Supporting Information

Enantioselective access to multi-cyclic α -amino

phosphonates via carbene-catalyzed cycloaddition

reactions between enals and six-membered cyclic imines

Jun Sun,^{a†} Chengli Mou,^{b†} Changyi Liu,^a Ruoyan Huang,^a Shupeng Zhang,^a Pengcheng Zheng,^{*a} Yonggui Robin Chi^{*a,c}

^aLaboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.

^bSchool of Pharmacy, Guiyang College of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China.

^cDivision of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

E-Mail: zhengpc1986@163.com

robinchi@ntu.edu.sg

I . General information	2
II . Preparation of substrates	3
III. Reaction condition optimization	4
IV. Proposed mechanism.	5
V. General procedure.	6
VI. Stereochemistry determination via X-ray crystallographic analysis	7
VII. <i>In vitro</i> antibacterial bioassay	8
VIII. Characterization of intermediates & products	10
IX. NMR spectra of intermediates & products	22
X. HPLC spectra of products	68

I . General information

Commercially available materials purchased from J&K or Aladdin were used as received. THF was distilled over sodium. Unless otherwise specified, all reactions were carried out under an atmosphere of nitrogen in 10 mL dry Schlenk tube. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker (400 MHz) spectrometer or on a JEOL-ECX-500 (500 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ 0.00) or chloroform (δ = 7.26, singlet). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (g), dd (doublet of doublets); m (multiplets), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker (101 MHz) spectrometer or on a JEOL-ECX-500 (126 MHz) spectrometer. Fluorine (¹⁹F) nuclear magnetic resonance (¹⁹F NMR) spectra were recorded on a Bruker (376 MHz) spectrometer or on a JEOL-ECX-500 (471 MHz) spectrometer. Phosphorus (³¹P) nuclear magnetic resonance (³¹P NMR) spectra were recorded on a Bruker (162 MHz) spectrometer or on a JEOL-ECX-500 (202MHz) spectrometer. The melting points (m.p.) of the title compounds were determined when left untouched on an XT-4-MP apparatus from Beijing Tech. Instrument Co. (Beijing, China). High resolution mass spectral analysis (HRMS) was performed on a quadrupole/electrostatic field orbitrap mass spectrometer. Absolute configuration of the products was determined by X-ray crystallography. HPLC analyses were measured on Waters systems with Empower3 system controller, Alliance column heater, and 2998 Diode Array Waters 2489 UV/Vis detector. Chiralcel brand chiral columns from Daicel Chemical Industries were used with models AD-H, or OD-H in 4.6 x 250 mm size. The racemic products used to determine the er values were synthesized using racemic catalyst. Optical rotations were measured on a Insmark IP-digi Polarimeter in a 1 dm cuvette at 26 °C. The concentration (c) is given in g/100 mL. Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp.

II. Preparation of substrates

 α -Iminophosphonates **2** were synthesized from salicylaldehyde by the combination of slightly modified literature procedures.¹

Following a known literature report: to a solution of salicylaldehyde (15 mmol) in dimethylacetamide (100 mL) at 0 °C was carefully added freshly prepared chlorosulfonamide (40 mmol) in small portions and the resulting solution was stirred for 12 h. The reaction was quenched carefully with ice-cold water (100 mL) and the mixture was transferred to a separating funnel containing dichloromethane (200 mL). The aqueous layer was separated and extracted with dichloromethane (3×50 mL), and the combined organic layers were washed with saturated sodium bicarbonate solution (100 mL), dried over sodium sulfate, filtered through a short pad of silica using dichloromethane as eluent and concentrated in vacuo. The residue was heated to 180 °C under vacuum to remove volatile impurities to get benzoxathiazine-2,2-dioxide (**2-2**).

To a suspension of the corresponding benzoxathiazine-2,2-dioxide (25 mmol) and the corresponding dialkylphosphite (30 mmol) in toluene (50 mL) was added triethylamine (2.5mmol). The solution was stirred and refluxed in toluene for 24 h until disappearance of benzoxathiazine-2,2-dioxide. The solution was allowed to cool to room temperature and purification was performed by a silica gel column eluted with dichloromethane to give pure product.

To a solution of the above product (1.0 mmol) in dichloromethane was added freshly prepared manganese dioxide (10 mmol) (the manganese dioxide must be freshly prepared, or the reaction yield will be low). The solution was stirred and refluxed at 50 °C for 4-8 h. The solution was allowed to cool to room temperature and purification was performed by a silica gel column eluted with dichloromethane to give pure product **2**.

III. Reaction condition optimization

Ph	0 H + 1a	O O S=O N O DEt O DEt 2a	NHC (0.05 eq 4 (1.2 eq) base (0.2 eq 30 °C 12 h	a) O=P EtO OE 3a	O N t t Ph
$Bn \xrightarrow{N} BF_{4}^{\bigcirc}$ $Bn \xrightarrow{N} N \xrightarrow{\oplus} Mes$ $A \xrightarrow{N} N \xrightarrow{\oplus} $					
entry	NHC	base	solvent	yield ^b	er ^c
1	Α	Cs_2CO_3	THF	< 5	
2	В	Cs_2CO_3	THF	< 5	
3	С	Cs_2CO_3	THF	34	98:2
4	D	Cs_2CO_3	THF	73	99:1
5	E	Cs_2CO_3	THF	< 5	
6	D	K ₂ CO ₃	THF	60	99:1
7	D	NaOAc	THF	93	> 99:1
8	D	DBU	THF	34	97:3
9	D	DMAP	THF	< 5	
10	D	NaOAc	EtOAc	58	> 99:1
11	D	NaOAc	CH_2CI_2	32	99:1
^a General conditions (unless otherwise specified): 1a (0.12mmol), 2a (0.1 mmol), NHC					

Table 1. Screening of different carbene catalysts, bases and solvents. ^a

^aGeneral conditions (unless otherwise specified): **1a** (0.12mmol), **2a** (0.1 mmol), NHC (0.005 mmol), base (0.02 mmol), **4** (0.12 mmol), THF (2.0 mL), 30 °C, 12 h. ^bIsolated yield of **3a**. ^cEr was determined via HPLC on chiral stationary phase.

IV. Proposed mechanism.

Figure 1. Proposed mechanism

V. General procedure.

1. General procedure for the synthesis **3** from cyclic six-membered ring α -iminophosphonates substrates **2**.

To a dry Schlenk reaction tube equipped with a magnetic stir bar was added **1** (0.12 mmol), aldehydes **2** (0.1 mmol), triazolium salt **D** (2.5 mg, 0.005 mmol), oxidant **4** (49 mg, 0.12 mmol) and NaOAc (1.6 mg, 0.02 mmol). The schlenk tube was then closed with septum, evacuated and refilled with N₂, freshly distilled anhydrous THF (2 mL) was added. The mixture was stirred at 30 °C for 12 h. After completion of the reaction monitored by TLC, solvent was removed under reduced pressure and the residue was purified via column chromatography on silica gel with Hexane/EtOAc (2: 1) as eluent to afford the products **3**.

2. General procedure for the synthesis 5.

To a solution of **3u** (130 mg) in EtOAc (5 mL) was added Pd/C(5%w, 6 mg), then the mixture was degassed and refilled with H₂(balloon) for 3 times, then the mixture was stirred at rt under H₂(balloon) for 6h, then the mixture was filtered off and the residue was purified via column chromatography on silica gel with Hexane/EtOAc (2: 1) as eluent to afford the product **5** (120 mg).

VI. Stereochemistry determination via X-ray crystallographic

analysis

The absolute stereochemistry of **3e** was determined by the X-ray diffraction. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC: 1854098.

Refrences:

[1]. Z. Yan, B. Wu, X. Gao, M.-W. Chen, Y.-G. Zhou, Org. Lett., 2016, 18, 692.

