Structural Assignment of Enol-Keto Tautomerization of One-Pot Synthesized 4-Hydroxyquinolines / 4-Quinolones

On-Yu Kang,^{†‡} Seong Jun Park,[†] Hyojung Ahn,^{†§} Kyung Chae Jeong,[¶] and Hwan Jung Lim*^{†§}

† Information-based Drug Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Republic of Korea; *‡* Department of Chemistry, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea; *¶* Translational Research Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do 10408, Republic of Korea; *§* Department of Medicinal and Pharmaceutical Chemistry, University of Science & Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea.

e-mail; indium@krict.re.kr

SUPPORTING INFORMATION

Contents:

1. General methods and procedure			
2. Optimization of mono-amination and cyclization condition and time dependent ¹ H N	MR studies.S4		
3. Experimental data	S6		
4. ¹ H and ¹³ C NMR spectra of compounds	S13		
5. 2D NOESY NMR of 4b , 4d , and 6c			
6. VT NMR studies, IR spectrum of a enol-keto mixture and crystals of 4d	S39		
7. ¹ H NMR studies of 4d in various solvents	S40		
8. X-ray crystallographic data of 4b , 4d , 6a and 6c	S41		
9. DFT Calculations of enol and keto forms			

General method

Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F_{254} glass plates precoated with a 0.2 mm thickness of silica gel. The TLC plates were visualized by shortwave (254 nm). Flash chromatography on Kieselgel 60 (230–400 mesh) silica gel was performed. ¹H NMR and spectra were obtained at 300 MHz or 500 MHz using CDCl₃ as solvent. ¹H NMR assignment abbreviations are the following; singlet (s), doublet (d), triplet (t), quartet (q), broad singlet (bs), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). ¹³C NMR spectra were measured at 75.5 MHz or 125 MHz using CDCl₃ as an internal reference. IR spectra were recorded using a Bruker FT/IR-300E spectrometer. High-resolution mass spectra (HRMS) were recorded with an electron scattering ionization (ESI) using a sector field mass analyzer. The melting points were determined in capillary tubes on Buchi 510 melting point apparatus without corrections. All DFT calculations were performed with the Jaguar Tool (Jaguar version 9.9, release 11, Schrödinger, LLC, New York, USA). Geometry optimization was carried out at the B3LYP level of theory and the 6-31+G** basis set was used.

General Procedure for synthesis of 4-Hydroxyquinolines / 4-Quinolones

Dimethyl 2-(bis(methylthio)methylene)malonate was prepared by following the reported procedure.¹ To a stirred solution of the dimethyl 2-(bis(methylthio)methylene)malonate (2.0 mmol) in solvent (5 ml) was added reagent (0.1-1.0 eq) diluted in solvent at -20 °C. The solution was stirred for 10 min and then aniline (1.0 mmol) was added to above the solution. The resulting mixture was heated at 75 °C for 24 hours. The solvent was evaporated and then, *o*-Dichlorobenzene (5 mL) was added to the mixture. The resulting mixture was heated at 190 °C for 20 min. After the reaction was completed, the solvent was removed. The crude product was purified by column chromatography on silica gel using Hexane/Ethyl acetate.

General Procedure of cyclization reaction

To a stirred solution of the mono-amination product **3a** in solvent (5 ml) was added reagent and the resulting solution was heated at corresponding temperature. After the reaction was completed, the solvent was removed. The crude product was purified by column chromatography on silica gel using Hexane/Ethyl acetate.

¹ Junjappa, H; Ila, H; Asokan, C. V. *Tetrahedron* **1990**, *46*, 5423.

Optimized Procedure for synthesis of 4-Hydroxyquinolines / 4-Quinolones (Table S1, Entry 11)

To a stirred solution of the dimethyl 2-(bis(methylthio)methylene)malonate (2.0 mmol) in THF (5 ml) was added NIS (0.1 mmol) diluted in THF at -20 °C. The solution was stirred for 10 min and then aniline (1.0 mmol) was added to above the solution. The resulting mixture was heated at 75 °C for 24 hours. The solvent was evaporated and then, *o*-Dichlorobenzene (5 mL) was added to the mixture. The resulting mixture was heated at 190 °C for 20 min. After the reaction was completed, the solvent was removed. The crude product was purified by column chromatography on silica gel using Hexane/Ethyl acetate.

General Procedure for Time dependent ¹H NMR study of cyclization and decarboxylation

To a stirred solution of the dimethyl 2-(bis(methylthio)methylene)malonate (2.3 g, 9.75 mmol) in THF (5 ml) was added NIS (108 mg, 0.48 mmol) diluted in THF at -20 °C. The solution was stirred for 10 min and then *o*-anisidine (600 mg, 4.87 mmol) was added to above the solution. The resulting mixture was heated at 75 °C for 24 hours. After the reaction was completed, the solvent was removed *in vacuo*. The crude product was purified by column chromatography on silica gel using Hexane/Ethyl acetate $0\% \rightarrow 3\%$, v:v) **3d** was obtained (1.22 g, 3.918 mmol, 80%) as a brown oil. And then, **3d** was dissolved in *o*-Dichlorobenzene (10 ml). And the solution was heated at 190 °C. The solution was analyzed by ¹H NMR over time (5 min, 10 min, 15 min, 20 min, 30min, 40 min, 60 min, 80 min, 120 min, 160 min, 200 min, 240 min, 10 h, 24 h, 56 h).

Optimized procedure for the decarboxylation of the 4-quinolones

4-Hydroxyquinolines / 4-Quinolones (4) (1.0 mmol) was dissolved in *o*-Dichlorobenzene (5 mL) and the resulting solution was heated at 190 °C for 56 h. After the reaction was completed, the solvent was removed. The crude product was purified by column chromatography on silica gel using Hexane/Ethyl acetate.

Optimized procedure for the oxidation of the thiomethyl groups

To a stirred solution of 4-Hydroxyquinolines / 4-Quinolones (4) (1.0 mmol) in CH_2Cl_2 (5 mL) was added *m*-CPBA (1.1 eq) at 0 °C. The resulting mixture was stirred at r.t for 6 h. After the reaction was completed, a saturated aqueous $Na_2S_2O_3$ solution was added. The mixture was extracted with CH_2Cl_2 and the organic layer was dried over MgSO₄. The crude product was purified by column chromatography on silica gel using Hexane/Ethyl acetate.

Table S1. Optimization of mono-amination condition^[a]

NH2 +	C Conditions		OH O O-DCB
1a	2	3a	20 min 4a
Entry	7 Reagent	Solvent	Yield (%) ^[b]
1	None	THF	N.R.
2	None	EtOH	< 5
3	<i>p</i> -TsOH	Toluene	18
4	$BF_3 \cdot OEt_2$	THF	17
5	FeCl ₃	THF	17
6	AlCl ₃	THF	N.R.
7 ^[c]	PhI(OAc) ₂	THF	N.R.
8 ^[c]	NFSI	THF	N.R.
9	NCS	THF	12
10	NBS	THF	< 5
11	NIS	THF	60
12 ^[d]	NIS	THF	16
13	NIS	1,4-Dioxane	36
14	NIS	DMF	N.R.

