1 mL, 0.45 mmol). The product was purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 15:1) and obtained as a green solid (45 mg, 55% yield), R_r = 0.41 (hexanes/ethyl acetate = 5:1). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.92 (dd, J = 2.9, 1.3 Hz, 1H), 7.42 – 7.38 (m, 3H), 7.34 – 7.31 (m, 3H), 7.20 (t, J = 2.9 Hz, 1H), 4.99 (q, J = 8.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 185.3, 140.7, 133.9, 129.9, 129.44, 129.40, 128.9, 127.3, 126.9, 124.2 (q, J_{CF} = 280.4 Hz), 58.3 (q, J_{CF} = 26.6 Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -67.5 (d, J = 7.6 Hz, 3F). HRMS *m/z* (APCI) calcd. for C₁₃H₉F₃OS [M+H]⁺: 271.03990; found: 271.03999.

3,3,3-trifluoro-2-methyl-1-phenylpropan-1-one (4s)

Following the general procedure, reaction was run using α -diazoketone **4s** (48 mg, 0.3 mmol), pyridine (60 µL, 0.75 mmol), 1,4-dioxane (4.5 mL) and CuCF₃ in DMF (1.8 mL, 0.75 mmol). The yield (22%) was then determined through ¹⁹F NMR with benzotrifluoride (δ = -63.72 ppm) as internal standard. ¹H **NMR** (500 MHz, CDCl₃): δ (ppm) 7.98 – 7.93 (m, 2H), 7.67 – 7.58 (m, 1H), 7.54 – 7.48 (m, 2H), 4.30 – 4.20 (m, 1H), 1.48 (d, *J* = 7.1 Hz, 3H). ¹⁹F **NMR** (471 MHz, CDCl₃): δ (ppm) -68.3 (d, *J* = 8.6 Hz, 3F). MS (EI, *m/z*): 202 (M⁺, 1.47), 105 (100.00). The spectral data are in full accordance with the literature report.⁷

References

- 1. (a) Hu, M.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2012, 134, 15257. (b) Hu, X.-Q.; Han, J.-B.; Zhang,
- C.-P. Eur. J. Org. Chem. 2017, 324.
- 2. Wong, Y.-C.; Parthasarathy, K.; Cheng, C.-H. Org. Lett. 2010, 12, 1736.
- 3. Shen, Z.-L.; Xu, X.-P.; Ji, S.-J. J. Org. Chem. 2010, 75, 1162.
- 4. (a) Zanardi, A.; Novikov, M. A.; Martin, E.; Benet-Buchholz, J.; Grushin, V. V. J. Am. Chem. Soc.,
- 2011, 133, 20901. (b) Novák, P.; Lishchynskyi, A.; Grushin, V. V. Angew. Chem. Int. Ed., 2012, 51,
- 7767. (c) Lishchynskyi, A.; Novikov, M. A.; Martin, E.; Escudero-Adán, E. C.; Novák, P.; Grushin, V.
- V. J. Org. Chem., 2013, 78, 11126. (d) He, L.; Tsui, G. C. Org. Lett. 2016, 18, 2800.
- 5. Taber, D. F.; Ruckle Jr., R. E.; Hennessy, M. J. J. Org. Chem. 1986, 51, 4077.
- 6. Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. J. Am. Chem. Soc. 2004, 126, 5192.
- 7. Malpani, Y. R.; Biswas, B. K.; Han, H. S.; Jung, Y.-S.; Han, S. B. Org. Lett., 2018, 20, 1693.

S22

---0.00

00.0---

S25

--0.00

---0.00

-2.41

---0.00

-0.00

S31

-0.00

-2.63

--0.00

-197,45 -187,54 -187,54 -187,54 -139,25 -120,33 -121,28 -127,34 -125,74 -125,74 -125,74 -125,74 -77,41 -77,41 -77,41 -76,91

-3.94

Spectra of products

00.0---

-191.28 135.46 135.46 135.46 133.93 135.46 133.93 135.46 129.78 129.78 129.78 129.78 129.78 129.78 129.78 122.55 1

-190.73 -190.73 -131.57 -131.57 -131.55 -131.56 -131.56 -131.56 -123.00 -122.0

-190.89 135.25 135.24 134.19 134.19 134.15 134.15 134.15 134.15 134.15 134.15 134.15 134.15 128.78 128.78 122.38 1

---0.00

-0.00

S53

-190.78 -190.78 -165.97 -138.60 -138.60 -138.69 -134.56 -129.58 -129.58 -129.58 -129.58 -129.58 -129.58 -129.58 -120.89 -120.89 -120.89 -120.89 -120.89 -120.89 -120.89 -120.89 -120.89 -120.89 -120.89 -120.89 -120.89 -120.89 -120.80 -120.8

-190.79 -190.79 -134.11 -129.58 -129.99 -129.58 -129.58 -129.58 -129.58 -129.58 -129.58 -129.58 -127.59 -127.53 -127.5

191.22 135.82 132.81 132.88 132.03 129.93 129.93 129.93 129.93 129.93 129.93 129.93 129.93 129.89 122.89 127.78 12

-0.00