Ⅲ. *In vitro* antibacterial bioassay

The target compounds were dissolved in 150 μ L DMSO and diluted with sterile distilled water containing 0.1 % Tween-20 (4 mL) to prepare 1000 and 500 μ g/mL stock solution. Their antibacterial activities against *Xanthomonas oryzae pv. oryzae* was evaluated by the turbidimeter test. 1 mL of stock solution was added to 4 mL nutrient broth liquid medium NB (3 g of beef extract, 5 g of peptone, 1 g of yeast powder, 10 g of glucose, and 1000 mL of distilled water, pH 7.0 - 7.2) in tubes. Then, to the tube, 40 μ L NB containing bacteria was added and incubated with continuous shaking at 180 rpm for 36 h at 30±1 °C. The test concentration was fixed at 200 and 100 μ g/mL. The data of bacterial growth was reported by measuring the optical density at 600 nm (OD₆₀₀) with a spectrophotometer. DMSO in sterile distilled water containing 0.1 % Tween-20 served as the negative control, whereas Bismerthiazol served as positive control. The inhibitory rate of bacterial culture growth was calculated according to the following formula:

Inhibition rate (%) = $(CK-T)/CK \times 100$

"CK" means the value of corrected optical density of bacterial growth on untreated NB (negative control), and "T" means the value of corrected optical density of bacterial growth on treated NB.

Table 2. Antibacterial activity

Antibacterial activity of the title compounds

X. oryzoe pv. oryzae inhibition rate [%] ^a			
100 _µ g/mL	200 _µ g/mL		
10.4±7.2	17.1±4.4		
19.2±3.2	32.9±3.8		
16.3±6.5	20.9±6.7		
17.1±4.8	46.0±1.9		
45.6±3.8	80.0±2.5		
27.7±6.3	31.7±3.7		
22.0±6.3	0		
9.7±7.3	2.1±6.4		
21.8±6.1	0		
6.4±5.7	8.6±3.9		
0	0		
69.3±3.8	88.8±3.1		
0	0		
0	0		
0	10.6±6.7		
23.5±3.6	18.2±4.2		
0	6.9±3.9		
0	0		
0	0		
0	0		
25.3±2.4	32.6±5.3		
45.4±1.9	73.6±1.4		
0	0		
	X. oryzoe pv. oryzae 100 μ g/mL 10.4 \pm 7.2 19.2 \pm 3.2 16.3 \pm 6.5 17.1 \pm 4.8 45.6 \pm 3.8 27.7 \pm 6.3 22.0 \pm 6.3 9.7 \pm 7.3 21.8 \pm 6.1 6.4 \pm 5.7 0 69.3 \pm 3.8 0 0 0 23.5 \pm 3.6 0 0 0 25.3 \pm 2.4 45.4 \pm 1.9 0		

Antibacterial activity of the title compounds

^aAverage of three replicates. ^bCommercial bactericide, used as the positive control. ^cDMSO was used as the negative control.

VIII. Characterization of intermediates & products

Diethyl (6-methoxy-2,2-dioxidobenzo[e][1,2,3]oxathiazin-4-yl)phosphonate (2q)

Light yellow solid, m.p. 45-46 °C 350 mg, 35% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 2.9 Hz, 1H), 7.29 (dd, J = 9.1, 2.9 Hz, 1H), 7.23 (dd, J = 9.1, 1.3 Hz, 1H), 4.43 - 4.30 (m, 4H), 3.88 (s, 3H), 1.42 (td, J = 7.1, 0.6 Hz, 6H).

 $\frac{{}^{13}\textbf{C} \text{ NMR}}{148.2 (d, J = 8.6 \text{ Hz}), 125.2 (s), 120.0 (d, J = 3.2 \text{ Hz}), 157.0 (s), 148.2 (d, J = 8.6 \text{ Hz}), 125.2 (s), 120.0 (d, J = 3.2 \text{ Hz}), 116.1 (d, J = 3.2$

24.1 Hz), 113.3 (s), 65.5 (d, *J* = 7.0 Hz), 56.1 (s), 16.3 (d, *J* = 6.0 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 0.92 (s).

HRMS (ESI, m/z): Mass calcd for $C_{12}H_{17}O_7NPS [M+H]^+$, 350.0458; found 350.0468.

Diethyl (*R*)-(6,6-dioxido-8-oxo-10-phenyl-8,11-dihydro-11a*H*-benzo[e]pyrido[1,2-c] [1,2,3]oxathiazin-11a-yl)phosphonate (3a)

White solid, m.p. 127-128 °C, 45 mg, 97% yield.

 $[\alpha]_{D}^{28} = -31.2 (c \ 1.0 \ CHCl_3).$

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCI}_3) \delta 7.67 - 7.60 (m, 2H), 7.60 - 7.55 (m, 1H), 7.55 - 7.40 (m, 5H), 7.32 - 7.27 (m, 1H), 6.40 (d,$ *J*= 2.9 Hz, 1H), 4.25 - 4.04 (m, 3H), 4.01 - 3.87 (m, 1H), 3.80 - 3.65 (m, 1H), 3.39 (ddd,*J*= 34.3, 17.2, 2.9 Hz, 1H), 1.24 (t,*J*= 7.0 Hz, 3H), 1.10

(t, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.3 (s), 150.4 (s), 148.4 (d, J = 4.7 Hz), 136.2 (s), 131.3 (d, J = 2.8 Hz), 130.8 (s), 129.2 (s), 127.5 (d, J = 2.2 Hz), 126.8 (d, J = 4.0 Hz), 126.6 (s), 125.4 (s), 119.8 (d, J = 2.3 Hz), 118.5 (s), 66.4 (d, J = 152.6 Hz), 64.7 (d, J = 3.8 Hz), 64.6 (d, J = 3.6 Hz), 36.5 (d, J = 2.4 Hz), 16.3 (d, J = 5.5 Hz), 16.1 (d, J = 5.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.57 (s).

<u>**HRMS**</u> (ESI, m/z): Mass calcd for $C_{21}H_{23}O_7NPS[M+H]^+$, 464.0927; found 464.0918. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.8 mL/min, 254 nm), Rt₁ (minor) = 10.5 min, Rt₂ (major) = 17.0 min; er = 99.2:0.8).

Diethyl (*R*)-(6,6-dioxido-8-oxo-10-(p-tolyl)-8,11-dihydro-11a*H*-benzo[e]pyrido[1,2-c] [1,2,3]oxathiazin-11a-yl)phosphonate (3b)

White solid, m.p. 172-173 °C, 46 mg, 96% yield. $[\alpha]_D^{28} = -45.0 (c \ 1.0 \ CHCl_3).$ ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.54 (dt, J = 17.1, 8.4 Hz, 4H), 7.43 (t, $J = 7.6 \ Hz$, 1H), 7.28 (dd, J = 8.3, 2.7 Hz, 3H), 6.38 (d, $J = 2.7 \ Hz$, 1H), 4.22 - 4.02 (m, 3H), 3.99 - 3.89 (m, 1H), 3.72 (ddd, J = 16.7, 7.1, 2.2 Hz, 1H), 3.35 (ddd, J = 34.4, 17.2, 2.8 Hz, 1H), 2.41 (s, 3H), 1.23 (t, $J = 7.1 \ Hz$, 3H), 1.11 (t, $J = 7.1 \ Hz$, 3H).

 $\frac{{}^{13}\mathbf{C} \text{ NMR}}{(101 \text{ MHz, CDCl}_3) \delta 162.4 \text{ (s)}, 150.2 \text{ (s)}, 148.4 \text{ (d, } J = 4.6 \text{ Hz}), 141.5 \text{ (s)}, 133.1 \text{ (s)}, 131.3 \text{ (d, } J = 2.7 \text{ Hz}), 129.9 \text{ (s)}, 127.5 \text{ (s)}, 126.8 \text{ (d, } J = 4.0 \text{ Hz}), 126.5 \text{ (s)}, 125.5 \text{ (s)}, 119.7 \text{ (d, } J = 2.3 \text{ Hz}), 117.5 \text{ (s)}, 66.3 \text{ (d, } J = 152.8 \text{ Hz}), 64.6 \text{ (d, } J = 1.8 \text{ Hz}), 64.6 \text{ (d, } J = 1.6 \text{ Hz}), 36.2 \text{ (s)}, 21.4 \text{ (s)}, 16.3 \text{ (d, } J = 5.5 \text{ Hz}), 16.1 \text{ (d, } J = 5.4 \text{ Hz}).$

³¹P NMR (162 MHz, CDCl₃) δ 17.62 (s).