[a] Reaction conditions: **1a** (1 mmol), **2** (2 mmol), Reagent (0.1 eq), 75 °C, 24 h, Solvent (5 ml); *o*-DCB (5 mL), 190 °C, 20 min; [b] Isolated yields of final product (**4a**); [c] N-fluorobenzenesulfonimide (NFSI) 0.5 eq. used; [d] 1.0 eq. used.

NH ₂ +		NIS (0.1 eq.) THF reflux, 24 h		OH O	
a Entry	2 Beagant	Solvent	3a	Time	4a Vield (%) ^[b]
1	None	<i>o</i> -DCB	190	20 min	60
2	None	Xylene	120	4 h	39
3	PPA ^[c]	DMF	120	5 h	23
4	$P_2O_5^{\left[d\right]}$	Toluene	120	3 h	26
5	MeSO ₃ H ^[d]	Toluene	120	1 h	28
6	p-TsOH ^[d]	Toluene	120	1 h	5

Table S2. Optimization of cyclization condition^[a]

[a] Reaction conditions: **1a** (1 mmol), **2** (2 mmol), NIS (0.1 eq), 75 °C, 24 h, THF; Solvent (5 mL), Reagent, Corresponding temperature and time; [b] Isolated yields of final product (**4a**); [c] Polyphosphoric acid (PPA) xg/mmol used; [d] 1.0 eq. used.

	Time	Ratio (3d/4d/5d)	C ^{H²} O decarboxylation H ³
(1)	5 min	82/18/-	N S ODCB N S ODCB N S
(2)	10 min	12/88/-	O_ H' 190 °C O_ 190 °C O_ I
(3)	15 min	1/99/-	3d 4d 5d
(4)	20 min	-/100/-	
(5)	30 min	-/94/6	
(6)	40 min	-/93/7	(2) H ³
(7)	60 min	-/87/13	
(8)	80 min	-/84/16	
(9)	120 min	-/77/23	
(10)	160 min	-/71/29	
(11)	200 min	-/66/34	
(12)	240 min	-/60/40	
(13)	10 h	-/51/49	
(14)	24 h	-/29/71	
(15)	56 h	-/-/100	5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 85 9.0 85 8.0 7.5 7.0 6.5 6

Figure S1. Time dependent ¹H NMR studies of cyclization and decarboxylation^[a]

[a] ¹H NMR was measured in CDCl₃

Synthesis of Methyl 4-hydroxy-2-(methylthio)quinoline-3-carboxylate (4a)

Using the optimized condition (Table S1, entry 11), **4a** was obtained as white solid (60%); m.p. 103-104 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.14 (s, 1H), 8.18 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.3 Hz, 1H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 4.05 (s, 3H), 2.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.5,

168.6, 160.1, 148.9, 133.0, 127.8, 125.0, 123.8, 118.0, 102.5, 52.6, 14.8; IR (neat) 3444br, 3064, 2992, 2952, 2920, 1660, 1621, 1584, 1558, 1446, 1348, 1228, 1158, 1000, 807, 751 cm⁻¹; HRMS (ESI) calcd for $C_{12}H_{11}NO_3S$ [M]⁺ 249.0460 found: 249.0465.

Synthesis of Methyl 4-hydroxy-7-methoxy-2-(methylthio)quinoline-3-carboxylate (4b) and Methyl 4-hydroxy-5-methoxy-2-(methylthio)quinoline-3-carboxylate (4c)

Using the optimized condition (Table S1, entry 11), **4b** and **4c** were obtained as white solid (53%, **4b/4c** = 10:1); **4b** : m.p. 156-157 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.08 (s, 1H), 8.08 (d, *J* = 9.0 Hz, 1H), 7.13 (d, *J* = 2.5 Hz, 1H), 7.02 (dd, *J* = 9.0, 2.5 Hz, 1H), 4.05 (s, 3H), 3.95 (s, 3H), 2.60 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ : 171.5, 168.2, 163.7, 160.9, 151.1, 125.2, 117.2, 112.2, 106.7, 101.2, 55.7, 52.5, 14.8; IR (neat) 3443br, 3011, 2945, 2916, 1656, 1615, 1586, 1440, 1346, 1214, 1166, 1106, 997, 837 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₃NO₄S₁ [M]⁺ 279.0565 found: 279.0566.

4c : m.p. 120-121 °C; ¹H NMR (300 MHz, CDCl₃) δ 12.12 (s, 1H), 7.57 (t, J = 8.2 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 6.78 (d, J = 7.8 Hz, 1H), 4.03 (s, 3H), 4.02 (s, 3H), 2.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.1, 165.6, 160.2, 157.6, 150.6, 132.2, 121.3, 108.9, 106.4, 104.9, 56.6, 52.5, 14.3; IR (neat) 3424br, 3301, 2921, 1722, 1657, 1620, 1577, 1437, 1402, 1352, 1245, 1224, 1090, 923, 861

 cm^{-1} ; HRMS (ESI) calcd for $C_{13}H_{13}NO_4S_1$ [M]⁺ 279.0565 found: 279.0563.

Synthesis of Methyl 4-hydroxy-8-methoxy-2-(methylthio)quinoline-3-carboxylate (4d)

Using the optimized condition (Table S1, entry 11), **4d** was obtained as White solid, 41%; m.p. 118-119 °C; ¹H NMR (300 MHz, CDCl₃) (Enol-form) δ 13.15 (s, 1H), 7.81 (d, *J* = 8.3 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 7.8 Hz, 1H), 4.08 (s, 3H), 4.04 (s, 3H), 2.68(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.5, 168.5, 159.2, 154.4, 140.5, 125.0, 119.0, 115.4, 112.5, 103.0, 56.5, 52.6, 14.6;

¹H NMR (300 MHz, CDCl₃) (Keto-form) δ 8.65 (bs, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.23 (t, *J* = 8.0 Hz, 1H), 7.06 (d, *J* = 7.0 Hz, 1H), 4.03 (s, 3H), 3.95 (s, 3H), 2.61 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 167.2, 153.3, 146.9, 129.4, 126.0, 124.3, 118.1, 113.5, 111.4, 56.4, 52.3 14.8; IR (neat) 3424br,

2957, 2917, 1660, 1617, 1565, 1480, 1437, 1396, 1346, 1260, 1157, 1076, 1001, 738 cm⁻¹; IR (neat) (crystal-keto) 3468, 3213, 3140, 3013, 2954, 2845, 1715, 1624, 1547, 1496, 1452, 1355, 1316, 1269, 1241, 1190, 1143, 1072, 1000, 977, 752, 730 cm⁻¹; HRMS (ESI) calcd for $C_{13}H_{13}NO_4S_1$ [M]⁺ 279.0565 found: 279.0571.