HRMS (ESI, m/z): Mass calcd for $C_{22}H_{25}O_7NPS[M+H]^+$, 478.1084; found 478.1073. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H; IPA/hexanes = 20/80, 0.8 mL/min, 254 nm), Rt₁ (major) = 18.3 min, Rt₂ (minor) = 36.9 min; er = 99:1).

Diethyl (*R*)-(10-(4-methoxyphenyl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3c)

White solid, m.p. 117-118 °C, 40 mg, 80% yield. $[\alpha]_{D}^{28} = -37.6$ (*c* 1.0 CHCl₃).

 $\frac{{}^{1}\text{H NMR}}{(400 \text{ MHz, CDCl}_{3})} \delta 7.64 - 7.55 \text{ (m, 3H), 7.51}$ (ddd, J = 8.0, 4.6, 1.6 Hz, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 6.99 (d, J = 8.9 Hz, 2H), 6.34 (d, J = 2.8 Hz, 1H), 4.22 - 4.01 (m, 3H), 3.99 - 3.91 (m, 1H), $OCH_{3} \quad 3.87 \text{ (s, 3H), 3.72 (ddq, } J = 10.0, 9.1, 7.1 \text{ Hz, 1H}), 3.33$

(ddd, J = 34.4, 17.1, 2.8 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.6 (s), 161.9 (s), 149.7 (s), 148.4 (d, J = 4.6 Hz), 131.3 (d, J = 2.7 Hz), 128.2 (s), 128.1 (s), 127.5 (d, J = 2.1 Hz), 126.8 (d, J = 4.1 Hz), 125.6 (s), 119.7 (d, J = 2.3 Hz), 116.4 (s), 114.6 (s), 66.3 (d, J = 152.7 Hz), 64.6 (d, J = 4.5 Hz), 64.5 (d, J = 4.3 Hz), 55.5 (s), 36.2 (s), 16.3 (d, J = 5.5 Hz), 16.1 (d, J = 5.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.66 (s).

HRMS (ESI, m/z): Mass calcd for C₂₂H₂₅O₈NPS [M+H]⁺, 494.1033; found 494.1021.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H; IPA/hexanes = 30/70, 0.8 mL/min, 254 nm), Rt₁ (major) = 17.0 min, Rt₂ (minor) = 32.9 min; er = 98:2).

Diethyl (*R*)-(10-(4-chlorophenyl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3d)

White solid, m.p. 116-118 °C, 48 mg, 96% yield. $[\alpha]_D^{25} = -39.8 (c \ 1.0 \ CHCl_3).$ ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.64 (ddd, $J = 8.2, 5.1, 2.5 \ Hz$, 2H), 7.59 - 7.50 (m, 2H), 7.44 (t, $J = 7.4 \ Hz$, 1H), 7.29 (d, $J = 8.0 \ Hz$, 1H), 7.17 (t, $J = 8.6 \ Hz$, 2H), 6.34 (d, $J = 2.8 \ Hz$, 1H), 4.22 - 4.03 (m, 3H), 3.93 (dp, $J = 10.1, 7.1 \ Hz$, 1H), 3.69 (ddq, $J = 10.0, 9.2, 7.1 \ Hz$, 1H), 3.36 (ddd, $J = 34.3, 17.1, 2.8 \ Hz$,

1H), 1.24 (t, *J* = 7.0 Hz, 3H), 1.09 (t, *J* = 7.0 Hz, 3H).

 $\frac{{}^{13}\textbf{C} \text{ NMR}}{4.6 \text{ Hz}}$ (101 MHz, CDCl₃) δ 164.3 (d, J = 252.4 Hz), 162.2 (s), 149.3 (s), 148.3 (d, J = 4.6 Hz), 132.3 (d, J = 3.3 Hz), 131.4 (d, J = 2.7 Hz), 128.8 (s), 128.7 (s), 127.6 (d, J = 2.1 Hz), 126.7 (d, J = 4.0 Hz), 125.3 (s), 119.8 (d, J = 2.2 Hz), 118.3 (s), 116.5 (s), 116.2 (s), 66.4 (d, J = 152.3 Hz), 64.7 (dd, J = 7.6, 6.7 Hz), 36.5 (d, J = 2.0 Hz), 16.3 (d, J = 5.5 Hz), 16.1 (d, J = 5.4 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 17.51 (s).

HRMS (ESI, m/z): Mass calcd for $C_{21}H_{22}O_7NCIPS [M+H]^+$, 498.0538; found 498.0793. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H; IPA/hexanes = 20/80, 0.8 mL/min, 254 nm), Rt₁ (major) = 20.5 min, Rt₂ (minor) = 41.4 min; er = 98:2).

Diethyl (*R*)-(10-(4-bromophenyl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3e)

White solid, m.p. 180-182 °C, 49 mg, 91% yield. $[\alpha]_{D}^{28} = -65.9 (c \ 1.0 \ CHCl_{3}).$ ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.64 - 7.59 (m, 2H), 7.58 - 7.48 (m, 4H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 8.2 Hz, 1H), 6.37 (d, *J* = 2.8 Hz, 1H), 4.20 - 4.03 (m, 3H), 3.98 - 3.87 (m, 1H), 3.74 - 3.63 (m, 1H), 3.37 (ddd, *J* = 34.2, 17.1, 2.9 Hz, 1H), 1.24 (t, *J* = 7.0 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H).

 $\frac{{}^{13}C \text{ NMR}}{(101 \text{ MHz, CDCl}_3) \delta 162.0 \text{ (s)}, 149.2 \text{ (s)}, 148.4 \text{ (d, } J = 4.6 \text{ Hz}), 135.1 \text{ (s)}, 132.4 \text{ (s)}, 131.4 \text{ (d, } J = 2.7 \text{ Hz}), 128.1 \text{ (s)}, 127.6 \text{ (d, } J = 2.2 \text{ Hz}), 126.6 \text{ (d, } J = 4.1 \text{ Hz}), 125.4 \text{ (s)}, 125.2 \text{ (s)}, 119.8 \text{ (d, } J = 2.3 \text{ Hz}), 118.9 \text{ (s)}, 66.4 \text{ (d, } J = 152.3 \text{ Hz}), 64.7 \text{ (dd, } J = 7.9, 5.3 \text{ Hz}), 36.4 \text{ (d, } J = 2.4 \text{ Hz}), 16.3 \text{ (d, } J = 5.5 \text{ Hz}), 16.1 \text{ (d, } J = 5.4 \text{ Hz}).$

³¹**P NMR** (162 MHz, CDCl₃) δ 17.46 (s).

HRMS (ESI, m/z): Mass calcd for $C_{21}H_{22}O_7NBrPS [M+H]^+$, 542.0032; found 542.0022. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H; IPA/hexanes = 20/80, 0.8 mL/min, 254 nm), Rt₁ (major) = 24.9 min, Rt₂ (minor) = 54.0 min; er = 99.6:0.4).

Diethyl (*R*)-(10-(4-fluorophenyl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3f)

White solid, m.p. 132-133 °C, 45 mg, 93% yield. $[\alpha]_{D}^{28} = -42.9 (c \ 1.0 \ CHCl_{3}).$ ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.67 - 7.60 (m, 2H), 7.54 (ddt, $J = 17.3, 7.9, 1.7 \ Hz, 2H$), 7.44 (t, $J = 7.4 \ Hz, 1H$), 7.33 - 7.28 (m, 1H), 7.21 - 7.13 (m, 2H), 6.35 (d, $J = 2.8 \ Hz, 1H$), 4.25 - 4.02 (m, 3H), 4.00 - 3.85 (m, 1H), 3.68 (ddq, $J = 10.0, 9.2, 7.1 \ Hz, 1H$), 3.37 (ddd, $J = 34.3, 17.1, 2.9 \ Hz, 1H$), 1.25 (dd, J = 8.2, 14)

5.9 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.3 (d, J = 252.4 Hz), 162.2 (s), 149.3 (s), 148.4 (d, J = 4.6 Hz), 132.3 (d, J = 3.3 Hz), 131.4 (d, J = 2.8 Hz), 128.8 (s), 128.7 (s), 127.6 (d, J = 2.1 Hz), 126.6 (d, J = 4.0 Hz), 125.3 (s), 119.8 (d, J = 2.3 Hz), 118.4 (s), 116.5 (s), 116.3 (s), 66.4 (d, J = 152.2 Hz), 64.7 (dd, J = 7.8, 6.5 Hz), 36.6 (d, J = 2.4 Hz), 16.2 (dd, J = 20.8, 5.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -108.90 (s).