Synthesis of Methyl 4-hydroxy-6-methoxy-2-(methylthio)quinoline-3-carboxylate (4e)

Using the optimized condition (Table S1, entry 11), **4e** was obtained as White solid, 46%; m.p. 140-141 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.09 (s, 1H), 7.73 (d, J = 9.1 Hz, 1H), 7.46 (d, J = 2.9 Hz, 1H), 7.35 (dd, J = 9.1, 2.9 Hz, 1H), 4.07 (s, 3H), 3.93 (s, 3H), 2.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ

171.7, 167.6, 157.2, 156.9, 145.0, 129.4, 125.1, 118.4, 102.6, 101.5, 55.8, 52.6; IR (neat) 3435br, 2945, 2917, 1657, 1617, 1588, 1486, 1467, 1437, 1409, 1347, 1312, 1215, 1167, 1107, 999, 840 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₃NO₄S₁ [M]⁺ 279.0565 found: 279.0565.

Synthesis of Methyl 4-hydroxy-5,8-dimethoxy-2-(methylthio)quinoline-3-carboxylate (4f)

Using the optimized condition (Table S1, entry 11), **4f** was obtained asWhite solid, 43%; m.p. 130-131 °C; ¹H NMR (300 MHz, CDCl₃) (Enol-form) δ 11.61 (s, 1H), 6.95 (d, J = 8.7 Hz, 1H), 6.64 (d, J = 8.7 Hz, 1H), 3.97 (s, 3H), 3.95 (s, 6H), 2.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 163.6, 159.1, 150.4, 149.1, 141.4, 111.5, 109.4, 108.2, 104.0, 56.8, 56.5, 52.4, 13.8; ¹³C NMR (125

MHz, CDCl₃) δ 168.0, 163.6, 159.1, 150.4, 149.1, 141.4, 111.5, 109.4, 108.2, 104.0, 56.8, 56.5, 52.4, 13.8; ¹H NMR (300 MHz, CDCl₃) (Keto-form) δ 11.61 (s, 1H), 6.95 (d, J = 8.7 Hz, 1H), 6.64 (d, J = 8.7 Hz, 1H), 3.97 (s, 3H), 3.95 (s, 6H), 2.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 167.2, 158.7, 153.6, 141.9, 129.6, 117.8, 112.6, 106.9, 102.9, 56.6, 56.2; IR (neat) 3417br, 3268, 3000, 2951, 2918, 2840, 1717, 1618, 1573, 1486, 1372, 1258, 1217, 1179, 1143, 1095, 1063, 1007, 947, 796; HRMS (ESI) calcd for C₁₄H₁₅NO₅S₁ [M]⁺ 309.0671 found: 309.0670.

Synthesis of Methyl 4-hydroxy-8-methyl-2-(methylthio)quinoline-3-carboxylate (4g)

Using the optimized condition (Table S1, entry 11), **4g** was obtained as White solid, 44%; m.p. 98-99 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.09 (s, 1H), 8.08 (dd, J = 8.5, 1.0 Hz, 1H), 7.58 (d, J = 7.0 Hz, 1H), 7.36-7.29 (m, 1H), 4.08 (s, 3H), 2.70 (s, 3H), 2.61 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 171.5, 168.8,

158.7, 147.4, 136.0, 133.1, 124.6, 121.4, 117.6, 105.6, 102.1, 52.4, 17.8, 14.9; IR (neat) 3450br, 2955, 2915, 1654, 1618, 1572, 1355, 1243, 1194, 1161, 822 cm⁻¹; HRMS (ESI) calcd for $C_{13}H_{13}NO_3S_1$ [M]⁺ 263.0616 found 263.0612.

Synthesis of Methyl 8-fluoro-4-hydroxy-2-(methylthio)quinoline-3-carboxylate (4h)

Using the optimized condition (Table S1, entry 11), **4h** was obtained as White solid, 26%; m.p. 113-114 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.25 (s, 1H), 7.99 (dt, J = 8.1, 1.2 Hz, 1H), 7.42 (ddd, J = 10.4, 7.8, 1.5 Hz, 1H), 7.33 (td, J = 8.0, 4.8 Hz, 1H), 4.09 (s, 3H), 2.64 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 168.4, 161.1, 1581, 156.1, 138.9, 124.6, 119.9, 119.4, 117.5, 117.4, 103.2, 100.1,

52.8, 14.9; IR (neat) 3443br, 2924, 2854, 1654, 1630, 1584, 1565, 1481, 1460, 1400, 1361, 1254, 982, 934, 786, 748 cm⁻¹; HRMS (ESI) calcd for $C_{12}H_{10}F_1N_1O_3S_1$ [M]⁺ 267.0365 found 267.0364.

Synthesis of Methyl 7-fluoro-4-hydroxy-2-(methylthio)quinoline-3-carboxylate (4i)

Using the optimized condition (Table S1, entry 11), **4i** was obtained as white solid, 79%; m.p. 160-161 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.21 (s, 1H), 8.20 (dd, J = 9.1, 6.2 Hz, 1H), 7.42 (dd, J = 10.2, 2.5 Hz, 1H), 7.16 (ddd, J = 9.1, 8.2, 2.5 Hz, 1H), 4.07 (s, 3H), 2.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)

 $\delta \ 171.4, 168.3, 166.7, 164.7, 161.9, 150.4, 150.3, 126.4, 114.9, 114.8, 114.7, 112.1, 111.9, 102.1, 52.7, 14.9; IR (neat) 3433 br, 3100, 2954, 2926, 1644, 1626, 1574, 1446, 1352, 1310, 1229, 1206,$

Synthesis of Methyl 6-fluoro-4-hydroxy-2-(methylthio)quinoline-3-carboxylate (4j)

Using the optimized condition (Table S1, entry 11), **4j** was obtained as white solid, 53%; m.p. 139-140 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.09 (s, 1H), 7.78-7.74 (m, 1H), 7.45 (ddd, J = 9.3, 8.2, 3.0 Hz, 1H), 4.07 (s, 3H), 2.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 167.8, 160.5, 159.3, 158.5, 145.9,

130.1, 130.0, 122.6, 122.4, 118.5, 118.4, 107.7, 107.5, 102.7, 52.7, 14.8; IR (neat) 3435br, 3093, 2959, 2916, 1660, 1593, 1563, 1490, 1435, 1210, 1179, 825 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₀F₁N₁O₃S₁ [M]⁺ 267.0365 found 267.0364.

Synthesis of Methyl 6-chloro-4-hydroxy-2-(methylthio)quinoline-3-carboxylate (4k)

Using the optimized condition (Table S1, entry 11), **4k** was obtained as white solid, 77%; m.p. 158-159 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.09 (s, 1H), 8.10 (d, J = 2.4 Hz, 1H), 7.68 (d, J = 8.9 Hz, 1H), 7.58 (dd, J = 8.9, 2.4 Hz, 1H), 4.06 (s, 3H), 2.55 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.3,

167.6, 160.7, 147.3, 133.6, 130.6, 129.4, 122.8, 118..7, 103.0, 52.7, 14.8; IR (neat) 3451br, 2956, 2918, 1739, 1656, 1579, 1557, 1438, 1393, 1347, 1219, 1010, 828 cm⁻¹; HRMS (ESI) calcd for $C_{12}H_{10}Cl_1N1O_3S_1$ [M]⁺ 283.0070 found 283.0071.

Synthesis of Methyl 8-bromo-4-hydroxy-2-(methylthio)quinoline-3-carboxylate (41)

Using the optimized condition (Table S1, entry 11), 41 was obtained as white solid, 38%; m.p. 136-137 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.14 (s, 1H), 8.07 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 7.4 Hz, 1H), 7.18 (t, J = 7.9 Hz, 1H), 4.06 (s, 3H), 2.63 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 168.5, 161.6, 145.3, 136.3, 125.1, 123.8, 123.4, 119.1, 102.7, 52.7, 15.4; IR (neat) 3435br, 2989, 2950, 2917,

2849, 1656, 1610, 1579, 1546, 1469, 1445, 1391, 1347, 1228, 1205, 1162, 1118, 1002, 950, 842, 783 cm^{-1} ; HRMS (ESI) calcd for $C_{12}H_{10}Br_1N_1O_3S_1$ [M]⁺ 326.9565 found 326.9567.

Synthesis of Methyl 4-hydroxy-2-(methylthio)-6-nitroquinoline-3-carboxylate (4m)

Using the optimized condition (Table S1, entry 11), 4m was obtained as white solid, 84%; m.p. 292-293 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.36 (s, 1H), 9.10 (s, 1H), 8.44 (dd, *J* = 9.1, 2.9 Hz, 1H), 7.85 (d, *J* = 9.1 Hz, 1H), 4.10 (s, 3H), 2.61 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 171.0,

4m 169.0, 165.5, 150.8, 144.1, 129.1, 126.5, 121.4, 117.2, 103.7, 53.1, 15.1; IR (neat) 3433br, 2923, 1658, 1618, 1597, 1562, 1478, 1432, 1339, 1234, 1205, 840 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₀N₂O₅S₁ [M]⁺ 294.0310 found 294.0303.

Synthesis of Methyl 4,7-dihydroxy-2-(methylthio)quinoline-3-carboxylate (4n)

Using the optimized condition (Table S1, entry 11), 4n was obtained as white solid, 25%; m.p. 225-226 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 11.43 (s, 1H), 10.45 (s, 1H), 7.88 (d, J = 8.8 Hz, 1H), 6.98 (s, 1H), 6.84 (d, J = 8.8 Hz, 1H), 3.76 (s, 3H), 2.62 (s, 3H); ¹³C NMR (125 MHz, DMSO-

 d_6) δ 172.6, 166.9, 161.5, 148.0, 142.5, 127.4, 118.0, 117.4, 115.0, 101.8, 52.3, 16.6; IR (neat) 3360 br, 3211, 3091, 3065, 2955, 2391, 1714, 1626, 1524, 1467, 1438, 1354, 1320, 1187, 1139, 831 cm⁻¹; HRMS (ESI) calcd for $C_{12}H_{11}N_1O_4S_1$ [M]⁺ 265.0409 found 265.0404.

Synthesis of Methyl 4-hydroxy-6,7-dimethoxy-2-(methylthio)quinoline-3-carboxylate (40)

40

Using the optimized condition (Table S1, entry 11), 40 was obtained as white solid, 46%; m.p. 162-163 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.03 (s, 1H), 7.40 (s, 1H), 7.15 (s, 1H), 4.05 (s, 3H), 4.03 (s, 3H), 4.00 (s, 3H), 2.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 167.0, 158.2, 154.9, 148.4, 146.5, 111.8, 107.4, 101.6, 56.3, 52.4, 14.7; IR (neat) 3426br, 3296, 3001, 2960, 2927, 1657, 1596, 1508, 1454, 1407, 1232, 993, 838 cm⁻¹; HRMS (ESI) calcd for

 $C_{14}H_{15}N_1O_5S_1$ [M]⁺ 309.0671 found 309.0665.

Synthesis of Methyl 6,7-difluoro-2-(methylthio)-4-oxo-1,4-dihydroquinoline-3-carboxylate (4p)

Using the optimized condition (Table S1, entry 11), 4p was obtained as white solid, 59%; m.p. 175-176 °C; ¹H NMR (300 MHz, CDCl₃) δ 13.17 (s, 1H), 7.93 (dd, *J* = 10.4, 8.7 Hz, 1H), 7.56 (dd, *J* = 11.2, 7.3 Hz, 1H), 4.08 (s, 3H), 2.57 (s, 3H).; ¹³C NMR (CDCl₃) δ : 171.3, 167.7, 161.3, 155.6, 153.7, 150.1,

150.0, 148.1, 148.0, 146.6, 114.7, 114.5, 110.3, 110.2, 102.7, 52.8, 14.9; IR (neat) 3425br, 3016, 2962, 2923, 1655m 1598, 1569, 1510, 1445, 1361, 1229, 1186, 1000, 874 cm⁻¹; HRMS (ESI) calcd for $C_{12}H_9F_2N_1O_3S_1$ [M]⁺ 285.0271 found 285.0270.

Synthesis of Methyl 4-hydroxy-2-(methylthio)benzo[h]quinoline-3-carboxylate (4q)

Using the optimized condition (Table S1, entry 11), 4q was obtained as brown solid, 75%; m.p. 163-164 °C; ¹H NMR (CDCl₃)δ : 12.93(s, 1H), 9.11-9.08(d, J = 5.7 Hz, 1H), 8.03-8.00(d, J = 9.0 Hz, 1H), 7.84-7.82(d, J = 5.4 Hz, 1H), 7.66-7.64(d, J = 5.9 Hz, 1H), 4.07(s, 3H), 2.73(s, 3H); ¹³C NMR (CDCl₃) δ : 171.4, 167.8, 160.0, 147.2, 135.1, 130.5, 129.1, 127.9, 126.8, 125.6, 125.4,

119.8, 114.2, 103.6, 52.6, 15.2; IR (neat) 3448br, 3048, 2953, 2919, 1664, 1611, 1582, 1346, 1233, 1153, 804 cm⁻¹; HRMS (EI+) m/z: calcd for $C_{16}H_{13}N_1O_3S_1$ 299.0616; found 299.0615.

Synthesis of Methyl 4-hydroxy-1,3-dimethyl-6-(methylthio)-1H-pyrazolo[3,4-b]pyridine-5carboxylate (4r)

Using the optimized condition (Table S1, entry 11), 4r was obtained as white solid, 5%; m.p. 138-139 °C; ¹H NMR (300 MHz, CDCl₃) (Enol-form) δ 13.18 (s, 1H), 4.02 (s, 3H), 3.94 (s, 3H), 2.61 (s, 3H), 2.55 (s, 3H); ¹³C NMR (125 MHz, $CDCl_3$) δ 171.8, 167.4, 164.0, 152.5, 143.1, 102.3, 99.8, 52.3, 33.3, 15.3, 14.3;

¹H NMR (300 MHz,CDCl₃) (Keto-form) δ 12.57 (s, 1H), 4.13 (s, 3H), 4.05 (s, 3H), 2.83 (s, 3H), 2.68 (s, 3H); IR (neat) 3432br, 3002, 2946, 2922, 2852, 1656, 1611, 1554, 1454, 1435, 1375, 1348, 1329, 1303, 1219, 1138, 995, 972, 833, 803, 757 cm⁻¹; HRMS (ESI) calcd for C₁₁H₁₃N₃O₃S₁ [M]⁺ 267.0678; found 267.0673.