³¹P NMR (162 MHz, CDCl₃) δ 17.52 (s).

HRMS (ESI, m/z): Mass calcd for $C_{21}H_{22}O_7NFPS [M+H]^+$, 482.0833; found 482.0826. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.6 mL/min, 254 nm), Rt₁ (minor) = 29.8 min, Rt₂ (major) = 32.9 min; er = 98:2).

Diethyl (*R*)-(10-(3-methoxyphenyl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3g)

 $[\alpha]_{D}^{25} = -43.3 (c \ 1.0 \ CHCl_{3}).$

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.60 - 7.49 (m, 2H), 7.46 - 7.36 (m, 2H), 7.30 (d, J = 8.1 Hz, 1H), 7.22 (d, J = 7.8 Hz, 1H), 7.15 - 7.11 (m, 1H), 7.02 (dd, J = 8.1, 2.2 Hz, 1H), 6.39 (d, J = 2.8 Hz, 1H), 4.20 - 4.05 (m, 3H), 4.00 - 3.89 (m, 1H), 3.86 (s, 3H), 3.78 - 3.66 (m, 1H), 3.38 (ddd, J = 1.2

34.3, 17.2, 2.9 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (s), 160.1 (s), 150.2 (s), 148.4 (d, J = 4.6 Hz), 137.5 (s), 131.3 (d, J = 2.8 Hz), 130.2 (s), 127.5 (d, J = 2.2 Hz), 126.8 (d, J = 4.0 Hz), 125.4 (s), 119.8 (d, J = 2.4 Hz), 119.0 (s), 118.6 (s), 116.3 (s), 112.2 (s), 66.4 (d, J = 152.8 Hz), 64.7 (d, J = 4.9 Hz), 64.6 (d, J = 4.8 Hz), 55.5 (s), 36.5 (d, J = 2.3 Hz), 16.2 (dd, J = 20.1, 5.4 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 17.53 (s).

HRMS (ESI, m/z): Mass calcd for $C_{22}H_{25}O_8NPS [M+H]^+$, 494.1033; found 494.1022. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H; IPA/hexanes = 20/80, 0.8 mL/min, 254 nm), Rt₁ (major) = 34.0 min, Rt₂ (minor) = 57.6 min; er = 98:2).

Diethyl (*R*)-(6,6-dioxido-8-oxo-10-(o-tolyl)-8,11-dihydro-11a*H*-benzo[e]pyrido[1,2-c] [1,2,3]oxathiazin-11a-yl)phosphonate (3h)

Colorless oil, 31 mg, 65% yield. $[\alpha]_{0}^{2^{8}} = -41.4 (c \ 1.0 \ CHCl_{3}).$ $\frac{1}{H \ NMR}$ (400 MHz, CDCl₃) δ 7.51 (t, $J = 7.7 \ Hz$, 1H), 7.48 -7.42 (m, 2H), 7.42 - 7.36 (m, 1H), 7.35 - 7.27 (m, 4H), 6.10 (d, $J = 2.8 \ Hz$, 1H), 4.30 - 4.16 (m, 2H), 3.92 (ddd, J = 17.3, 10.7, 5.9 Hz, 2H), 3.74 - 3.63 (m, 1H), 3.43 (ddd, J = 34.4, 17.5, 2.9 Hz, 1H), 2.40 (s, 3H), 1.31 (t, $J = 7.0 \ Hz$, 3H), 1.10 (t, J =

7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.0 (s), 151.8 (s), 148.3 (d, J = 4.6 Hz), 137.4 (s), 134.9 (s), 131.3 (d, J = 2.8 Hz), 131.1 (s), 129.4 (s), 127.8 (s), 127.5 (s), 126.7 (d, J = 4.0 Hz), 126.4(s), 125.3 (s), 122.0 (s), 119.8 (d, J = 2.3 Hz), 66.4 (d, J = 152.9 Hz), 64.9 (d, J = 8.2 Hz), 64.7 (d, J = 7.7 Hz), 39.1 (s), 20.2 (s), 16.4 (d, J = 5.6 Hz), 16.2 (d, J = 5.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.39 (s).

HRMS (ESI, m/z): Mass calcd for $C_{22}H_{25}O_7NPS [M+H]^+$, 478.1084; found 478.1077. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 15.8 min, Rt₂ (major) = 25.3 min; er = 98:2).

Diethyl (*R*)-(10-(2-methoxyphenyl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3i)

Colorless, oil, 22 mg, 44% yield.

 $[\alpha]_{D}^{27} = 7.1 (c \ 0.5 \ CHCl_{3}).$

 $\frac{1 \text{H NMR}}{1 \text{H NMR}} (400 \text{ MHz, CDCl}_3) \delta 7.54 - 7.46 \text{ (m, 2H), 7.45 - 7.36} (m, 3H), 7.28 (d, J = 8.3 \text{ Hz, 1H}), 7.03 (td, J = 7.6, 0.8 \text{ Hz, 1H}), 6.97 (d, J = 8.2 \text{ Hz, 1H}), 6.33 (d, J = 2.8 \text{ Hz, 1H}), 4.25 - 4.09 (m, 2H), 4.04 (dd, J = 17.4, 8.4 \text{ Hz, 1H}), 3.98 - 3.90 (m, 1H), 3.89 (s, 3H), 3.80 - 3.67 (m, 1H), 3.56 (ddd, J = 35.0, 100 \text{ M})$

17.4, 2.8 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (s), 157.0 (s), 150.1 (s), 148.3 (d, J = 4.5 Hz), 131.5 (s), 131.2 (d, J = 2.8 Hz), 129.2 (s), 127.5 (d, J = 2.2 Hz), 127.0 (d, J = 4.0 Hz), 126.2 (s), 125.7 (s), 121.0 (d, J = 14.0 Hz), 120.8 (s), 119.6 (d, J = 2.4 Hz), 111.3 (s), 66.3 (d, J = 153.8 Hz), 64.5 (d, J = 3.8 Hz), 64.4 (d, J = 3.6 Hz), 55.5 (s), 37.5 (d, J = 2.0 Hz), 16.3 (dd, J = 21.4, 5.4 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 17.55 (s).

HRMS (ESI, m/z): Mass calcd for $C_{22}H_{25}O_8NPS [M+H]^+$, 494.1033; found 494.1021. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 17.0 min, Rt₂ (major) = 32.4 min; er = 97:3).

Diethyl (*R*)-(10-(2-fluorophenyl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3j)

Colorless oil, 28 mg, 58% yield. $[\alpha]_D^{28} = 17.5 (c \ 0.5 \ CHCl_3).$ ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.56 - 7.49 (m, 3H), 7.48 - 7.40 (m, 2H), 7.32 - 7.23 (m, 2H), 7.21 - 7.14 (m, 1H), 6.41 (d, *J* = 2.8 Hz, 1H), 4.24 - 4.10 (m, 2H), 4.02 (dd, *J* = 17.2, 8.2 Hz, 1H), 3.97 -

3.88 (m, 1H), 3.79 - 3.67 (m, 1H), 3.55 (ddt, *J* = 34.4, 17.2, 2.5 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.8 (s), 160.1 (d, J = 252.1 Hz), 148.3 (d, J = 4.6 Hz), 146.1 (s), 132.1 (d, J = 8.7 Hz), 131.4 (d, J = 2.8 Hz), 129.1 (d, J = 2.9 Hz), 127.6 (d, J = 2.2 Hz), 126.8 (d, J = 4.0 Hz), 125.3 (s), 124.9 (d, J = 3.6 Hz), 124.7 (d, J = 12.3 Hz), 122.0 (d, J = 4.7 Hz), 119.8 (d, J = 2.3 Hz), 116.7 (d, J = 22.2 Hz), 66.3 (d, J = 154.1 Hz), 64.7 (d, J = 8.0 Hz), 64.6 (d, J = 7.7 Hz), 37.1 (s), 16.3 (d, J = 5.5 Hz), 16.1 (d, J = 5.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.92 - -112.00 (m).

³¹P NMR (162 MHz, CDCl₃) δ 17.29 (s).