Synthesis of 8-methoxy-2-(methylthio)quinolin-4(1H)-one (5d)

Using the optimized condition of decarboxylation, 5d was obtained as light bronwn solid (95%); m.p. 220-221 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.49 (br s, 1H), 7.88-7.84 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.25-7.20 (t, *J* = 8.0 Hz, 1H), 7.04-7.01 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.20 (s, 1H), 4.00 (s, 3H), 2.58 (s, 3H); 13 C NMR (CDCl₃) δ 177.3, 151.2, 147.1, 131.2, 125.6, 123.2, 117.6, 110.9, 107.3, 56.3, 15.2; IR (neat) 3409, 3063, 2988, 2810, 2230, 1554, 1519, 1497, 1446, 1412, 1367, 1266, 1189, 1154, 1106, 1060, 983, 953, 876, 826, 791, 938; HRMS (EI+) m/z : calcd for C₁₁HN₁O₂S₁ 221.0511; found 221.2772.

Synthesis of 8-bromo-2-(methylthio)quinolin-4(1H)-one (5l)

Using the optimized condition of decarboxylation, **51** was obtained as white solid (98%); m.p. 184-185 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.47 (s, 1H), 8.24 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 6.25 (s, 1H), 2.60 (s, 3H); ¹³C NMR (CDCl₃) δ 176.6, 152.6, 137.4, 135.2, 126.3, 126.2, 124.4, 110.6, 107.2, 15.1; IR (neat) 3363, 3068, 2922, 2852, 1725, 1615, 1584, 1550, 1495, 1429,

1349, 1095, 950, 929, 798, 748; HRMS (EI+) m/z : calcd for $C_{10}H_8Br_1N_1O_1S_1$ 268.9510; found 268.9531.

Synthesis of Methyl 5-methoxy-2-(methylsulfinyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (6a)

Using the optimized condition for the oxidation, **6a** was obtained as white solid (75%); m.p. 200-201 °C; ¹H NMR (300 MHz, CDCl₃) (Keto-form) δ 10.01 (s, 1H), 7.57 (t, *J* = 8.2 Hz, 1H), 7.04 (dd, *J* = 8.3, 1.0 Hz, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 3.01 (s, 3H); (Enol-form) δ 11.58 (s, 1H), 7.83 (d, *J* = 8.6 Hz, 1H), 7.72 (t, *J* = 8.2 Hz, 1H), 6.98 (d, *J* = 8.1 Hz, 1H), 4.10 (s, 3H), 4.01 (s, 3H), 2.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 167.3,

165.8, 161.0, 158.9, 139.6, 133.8, 123.7, 117.4, 110.1, 108.2, 107.6, 56.4, 52.6, 43.2; IR (neat) 3466, 3136, 3118, 3091, 1669, 1643, 1609, 1532, 1438, 1320, 1198, 1104, 815 cm⁻¹. HRMS (ESI) calcd for $C_{13}H_{13}NO_5S_1$ [M]⁺ 295.0514; found 295.0536.

Synthesis of Methyl 7-methoxy-2-(methylsulfinyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (6b)

Using the optimized condition for the oxidation, **6b** was obtained as white solid, 87%; m.p. 208-209 °C; ¹H NMR (300 MHz, CDCl₃) (Keto-form) δ 10.25 (s, 1H), 8.34 (d, *J* = 9.0 Hz, 1H), 7.06 (dd, *J* = 9.0, 2.3 Hz, 1H), 6.90 (d, *J* = 2.3 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.02 (s, 3H); (Enol-form) δ 12.58 (s, 1H), 8.22 (d, *J* = 9.0 Hz, 1H), 7.62 (d, *J* = 1.3 Hz, 1H), 7.25-7.20

(m, 1H), 4.08 (s, 3H), 3.96 (s, 3H), 2.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 167.3, 163.8, 160.6, 138.9, 129.2, 121.5, 115.9, 106.9, 100.1, 55.9, 52.8, 43.5; IR (neat) 3448, 3117, 3049, 1729, 1665, 1624, 1595, 1479, 1440, 1332, 1206, 1141, 1037, 957 cm⁻¹. HRMS (ESI) calcd for C₁₃H₁₃NO₅S₁ [M]⁺ 295.0514; found 295.0510.

Synthesis of Methyl 8-methoxy-2-(methylsulfinyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (6c)

Using the optimized condition for the oxidation, **6c** was obtained as white solid, 72%; m.p. 210-211 °C; ¹NMR (300 MHz, CDCl₃) δ 10.81 (s, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.41 (t, *J* = 8.1 Hz, 1H), 7.16 (dd, *J* = 7.9, 1.1 Hz, 1H), 4.05 (s, 3H), 3.97 (s, 3H), 3.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.8, 167.4, 160.4, 148.9, 128.4, 128.1, 126.3, 118.3, 112.4, 106.9, 56.4, 52.8, 43.6; IR (neat) 3435, 3175, 2954, 1666, 1638, 1600, 1443, 1329, 1265, 1150, 974, 785 cm⁻¹.

HRMS (ESI) calcd for $C_{13}H_{13}NO_5S_1$ [M]⁺295.0514; found 295.0538.

Synthesis of Methyl 5,8-dimethoxy-2-(methylsulfinyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (6d)

Using the optimized condition for the oxidation, **6d** was obtained as white solid, 67%; m.p. 186-187 °C; ¹H NMR (300MHz, CDCl₃) δ 10.56 (s, 1H), 7.04 (d, *J* = 8.9 Hz, 1H), 6.75 (d, *J* = 8.9 Hz, 1H), 3.97 (s, 3H), 3.91 (s, 6H), 3.01 (s, 3H); ¹³C NMR (125 Mz, CDCl₃) δ 174.78, 167.34, 158.90, 153.94, 142.12, 129.89, 118.09, 112.74, 108.38, 107.15, 56.88, 56.41, 52.52, 43.29; IR (neat) 3442, 3179, 3038, 2968, 2841, 1666, 1640, 1615, 1550, 1526, 1443, 1320, 1275, 1252,

1145, 1103, 1030, 811, 774 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₅NO₆S₁ [M]⁺ 325.0620; found 325.0642.