HRMS (ESI, m/z): Mass calcd for $C_{21}H_{23}O_7NFPS [M+H]^+$, 482.0833; found 482.0824. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 17.7 min, Rt₂ (major) = 31.6 min; er = 99:1).

Diethyl (*R*)-(10-(2-chlorophenyl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3k)

White solid, m.p. 142-144°C, 44 mg, 88% yield.

 $[\alpha]_{D}^{27} = 0.12 (c \ 1.0 \ CHCl_{3}).$

 $\label{eq:homoson} \begin{array}{c} \underline{^{1}\text{H}\ \text{NMR}} (400\ \text{MHz},\ \text{CDCl}_3)\ \delta\ 7.52\ (\text{ddd},\ J=12.1,\ 6.3,\ 1.6\ \text{Hz}, \\ 2\text{H}),\ 7.48\ -\ 7.43\ (\text{m},\ 2\text{H}),\ 7.43\ -\ 7.38\ (\text{m},\ 1\text{H}),\ 7.37\ (\text{dd},\ J=5.9, \\ 3.5\ \text{Hz},\ 2\text{H}),\ 7.30\ (\text{d},\ J=8.1\ \text{Hz},\ 1\text{H}),\ 6.24\ (\text{d},\ J=2.9\ \text{Hz},\ 1\text{H}), \\ 4.31\ -\ 4.18\ (\text{m},\ 2\text{H}),\ 3.96\ -\ 3.80\ (\text{m},\ 2\text{H}),\ 3.76\ -\ 3.58\ (\text{m},\ 2\text{H}),\ 1.32 \end{array}$

(t, *J* = 7.1 Hz, 3H), 1.08 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.7 (s), 149.6 (s), 148.3 (d, J = 4.5 Hz), 136.8 (s), 131.6 (s), 131.4 (d, J = 2.7 Hz), 130.7 (s), 130.3 (s), 129.9 (s), 127.6 (s), 127.4 (s), 126.7 (d, J = 4.0 Hz), 125.3 (s), 123.2 (s), 119.8 (d, J = 2.3 Hz), 66.6 (d, J = 152.9 Hz), 64.8 (d, J = 8.1 Hz), 64.6 (d, J = 7.7 Hz), 38.2 (s), 16.4 (d, J = 5.6 Hz), 16.1 (d, J = 5.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.19 (s).

HRMS (ESI, m/z): Mass calcd for $C_{21}H_{23}O_7NCIPS [M+H]^+$, 498.0538; found 498.0526. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 14.6 min, Rt₂ (major) = 25.2 min; er = 98:2).

Diethyl (*R*)-(10-(naphthalen-2-yl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3I)

White solid, m.p. 182-183 °C, 36 mg, 70% yield. $[\alpha]_D^{27} = -17.7 (c \ 1.0 \ CHCl_3).$ $\frac{1 \ H \ NMR}{(400 \ MHz, \ CDCl_3)} \delta \ 8.11 (s, 1H), 7.93 (dd, <math>J = 9.0, 6.3$ Hz, 2H), 7.90 - 7.84 (m, 1H), 7.71 (dd, $J = 8.6, 1.8 \ Hz, 1H), 7.65$ (dt, $J = 7.8, 1.8 \ Hz, 1H), 7.60 - 7.51 (m, 3H), 7.46 (t, <math>J = 7.4 \ Hz, 1H), 7.31 (d, J = 8.0 \ Hz, 1H), 6.54 (d, J = 2.7 \ Hz, 1H), 4.33 (dd, J = 17.1, 8.2 \ Hz, 1H), 4.20 - 4.01 (m, 2H), 3.96 (dp, J = 10.0, 7.2 \ Hz, 1H), 3.81 - 3.66 (m, 1H), 3.45 (ddd, J = 34.3, 17.1, 2.7$

Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 3H).

 $\frac{{}^{13}\mathbf{C} \text{ NMR}}{(101 \text{ MHz, CDCl}_3) \delta 162.3 \text{ (s)}, 150.0 \text{ (s)}, 148.4 \text{ (d, } J = 4.6 \text{ Hz}), 134.3 \text{ (s)}, 133.2 \text{ (s)}, 133.1 \text{ (s)}, 131.4 \text{ (s)}, 131.3 \text{ (s)}, 129.1 \text{ (s)}, 128.8 \text{ (s)}, 127.8 \text{ (s)}, 127.6 \text{ (d, } J = 2.2 \text{ Hz}), 127.1 \text{ (s)}, 126.9 \text{ (s)}, 126.8 \text{ (s)}, 125.5 \text{ (s)}, 123.3 \text{ (s)}, 119.8 \text{ (d, } J = 2.2 \text{ Hz}), 118.7 \text{ (s)}, 66.4 \text{ (d, } J = 152.8 \text{ Hz}), 64.7 \text{ (d, } J = 3.5 \text{ Hz}), 64.6 \text{ (d, } J = 3.3 \text{ Hz}), 36.3 \text{ (d, } J = 2.2 \text{ Hz}), 16.3 \text{ (d, } J = 5.5 \text{ Hz}), 16.1 \text{ (d, } J = 5.4 \text{ Hz}).$

³¹P NMR (162 MHz, CDCl₃) δ 17.62 (s).

HRMS (ESI, m/z): Mass calcd for $C_{25}H_{25}O_7NPS [M+H]^+$, 514.1084; found 514.1075. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 22.8 min, Rt₂ (major) = 45.5 min; er = 99.2:0.8).

Diethyl (*R*)-(10-(furan-2-yl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e]pyrido [1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3m)

Colorless oil, 23 mg, 51% yield. $[\alpha]_{D}^{27} = -0.13$ (c 0.5 CHCl₃).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.61 (d, *J* = 1.7 Hz, 1H), 7.58 - 7.48 (m, 2H), 7.44 (t, *J* = 7.3 Hz, 1H), 7.29 (d, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 3.5 Hz, 1H), 6.58 (dd, *J* = 3.5, 1.8 Hz, 1H), 6.47 (d, *J* = 2.7 Hz, 1H), 4.18 - 3.99 (m, 3H), 3.98 - 3.89 (m, 1H), 3.79 - 3.68 (m, 1H), 3.30 (ddd, *J* = 33.9, 16.8, 2.7 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H),

1.11 (t, J = 7.0 Hz, 3H).

 $\frac{^{13}C \text{ NMR}}{^{12}C \text{ NMR}} (101 \text{ MHz, CDCI}_3) \delta 162.3 \text{ (s)}, 149.7 \text{ (s)}, 148.3 \text{ (s)}, 146.1 \text{ (s)}, 137.6 \text{ (s)}, 131.3 \text{ (s)}, 127.5 \text{ (s)}, 126.7 \text{ (d, } J = 4.0 \text{ Hz}), 125.4 \text{ (s)}, 119.8 \text{ (s)}, 113.8 \text{ (s)}, 113.7 \text{ (s)}, 112.8 \text{ (s)}, 66.2 \text{ (d, } J = 153.2 \text{ Hz}), 64.7 \text{ (d, } J = 2.9 \text{ Hz}), 64.6 \text{ (d, } J = 2.6 \text{ Hz}), 33.6 \text{ (s)}, 16.2 \text{ (d, } J = 5.7 \text{ Hz}), 16.1 \text{ (d, } J = 5.4 \text{ Hz}).$

³¹**P NMR** (162 MHz, CDCl₃) δ 17.22 (s).

HRMS (ESI, m/z): Mass calcd for $C_{19}H_{21}O_8NPS[M+H]^+$, 454.0720; found 454.0709. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 26.1 min, Rt₂ (major) = 27.5 min; er = 99:1).

Diethyl (*R*)-(6,6-dioxido-8-oxo-10-(thiophen-2-yl)-8,11-dihydro-11a*H*-benzo[e]pyrido [1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3n)

White solid, m.p. 138-139 °C, 34 mg, 72% yield. $[\alpha]_{D}^{28} = -26.0 \ (c \ 1.0 \ CHCl_{3}).$

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.60 - 7.55 (m, 1H), 7.55 - 7.49 (m, 3H), 7.44 (t, J = 7.3 Hz, 1H), 7.32 - 7.27 (m, 1H), 7.16 (dd, J = 5.0, 3.8 Hz, 1H), 6.40 (d, J = 2.7 Hz, 1H), 4.19 - 4.03 (m, 3H), 4.01 - 3.90 (m, 1H), 3.75 (ddd, J = 10.0, 9.1, 7.1 Hz, 1H), 3.40 (ddd, J = 33.8, 16.9, 2.7 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.0 Hz,

3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.1 (s), 148.3 (d, J = 4.6 Hz), 143.0 (s), 139.5 (s), 131.3 (d, J = 2.7 Hz), 130.0 (s), 128.7 (s), 128.5 (s), 127.5 (d, J = 2.2 Hz), 126.7 (d, J = 4.0 Hz), 125.3 (s), 119.8 (d, J = 2.3 Hz), 115.4 (s), 66.2 (d, J = 153.2 Hz), 64.7 (d, J = 3.8 Hz), 64.6 (d, J = 3.7 Hz), 36.3 (s), 01 MHz, CDCl₃) δ 64.7 (d, J = 3.8 Hz), 64.6 (d, J = 3.7 Hz), 36.3 (s), 01 MHz, CDCl₃) δ 64.7 (d, J = 3.8 Hz), 64.6 (d, J = 3.7 Hz), 31 P NMR (162 MHz, CDCl₃) δ 17.32 (s).

HRMS (ESI, m/z): Mass calcd for $C_{23}H_{23}O_7NPS_2 [M+H]^+$, 520.0648; found 520.0636. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 28.7 min, Rt₂ (major) = 47.7 min; er = 98:2).

Diethyl (*R*)-(10-(benzo[b]thiophen-2-yl)-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e]pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (30)

White solid, m.p. 178-180 °C, 40 mg, 77% yield.

 $[\alpha]_{D}^{28} = -11.3 (c \ 1.0 \ CHCl_{3})$

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.84 (dd, J = 6.6, 1.9 Hz, 2H), 7.76 (s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.50 - 7.38 (m, 3H), 7.30 (d, J = 7.8 Hz, 1H), 6.46 (d, J = 2.6Hz, 1H), 4.26 (dd, J = 16.8, 8.3 Hz, 1H), 4.17 - 4.03 (m, 2H),

4.00 - 3.91 (m, 1H), 3.80 - 3.69 (m, 1H), 3.43 (ddd, *J* = 33.8, 16.8, 2.7 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 3H).

 $\frac{^{13}C \text{ NMR}}{^{13}C \text{ NMR}} (101 \text{ MHz, CDCl}_3) \delta 161.9 \text{ (s)}, 148.3 \text{ (d, } J = 4.6 \text{ Hz}), 143.1 \text{ (s)}, 140.5 \text{ (s)}, 139.6 \text{ (s)}, 139.1 \text{ (s)}, 131.4 \text{ (d, } J = 2.7 \text{ Hz}), 127.6 \text{ (d, } J = 2.1 \text{ Hz}), 126.9 \text{ (s)}, 126.8 \text{ (d, } J = 4.0 \text{ Hz}), 126.2 \text{ (s)}, 125.2 \text{ (s)}, 125.2 \text{ (s)}, 124.9 \text{ (s)}, 122.5 \text{ (s)}, 119.8 \text{ (d, } J = 2.2 \text{ Hz}), 117.6 \text{ (s)}, 66.2 \text{ (d, } J = 153.3 \text{ Hz}), 64.8 \text{ (d, } J = 3.5 \text{ Hz}), 64.7 \text{ (d, } J = 3.6 \text{ Hz}), 35.6 \text{ (s)}, 16.3 \text{ (d, } J = 5.5 \text{ Hz}), 16.1 \text{ (d, } J = 5.4 \text{ Hz}).$

³¹P NMR (162 MHz, CDCl₃) δ 17.25 (s).

HRMS (ESI, m/z): Mass calcd for $C_{19}H_{21}O_7NPS_2 [M+H]^+$, 470.0492; found 470.0482. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 29.9 min, Rt₂ (major) = 36.8 min; er = 99.2:0.8).

Diethyl (*R*)-(10-isopropyl-6,6-dioxido-8-oxo-8,11-dihydro-11a*H*-benzo[e]pyrido[1,2-c] [1,2,3]oxathiazin-11a-yl)phosphonate (3p)

Colorless oil, 23 mg, 53% yield. $[\alpha]_{D}^{28} = -65.3 (c \ 0.5 \ CHCl_{3})$ ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.49 (ddd, $J = 6.7, 6.2, 5.1 \ Hz, 2H$), 7.42 (d, $J = 7.1 \ Hz, 1H$), 7.26 - 7.28 (m, 1H), 5.98 - 5.87 (m, 1H), 4.25 - 4.05 (m, 2H), 3.96 - 3.82 (m, 1H), 3.73 - 3.55 (m, 2H), 3.08 (ddd, $J = 34.5, 17.1, 2.7 \ Hz, 1H$), 2.51 - 2.81 (m, 1H), 1.30 (t, $J = 7.1 \ Hz, 3H$), 1.20 (t, $J = 6.6 \ Hz, 6H$), 1.10 (t, $J = 7.1 \ Hz, 3H$).

¹³C NMR (101 MHz, CDCl₃) δ 162.4 (s), 160.3 (s), 148.3 (d, J = 4.6 Hz), 131.2 (d, J = 2.8 Hz), 127.4 (d, J = 2.2 Hz), 126.8 (d, J = 4.0 Hz), 125.6 (s), 119.7 (d, J = 2.4 Hz), 116.9 (s), 66.1 (d, J = 153.0 Hz), 64.6 (d, J = 6.1 Hz), 64.5 (d, J = 5.7 Hz), 36.0 (d, J = 2.3 Hz), 34.8 (s), 20.1 (s), 19.8 (s), 16.3 (d, J = 5.6 Hz), 16.1 (d, J = 5.3 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ 17.37 (s).

HRMS (ESI, m/z): Mass calcd for $C_{18}H_{25}O_7NPS [M+H]^+$, 430.1084; found 430.1075. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 13.4 min, Rt₂ (major) = 14.2 min; er = 97:3).

Diethyl (*R*)-(2-methoxy-6,6-dioxido-8-oxo-10-phenyl-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3q)

White solid, m.p. 44-47 $^{\circ}\text{C},$ 32 mg, 65% yield.

¹<u>H</u> NMR (400 MHz, CDCl₃) δ 7.65 - 7.60 (m, 2H), 7.48 (dd, *J* = 4.1, 2.4 Hz, 3H), 7.23 (d, *J* = 8.9 Hz, 1H), 7.04 (t, *J* = 2.5 Hz, 1H), 7.01 - 6.96 (m, 1H), 6.38 (d, *J* = 2.9 Hz, 1H), 4.21 - 4.02 (m, 3H), 4.01 - 3.93 (m, 1H), 3.86 (s, 3H), 3.80 - 3.71 (m, 1H), 3.38 (ddd, *J* = 34.3, 17.1, 2.9 Hz, 1H), 1.24 (t, *J* = 7.0 Hz, 3H), 1.13 (t, *J* =

7.1 Hz, 3H).

 $\frac{^{13}C \text{ NMR}}{^{13}C \text{ NMR}} (101 \text{ MHz}, \text{CDCI}_3) \delta 162.4 \text{ (s)}, 158.3 \text{ (s)}, 150.0 \text{ (s)}, 142.2 - 141.4 \text{ (m)}, 136.2 \text{ (s)}, 130.8 \text{ (s)}, 129.2 \text{ (s)}, 126.6 \text{ (s)}, 126.5 \text{ (s)}, 120.6 \text{ (s)}, 118.5 \text{ (s)}, 115.4 \text{ (s)}, 113.0 \text{ (s)}, 66.3 \text{ (d, } J = 152.9 \text{ Hz}), 64.7 \text{ (dd, } J = 7.4, 5.9 \text{ Hz}), 56.0 \text{ (s)}, 36.3 \text{ (s)}, 16.3 \text{ (d, } J = 5.2 \text{ Hz}), 16.2 \text{ (d, } J = 5.3 \text{ Hz}).$

³¹**P NMR** (162 MHz, CDCl₃) δ 17.46 (s).

HRMS (ESI, m/z): Mass calcd for $C_{22}H_{25}O_8NPS[M+H]^+$, 494.1033; found 494.1024. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 21.5 min, Rt₂ (major) = 22.5 min; er = 99.4:0.6).