¹H and ¹³C NMR data of methyl 4-hydroxy-2-(methylthio)quinoline-3-carboxylate (4a)

¹H and ¹³C NMR data of methyl 4-hydroxy-7-methoxy-2-(methylthio)quinoline-3-carboxylate (4b)

$^1H \ and \ ^{13}C \ NMR \ data \ of \ methyl \ 4-hydroxy-5-methoxy-2-(methylthio)quinoline-3-carboxylate \ (4c)$

¹H and ¹³C NMR data of methyl 4-hydroxy-8-methoxy-2-(methylthio)quinoline-3-carboxylate (4d)

¹H and ¹³C NMR data of methyl 4-hydroxy-6-methoxy-2-(methylthio)quinoline-3-carboxylate (4e)

¹H and ¹³C NMR data of methyl 4-hydroxy-5,8-dimethoxy-2-(methylthio)quinoline-3-carboxylate (4f)

100 90 f1 (ppm)

¹H and ¹³C NMR data of methyl 4-hydroxy-8-methyl-2-(methylthio)quinoline-3-carboxylate (4g)

100 90 f1 (ppm)

¹H and ¹³C NMR data of methyl 8-fluoro-4-hydroxy-2-(methylthio)quinoline-3-carboxylate (4h)

¹H and ¹³C NMR data of methyl 7-fluoro-4-hydroxy-2-(methylthio)quinoline-3-carboxylate (4i)

¹H and ¹³C NMR data of methyl 6-fluoro-4-hydroxy-2-(methylthio)quinoline-3-carboxylate (4j)

¹H and ¹³C NMR data of methyl 8-bromo-4-hydroxy-2-(methylthio)quinoline-3-carboxylate (4l)

¹H and ¹³C NMR data of methyl 4-hydroxy-2-(methylthio)-6-nitroquinoline-3-carboxylate (4m)

¹H and ¹³C NMR data of methyl 4,7-dihydroxy-2-(methylthio)quinoline-3-carboxylate (4n)

¹H and ¹³C NMR data of methyl 4-hydroxy-6,7-dimethoxy-2-(methylthio)quinoline-3-carboxylate (40)

¹H and ¹³C NMR data of methyl 6,7-difluoro-2-(methylthio)-4-oxo-1,4-dihydroquinoline-3carboxylate (4p)

¹H and ¹³C NMR data of methyl 4-hydroxy-2-(methylthio)benzo[*h*]quinoline-3-carboxylate (4q)

¹H and ¹³C NMR data of methyl 4-hydroxy-1,3-dimethyl-6-(methylthio)-1H-pyrazolo[3,4*b*]pyridine-5-carboxylate (4r)

¹H and ¹³C NMR data of 8-methoxy-2-(methylthio)quinolin-4(1H)-one (5d)

¹H and ¹³C NMR data of 8-bromo-2-(methylthio)quinolin-4(1H)-one (5l)

¹H and ¹³C NMR data of methyl 5-methoxy-2-(methylsulfinyl)-4-oxo-1,4-dihydroquinoline-3carboxylate (6a)

¹H and ¹³C NMR data of methyl 7-methoxy-2-(methylsulfinyl)-4-oxo-1,4-dihydroquinoline-3carboxylate (6b)

¹H and ¹³C NMR data of methyl 8-methoxy-2-(methylsulfinyl)-4-oxo-1,4-dihydroquinoline-3carboxylate (6c)

¹H and ¹³C NMR data of methyl 5,8-dimethoxy-2-(methylsulfinyl)-4-oxo-1,4-dihydroquinoline-3carboxylate (6d)

Figure S2. 2D NOESY spectra of 4d in Chloroform-d₁

Figure S4. 2D NOESY spectra of 4b in chloroform-d₁

Figure S5. 2D NOESY spectra of 6c in chloroform-d₁

[a] ¹H NMR was measured in CDCl₃

Figure S7. IR spectrum of a enol-keto mixture (blue) and crystals (red) of 4d

Figure S8. ¹H NMR studies of 4d in various solvents

Figure S9. ORTEP plot of 4b (CCDC# 1534621)

Identification code	20161124		
Empirical formula	C13 H13 N O4 S		
Formula weight	279.30		
Temperature	296(1) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 9.10090(10) Å	= 90°.	
	b = 17.5658(2) Å	$= 103.2940(10)^{\circ}.$	
	c = 8.18620(10) Å	= 90°.	
Volume	1273.61(3) Å ³		
Z	4		
Density (calculated)	1.457 Mg/m ³		
Absorption coefficient	0.264 mm ⁻¹		
F(000)	584		
Crystal size	0.28 x 0.10 x 0.08 mm ³		
Theta range for data collection	2.30 to 28.44°		
Index ranges	0<=h<=12, -23<=k<=0, -10<=l<=10		
Reflections collected	3202		
Independent reflections	3202 [R(int) = 0.0000]		
Completeness to theta = 28.44°	99.7 %		
Absorption correction	Multi-scan		
Max. and min. transmission	0.9792 and 0.9299		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3202 / 0 / 182		
Goodness-of-fit on F^2	1.079		
Final R indices [I>2sigma(I)]	R1 = 0.0558, wR2 = 0.1285		
R indices (all data)	R1 = 0.0726, $wR2 = 0.1368$		
Largest diff. peak and hole	0.417 and -0.199 e.Å ⁻³		

Table S3. Crystal data and structure refinement for 4b.

	Х	У	Ζ	U(eq)	
S(1)	-202(1)	6097(1)	2232(1)	48(1)	
O(1)	3983(2)	9482(1)	6209(2)	50(1)	
O(2)	4709(2)	5932(1)	6959(2)	47(1)	
O(3)	3373(2)	4746(1)	5616(2)	58(1)	
O(4)	1330(2)	4836(1)	3545(2)	57(1)	
N(1)	1446(2)	7216(1)	3774(2)	39(1)	
C(1)	1370(2)	6473(1)	3710(2)	37(1)	
C(2)	2629(2)	7550(1)	4903(2)	34(1)	
C(3)	2693(2)	8350(1)	4936(2)	39(1)	
C(4)	3833(2)	8711(1)	6056(2)	38(1)	
C(5)	4955(2)	8288(1)	7167(2)	44(1)	
C(6)	4908(2)	7515(1)	7135(2)	41(1)	
C(7)	3744(2)	7126(1)	6006(2)	34(1)	
C(8)	3637(2)	6322(1)	5911(2)	36(1)	
C(9)	2446(2)	5974(1)	4755(2)	37(1)	
C(10)	2437(2)	5142(1)	4697(2)	41(1)	
C(11)	1318(3)	4015(1)	3424(3)	64(1)	
C(12)	-1103(3)	6958(1)	1328(3)	59(1)	
C(13)	2904(2)	9943(1)	5097(3)	51(1)	

Table S4. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for **4b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-C(1)	1.7759(17)	
S(1)-C(12)	1.798(2)	
O(1)-C(4)	1.363(2)	
O(1)-C(13)	1.428(2)	
O(2)-C(8)	1.331(2)	
O(2)-H(2)	0.8200	
O(3)-C(10)	1.216(2)	
O(4)-C(10)	1.325(2)	
O(4)-C(11)	1.446(2)	
N(1)-C(1)	1.306(2)	
N(1)-C(2)	1.378(2)	
C(1)-C(9)	1.440(2)	
C(2)-C(7)	1.406(2)	
C(2)-C(3)	1.407(2)	
C(3)-C(4)	1.372(2)	
C(3)-H(3A)	0.9300	
C(4)-C(5)	1.412(2)	
C(5)-C(6)	1.359(3)	
C(5)-H(5A)	0.9300	
C(6)-C(7)	1.412(2)	
C(6)-H(6A)	0.9300	
C(7)-C(8)	1.417(2)	
C(8)-C(9)	1.405(2)	
C(9)-C(10)	1.462(2)	
C(11)-H(11A)	0.9600	
C(11)-H(11B)	0.9600	
C(11)-H(11C)	0.9600	
C(12)-H(12A)	0.92(3)	
C(12)-H(12B)	0.98(3)	
C(12)-H(12C)	1.00(3)	
C(13)-H(13A)	0.9600	
C(13)-H(13B)	0.9600	
C(13)-H(13C)	0.9600	
C(1)-S(1)-C(12)	100.75(9)	

Table S5.	Bond lengths	[Å] and a	angles [°]	for 4b .