Diethyl (*R*)-(2-methyl-6,6-dioxido-8-oxo-10-phenyl-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3r)

White solid, m.p. 139-141 °C, 45 mg, 94% yield. $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{28} = -51.5 (c \ 1.0 \ CHCl_3) \\ \frac{1}{H \ NMR} (400 \ MHz, CDCl_3) \ \delta \ 7.68 - 7.61 (m, 2H), 7.49 (dd, J = 4.0, 2.5 \ Hz, 3H), 7.36 - 7.28 (m, 2H), 7.17 (d, J = 8.2 \ Hz, 1H), 6.39 (d, J = 2.9 \ Hz, 1H), 4.25 - 4.03 (m, 3H), 4.00 - 3.87 (m, 1H), 3.80 - 3.62 (m, 1H), 3.36 (ddd, J = 34.5, 17.2, 2.9 \ Hz, 1H), 2.44 (s, 3H), 1.24 (t, J = 7.1 \ Hz, 3H), 1.12 (t, J = 7.1 \ Hz, 3H).$

¹³C NMR (101 MHz, CDCl₃) δ 162.4 (s), 150.4(s), 146.3 (d, J = 4.6 Hz), 137.7 (d, J = 2.2 Hz), 136.2 (s), 131.9 (d, J = 2.8 Hz), 130.8 (s), 129.2 (s), 127.0 (d, J = 4.1 Hz), 126.6 (s), 125.0 (s), 119.4 (d, J = 2.4 Hz), 118.4 (s), 66.3 (d, J = 152.5 Hz), 64.6 (dd, J = 7.7, 6.6 Hz), 36.3 (d, J = 2.3 Hz), 21.3 (s), 16.3 (d, J = 5.5 Hz), 16.1 (d, J = 5.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.67 (s).

HRMS (ESI, m/z): Mass calcd for $C_{22}H_{25}O_7NPS [M+H]^+$, 478.1084; found 478.1075. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H; IPA/hexanes = 20/80, 0.8 mL/min, 254 nm), Rt₁ (major) = 14.8 min, Rt₂ (minor) = 28.0 min; er = 99:1).

Diisopropyl (*R*)-(4-methoxy-6,6-dioxido-8-oxo-10-phenyl-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3s)

 $[\alpha]_{D}^{28} = -2.4$ (c 1.0 CHCl₃)

White solid, m.p. 181-183 °C, 48 mg, 92% yield.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.67 - 7.60 (m, 2H), 7.48 (dd, J = 6.7, 3.6 Hz, 3H), 7.34 (t, J = 8.2 Hz, 1H), 7.09 (dd, J = 10.2, 5.2 Hz, 2H), 6.36 (d, J = 2.9 Hz, 1H), 4.68 (dd, J = 12.5, 6.3 Hz, 1H), 4.33 (dd, J = 12.4, 6.2 Hz, 1H), 4.20 - 4.11 (m, 1H), 3.94 (s, 3H), 3.35 (ddd, J = 34.6, 17.0, 2.9 Hz, 1H), 1.31 (d, J = 6.2 Hz, 3H),

1.24 (d, J = 6.1 Hz, 3H), 1.20 (d, J = 6.2 Hz, 3H), 0.83 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.6 (s), 150.2 (s), 150.0 (d, J = 2.4 Hz), 137.8 (d, J = 4.7 Hz), 136.4 (s), 130.6 (s), 129.1 (s), 127.5 (d, J = 2.1 Hz), 127.3 (s), 126.6 (s), 118.8 (s), 117.3 (d, J = 3.9 Hz), 113.9 (d, J = 2.5 Hz), 74.0 (d, J = 8.1 Hz), 73.7 (d, J = 8.6 Hz), 66.8 (d, J = 152.6 Hz), 56.6 (s), 36.6 (s), 24.4 (d, J = 2.7 Hz), 23.9 (d, J = 2.2 Hz), 23.9 (d, J = 0.4 Hz). 22.6 (d, J = 6.5 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 15.63 (s).

HRMS (ESI, m/z): Mass calcd for $C_{24}H_{29}O_8NPS [M+H]^+$, 522.1346; found 522.1340. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 17.4 min, Rt₂ (major) = 20.1 min; er = 99:1).

Diisopropyl (*R*)-(2-methyl-6,6-dioxido-8-oxo-10-phenyl-8,11-dihydro-11a*H*-benzo[e] pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3t)

Colorless oil, 47 mg, 94% yield.

 $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{28} = -9.3 (c \ 1.0 \ CHCl_3) \\ \frac{1}{H \ NMR} (400 \ MHz, \ cdcl_3) \delta \ 7.69 - 7.58 (m, \ 2H), \ 7.53 - 7.43 (m, \ 3H), \ 7.35 - 7.27 (m, \ 2H), \ 7.16 (d, \ J = 8.2 \ Hz, \ 1H), \ 6.36 (d, \ J = 2.9 \ Hz, \ 1H), \ 4.65 (dq, \ J = 12.5, \ 6.2 \ Hz, \ 1H), \ 4.34 (dq, \ J = 12.4, \ 6.2 \ Hz, \ 1H), \ 4.17 (dd, \ J = 17.1, \ 8.3 \ Hz, \ 1H), \ 3.33 (ddd, \ J = 34.5, \ 17.1, \ 2.9 \ Hz, \ 1H), \ 2.43 (s, \ 3H), \ 1.31 (d, \ J = 6.2 \ Hz, \ 3H), \ 1.24 (d, \ J = 6.2 \ Hz, \ 3H), \ 1.24 (d, \ J = 6.2 \ Hz, \ 3H), \ 1.24 (d, \ J = 6.2 \ Hz, \ 3H), \ 1.24 (d, \ J = 6.2 \ Hz, \ 3H), \ 1.24 (d, \ J = 6.2 \ Hz, \ 3H), \ 1.24 (d, \ J = 6.2 \ Hz), \ 3.34 \ Mz = 12.4 \$

3H), 1.18 (d, J = 6.2 Hz, 3H), 0.82 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, cdcl₃) δ 162.6 (s), 150.2 (s), 146.2 (s), 137.5 (s), 136.4 (s), 131.6 (d, J = 2.9 Hz), 130.6 (s), 129.1 (s), 126.9 (d, J = 4.0 Hz), 126.6 (s), 125.3 (s), 119.5 (d, J = 2.4 Hz), 118.8 (s), 74.0 (d, J = 8.3 Hz), 73.7 (d, J = 8.6 Hz), 66.6 (d, J = 153.1 Hz), 36.7 (s), 24.31 (d, J = 2.8 Hz), 23.9 (s), 23.8 (d, J = 2.3 Hz), 22.7 (d, J = 6.3 Hz), 21.2 (s).. ³¹P NMR (162 MHz, CDCl₃) δ 15.72 (s).

HRMS (ESI, m/z): Mass calcd for $C_{24}H_{29}O_7NPS [M+H]^+$, 506.1397; found 506.1394. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H; IPA/hexanes = 20/80, 0.8 mL/min, 254 nm), Rt₁ (major) = 9.3 min, Rt₂ (minor) = 18.1 min; er = 99:1).

Diisopropyl (*R*)-(6,6-dioxido-8-oxo-10-phenyl-8,11-dihydro-11a*H*-benzo[e]pyrido [1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (3u)

White solid, m.p. 115-117 °C, 37 mg, 75% yield.

 $[\alpha]_{D}^{28} = -34.4 (c \ 1.0 \ CHCl_3)$

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.63 (s, 2H), 7.57 - 7.42 (m, 6H), 7.29 (d, *J* = 7.8 Hz, 1H), 6.37 (s, 1H), 4.67 (d, *J* = 6.1 Hz, 1H), 4.37 (dd, *J* = 12.1, 6.0 Hz, 1H), 4.18 (dd, *J* = 16.8, 7.8 Hz, 1H), 3.36 (dd, *J* = 34.0, 16.8 Hz, 1H), 1.31 (d, *J* = 5.8 Hz, 3H), 1.24 (d, *J* = 5.8 Hz, 3H), 1.18 (d, *J* = 5.8 Hz, 3H), 0.82 (d, *J* = 5.8 Hz, 3H).