C(4)-O(1)-C(13)	117.73(14)
C(8)-O(2)-H(2)	109.5
C(10)-O(4)-C(11)	116.43(16)
C(1)-N(1)-C(2)	118.55(15)
N(1)-C(1)-C(9)	124.20(15)
N(1)-C(1)-S(1)	115.24(13)
C(9)-C(1)-S(1)	120.55(13)
N(1)-C(2)-C(7)	122.82(15)
N(1)-C(2)-C(3)	117.44(15)
C(7)-C(2)-C(3)	119.74(15)
C(4)-C(3)-C(2)	119.78(16)
C(4)-C(3)-H(3A)	120.1
C(2)-C(3)-H(3A)	120.1
O(1)-C(4)-C(3)	124.39(16)
O(1)-C(4)-C(5)	114.89(15)
C(3)-C(4)-C(5)	120.72(16)
C(6)-C(5)-C(4)	119.89(16)
C(6)-C(5)-H(5A)	120.1
C(4)-C(5)-H(5A)	120.1
C(5)-C(6)-C(7)	120.82(16)
C(5)-C(6)-H(6A)	119.6
C(7)-C(6)-H(6A)	119.6
C(2)-C(7)-C(6)	119.05(15)
C(2)-C(7)-C(8)	117.55(15)
C(6)-C(7)-C(8)	123.40(15)
O(2)-C(8)-C(9)	123.29(16)
O(2)-C(8)-C(7)	116.50(15)
C(9)-C(8)-C(7)	120.21(16)
C(8)-C(9)-C(1)	116.66(15)
C(8)-C(9)-C(10)	117.00(16)
C(1)-C(9)-C(10)	126.32(16)
O(3)-C(10)-O(4)	121.23(16)
O(3)-C(10)-C(9)	123.62(17)
O(4)-C(10)-C(9)	115.14(16)
O(4)-C(11)-H(11A)	109.5
O(4)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5

O(4)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
S(1)-C(12)-H(12A)	107.4(18)
S(1)-C(12)-H(12B)	109.1(17)
H(12A)-C(12)-H(12B)	114(2)
S(1)-C(12)-H(12C)	107.0(16)
H(12A)-C(12)-H(12C)	112(2)
H(12B)-C(12)-H(12C)	108(2)
O(1)-C(13)-H(13A)	109.5
O(1)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
O(1)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S (1)	42(1)	41(1)	53(1)	-6(1)	-4(1)	-7(1)
O(1)	52(1)	30(1)	59(1)	-1(1)	-8(1)	-2(1)
O(2)	48(1)	33(1)	51(1)	0(1)	-4(1)	6(1)
O(3)	68(1)	32(1)	63(1)	1(1)	-6(1)	3(1)
O(4)	64(1)	33(1)	64(1)	-5(1)	-7(1)	-5(1)
N(1)	38(1)	36(1)	40(1)	-3(1)	2(1)	-1(1)
C(1)	36(1)	36(1)	36(1)	-2(1)	5(1)	-2(1)
C(2)	35(1)	32(1)	34(1)	-2(1)	5(1)	0(1)
C(3)	39(1)	33(1)	40(1)	1(1)	0(1)	3(1)
C(4)	41(1)	30(1)	42(1)	-2(1)	5(1)	-1(1)
C(5)	42(1)	37(1)	48(1)	-5(1)	-2(1)	-1(1)
C(6)	39(1)	37(1)	42(1)	0(1)	-3(1)	3(1)
C(7)	36(1)	31(1)	35(1)	-1(1)	6(1)	1(1)
C(8)	37(1)	34(1)	36(1)	0(1)	6(1)	2(1)
C(9)	40(1)	33(1)	37(1)	-2(1)	7(1)	-1(1)
C(10)	46(1)	34(1)	43(1)	-2(1)	9(1)	-3(1)
C(11)	76(2)	34(1)	75(2)	-9(1)	3(1)	-12(1)
C(12)	46(1)	52(1)	67(2)	-3(1)	-12(1)	0(1)
C(13)	58(1)	32(1)	57(1)	3(1)	1(1)	3(1)

Table S6. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **4b**. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	Х	У	Z	U(eq)	
		·			
H(2)	4609	5477	6743	70	
H(3A)	1965	8633	4202	47	
H(5A)	5724	8539	7920	53	
H(6A)	5652	7239	7865	49	
H(11A)	474	3856	2556	96	
H(11B)	1234	3799	4476	96	
H(11C)	2238	3845	3159	96	
H(12A)	-1980(30)	6821(16)	570(40)	88	
H(12B)	-400(30)	7246(16)	820(30)	88	
H(12C)	-1320(30)	7270(17)	2280(40)	88	
H(13A)	3133	10471	5335	76	
H(13B)	1911	9834	5251	76	
H(13C)	2942	9835	3958	76	

Table S7.Hydrogen coordinates ($x \ 10^4$) and isotropicdisplacement parameters (Å²x 10³)for 4b.

Table S8.	Torsion angles [°] for 4b .	
-----------	------------------------------------	--

C(2)-N(1)-C(1)-C(9)	0.3(3)
C(2)-N(1)-C(1)-S(1)	179.43(12)
C(12)-S(1)-C(1)-N(1)	0.99(18)
C(12)-S(1)-C(1)-C(9)	-179.80(16)
C(1)-N(1)-C(2)-C(7)	-1.0(2)
C(1)-N(1)-C(2)-C(3)	179.41(15)
N(1)-C(2)-C(3)-C(4)	178.94(16)
C(7)-C(2)-C(3)-C(4)	-0.7(3)
C(13)-O(1)-C(4)-C(3)	-1.8(3)
C(13)-O(1)-C(4)-C(5)	178.67(17)
C(2)-C(3)-C(4)-O(1)	-178.87(16)
C(2)-C(3)-C(4)-C(5)	0.7(3)
O(1)-C(4)-C(5)-C(6)	179.42(16)
C(3)-C(4)-C(5)-C(6)	-0.1(3)
C(4)-C(5)-C(6)-C(7)	-0.3(3)
N(1)-C(2)-C(7)-C(6)	-179.37(16)
C(3)-C(2)-C(7)-C(6)	0.3(2)
N(1)-C(2)-C(7)-C(8)	1.0(2)
C(3)-C(2)-C(7)-C(8)	-179.38(16)
C(5)-C(6)-C(7)-C(2)	0.3(3)
C(5)-C(6)-C(7)-C(8)	179.87(17)
C(2)-C(7)-C(8)-O(2)	179.61(15)
C(6)-C(7)-C(8)-O(2)	0.0(3)
C(2)-C(7)-C(8)-C(9)	-0.3(2)
C(6)-C(7)-C(8)-C(9)	-179.95(16)
O(2)-C(8)-C(9)-C(1)	179.76(16)
C(7)-C(8)-C(9)-C(1)	-0.3(2)
O(2)-C(8)-C(9)-C(10)	-1.7(3)
C(7)-C(8)-C(9)-C(10)	178.24(16)
N(1)-C(1)-C(9)-C(8)	0.4(3)
S(1)-C(1)-C(9)-C(8)	-178.78(13)
N(1)-C(1)-C(9)-C(10)	-178.02(17)
S(1)-C(1)-C(9)-C(10)	2.8(2)
C(11)-O(4)-C(10)-O(3)	-1.2(3)
C(11)-O(4)-C(10)-C(9)	178.18(18)