 $\frac{{}^{13}\textbf{C} \text{ NMR}}{(126 \text{ MHz, CDCl}_3) \delta 162.5 \text{ (s)}, 150.2 \text{ (s)}, 148.5 \text{ (d, } J = 4.4 \text{ Hz}), 136.3 \text{ (s)}, 131.2 \text{ (s)}, 130.7 \text{ (s)}, 129.1 \text{ (s)}, 127.4 \text{ (s)}, 126.6 \text{ (s)}, 126.5 \text{ (s)}, 125.8 \text{ (s)}, 119.8 \text{ (s)}, 118.8 \text{ (s)}, 74.0 \text{ (d, } J = 8.1 \text{ Hz}), 73.8 \text{ (d, } J = 8.5 \text{ Hz}), 66.6 \text{ (d, } J = 153.4 \text{ Hz}), 36.7 \text{ (s)}, 24.3 \text{ (s)}, 23.9 \text{ (d, } J = 3.6 \text{ Hz}), 23.8 \text{ (d, } J = 5.1 \text{ Hz}), 22.8 \text{ (d, } J = 6.2 \text{ Hz}).$

 $\frac{^{31}P \text{ NMR}}{^{12}}$ (162 MHz, CDCl₃) δ 15.59 (dd, J = 34.3, 6.8 Hz).

HRMS (ESI, m/z): Mass calcd for $C_{23}H_{27}O_7NPS [M+H]^+$, 492.1240; found 492.1235. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 14.7 min, Rt₂ (major) = 18.4 min; er = 99.2:0.8).

Diisopropyl ((10*R*,11a*R*)-6,6-dioxido-8-oxo-10-phenyl-8,9,10,11-tetrahydro-11a*H*-benzo[e]pyrido[1,2-c][1,2,3]oxathiazin-11a-yl)phosphonate (5)

White solid, m.p.162-164 °C, 120 mg, 92% yield.

 $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{28} = 10.9 \ (c \ 1.0 \ CHCl_3) \\ \frac{1}{H \ NMR} \ (400 \ MHz, \ CDCl_3) \ \delta \ 7.57 \ - \ 7.49 \ (m, \ 1H), \ 7.46 \ - \ 7.30 \ (m, \ 6H), \\ 7.26 \ - \ 7.22 \ (m, \ 2H), \ 4.75 \ (ddd, \ J = 19.2, \ 12.6, \ 6.3 \ Hz, \ 2H), \ 3.13 \ (ddd, \ J = 14.7, \ 6.4, \ 3.1 \ Hz, \ 1H), \ 3.05 \ - \ 2.90 \ (m, \ 2H), \ 2.90 \ - \ 2.83 \ (m, \ 1H), \ 2.83 \ - \ 2.68 \ (m, \ 1H), \ 1.32 \ (dd, \ J = 6.1, \ 4.9 \ Hz, \ 6H), \ 1.21 \ (d, \ J = 6.2 \ Hz, \ 3H), \\ 1.18 \ (d, \ J = 6.2 \ Hz, \ 3H).$

 $\frac{{}^{13}C \text{ NMR}}{\text{Hz}} (101 \text{ MHz}, \text{CDCl}_3) \delta 170.7 \text{ (s)}, 150.0 \text{ (d, } J = 4.5 \text{ Hz}), 140.7 \text{ (s)}, 131.3 \text{ (d, } J = 2.7 \text{ Hz}), 129.3 \text{ (s)}, 127.8 \text{ (s)}, 127.3 \text{ (s)}, 126.6 \text{ (s)}, 125.8 \text{ (d, } J = 5.3 \text{ Hz}), 125.7 \text{ (d, } J = 2.0 \text{ Hz}), 120.5 \text{ (d, } J = 2.4 \text{ Hz}), 74.3 \text{ (d, } J = 7.7 \text{ Hz}), 73.6 \text{ (d, } J = 8.0 \text{ Hz}), 67.2 \text{ (d, } J = 159.6 \text{ Hz}), 41.77 \text{ (s)}, 36.6 \text{ (s)}, 34.2 \text{ (d, } J = 7.1 \text{ Hz}), 24.3 \text{ (d, } J = 2.8 \text{ Hz}), 24.0 \text{ (d, } J = 3.7 \text{ Hz}), 23.8 \text{ (d, } J = 5.9 \text{ Hz}).$

³¹P NMR (162 MHz, CDCl₃) δ 14.78 (s).

HRMS (ESI, m/z): Mass calcd for $C_{23}H_{29}O_7NPS [M+H]^+$, 494.1397; found 494.1390. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; IPA/hexanes = 30/70, 0.4 mL/min, 254 nm), Rt₁ (minor) = 15.7 min, Rt₂ (major) = 17.5 min; er = 98.5:1.5).

$\operatorname{I\!X}$. NMR spectra of intermediates & products

2q: ¹H NMR

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

³¹P NMR

130 110 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

3a: ¹H NMR

³¹P NMR

³¹P NMR

110 100 90 80 70 f1 (ppm) -1 130 120

3d: ¹H NMR

-17.51

3e: ¹H NMR

³¹P NMR

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 40 -50 -50 -70 -80 -90 f1(ppm)

3f: ¹H NMR

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90

3g: ¹H NMR

¹³C NMR

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 40 -50 -60 -70 -80 -90 f1(ppm)

ī

3h: ¹H NMR

3i: ¹H NMR

¹³C NMR

20.4 20.2 20.0 19.8 19.4 19.2 19.0 18.8 18.6 18.4 18.2 18.0 17.8 17.6 17.4 17.2 17.0 16.8 16.6 16.4 16.2 16.0 15.8 15.6 15.4 15.2 15.0 14.8 14.6 14.4 14.2 14 fl(ppm)

3j: ¹H NMR

¹³C NMR

-40 -50 -60 -70 -80 -90

-30

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

¹⁹F NMR

€111.94 111.96 111.95

3k: ¹H NMR

¹³C NMR

130 110 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1(ppm)

3I: ¹H NMR

¹³C NMR

3m: ¹H NMR

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 ft (ppm)

¹³C NMR

3o: ¹H NMR

3p: ¹H NMR

3q: ¹H NMR

10

200 190

170 160 150 140 130 120

180

100 90 f1 (ppm) 80

70 60

40 30

50

110

-1

10 0

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 40 -50 -50 -70 -80 -90 f1 (ppm)

3r: ¹H NMR

3s: ¹H NMR

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 ft/ppm)

¹³C NMR

3u: ¹H NMR

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm) 50 40 30 20 10 0 -1

Ο

Ο

Ρh

130 110 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

5: ¹H NMR

130 110 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

\boldsymbol{X} . HPLC spectra of products

	RT(min)	Int Type	(sec)	Area	Height	% Area
1	10.339	bb	62.500	4123853	186784	50.38
2	16.668	bb	120.500	4062379	115531	49.62
Sum				8186232.2	302315.4	100.0

Enantioenriched 3a

Enantioenriched 3d

Sum

3147755.5

38681.3

100.0

Enantioenriched 3e

Sum

51869019.7

794292.9

Enantioenriched 3g

Sum

9529820.7

75306.6

Enantioenriched 3h

32.350

bb

2

Sum

3194269

3280384.4

56206

59262.4

97.37

100.0

Enantioenriched 3k

1	14.655	bb	55.000	102672	4938	1.96
2	25.154	bb	120.000	5146418	129693	98.04
Sum				5249089.8	134630.8	100.0

	RT(min)	Int Type	Width (sec)	Area	Height	% Area
1	22.818	bb	86.000	257853	7206	0.83
2	45.498	bb	343.000	30625425	263557	99.17
Sum		4 a		30883278.1	270762.6	100.0

Sum

3638176.4

78129.0

Racemic 3n

Enantioenriched 3n

Racemic 3o

Enantioenriched 3o

Enantioenriched 3q

	(X) (iiiiii)	int Type	(sec)	Aica	neight	70 Alea
1	21.487	bb	63.000	9666	255	0.62
2	22.500	bb	110.000	1538156	38761	99.38
Sum				1547821.9	39016.3	100.0

Enantioenriched 3r

Enantioenriched 3s

Enantioenriched 3t

Racemic 3u

Enantioenriched 3u

Enantioenriched 5