C(8)-C(9)-C(10)-O(3)	1.9(3)
C(1)-C(9)-C(10)-O(3)	-179.70(18)
C(8)-C(9)-C(10)-O(4)	-177.46(16)
C(1)-C(9)-C(10)-O(4)	0.9(3)

Table S9 . Hydrogen bonds for 4b [Å and $^{\circ}$].
--	----

#1 -x+1,y-1/2,-z+3/2

Figure S10. ORTEP of 4d (CCDC# 1534621)

Ď_в

Identification code	20161229_0m		
Empirical formula	C13 H15 N O5 S		
Formula weight	297.32		
Temperature	296(1) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 7.2268(3) Å	= 80.8 13(2)°.	
	b = 9.0737(4) Å	= 84.674(2)°.	
	c = 10.4696(4) Å	= 88 .958(3)°.	
Volume	674.80(5) Å ³		
Z	2		
Density (calculated)	1.463 Mg/m ³		
Absorption coefficient	0.259 mm ⁻¹		
F(000)	312		
Crystal size	0.34 x 0.28 x 0.14 mm ³		
Theta range for data collection	1.98 to 28.48°		
Index ranges	-9<=h<=9, -11<=k<=12, 0<=l<=13		
Reflections collected	3359		
Independent reflections	3359 [R(int) = 0.0000]		
Completeness to theta = 28.48°	98.6 %		
Absorption correction	Multi-scan		
Max. and min. transmission	0.9647 and 0.9172		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	3359 / 0 / 191		
Goodness-of-fit on F ²	1.054		
Final R indices [I>2sigma(I)]	R1 = 0.0511, $wR2 = 0.1476$		
R indices (all data)	R1 = 0.0589, wR2 = 0.1552		
Largest diff. peak and hole	0.471 and -0.295 e.Å ⁻³		

Table S10.Crystal data and structure refinement for 4d.

	Х	У	Z	U(eq)	
S(1)	7357(1)	540(1)	3917(1)	55(1)	
O(1)	6553(2)	3292(1)	-497(1)	50(1)	
O(2)	8532(2)	-3109(1)	666(1)	50(1)	
O(3)	7375(3)	-3856(2)	3420(2)	90(1)	
O(4)	9012(2)	-2240(2)	4212(1)	56(1)	
N(1)	7346(2)	1097(1)	1348(1)	36(1)	
C(1)	7577(2)	19(2)	2365(1)	34(1)	
C(2)	7342(2)	794(2)	98(1)	32(1)	
C(3)	6943(2)	1970(2)	-902(1)	36(1)	
C(4)	6968(2)	1678(2)	-2151(2)	44(1)	
C(5)	7369(3)	243(2)	-2421(2)	48(1)	
C(6)	7729(2)	-909(2)	-1453(2)	42(1)	
C(7)	7716(2)	-640(2)	-167(1)	33(1)	
C(8)	8097(2)	-1841(2)	896(1)	34(1)	
C(9)	7918(2)	-1447(2)	2187(1)	34(1)	
C(10)	8056(2)	-2659(2)	3309(2)	41(1)	
C(11)	9032(4)	-3213(2)	5437(2)	64(1)	
C(12)	6038(3)	2252(2)	3696(2)	58(1)	
C(13)	6275(3)	4562(2)	-1459(2)	57(1)	
O(5)	762(2)	6149(2)	8405(1)	54(1)	

Table S11. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x10³) for 4d. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-C(1)	1.7559(15)
S(1)-C(12)	1.802(2)
O(1)-C(3)	1.3516(19)
O(1)-C(13)	1.4294(19)
O(2)-C(8)	1.2421(18)
O(3)-C(10)	1.185(2)
O(4)-C(10)	1.326(2)
O(4)-C(11)	1.438(2)
N(1)-C(1)	1.3461(18)
N(1)-C(2)	1.3803(18)
N(1)-H(1A)	0.8600
C(1)-C(9)	1.387(2)
C(2)-C(7)	1.389(2)
C(2)-C(3)	1.4166(19)
C(3)-C(4)	1.373(2)
C(4)-C(5)	1.396(2)
C(4)-H(4A)	0.9300
C(5)-C(6)	1.374(2)
C(5)-H(5A)	0.9300
C(6)-C(7)	1.405(2)
C(6)-H(6A)	0.9300
C(7)-C(8)	1.4700(19)
C(8)-C(9)	1.446(2)
C(9)-C(10)	1.4853(19)
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
O(5)-H(5B)	0.87(3)
O(5)-H(5C)	0.89(3)

	۰
Table S12.	Bond lengths [A] and angles [°] for 4d.

C(1)-S(1)-C(12)	103.58(8)
C(3)-O(1)-C(13)	117.90(14)
C(10)-O(4)-C(11)	118.28(15)
C(1)-N(1)-C(2)	122.18(12)
C(1)-N(1)-H(1A)	118.9
C(2)-N(1)-H(1A)	118.9
N(1)-C(1)-C(9)	120.90(13)
N(1)-C(1)-S(1)	117.23(11)
C(9)-C(1)-S(1)	121.85(11)
N(1)-C(2)-C(7)	120.38(12)
N(1)-C(2)-C(3)	118.65(13)
C(7)-C(2)-C(3)	120.97(13)
O(1)-C(3)-C(4)	126.73(13)
O(1)-C(3)-C(2)	114.47(13)
C(4)-C(3)-C(2)	118.80(14)
C(3)-C(4)-C(5)	120.27(14)
C(3)-C(4)-H(4A)	119.9
C(5)-C(4)-H(4A)	119.9
C(6)-C(5)-C(4)	121.27(15)
C(6)-C(5)-H(5A)	119.4
C(4)-C(5)-H(5A)	119.4
C(5)-C(6)-C(7)	119.59(15)
C(5)-C(6)-H(6A)	120.2
C(7)-C(6)-H(6A)	120.2
C(2)-C(7)-C(6)	119.09(13)
C(2)-C(7)-C(8)	119.63(13)
C(6)-C(7)-C(8)	121.28(13)
O(2)-C(8)-C(9)	123.53(13)
O(2)-C(8)-C(7)	120.45(13)
C(9)-C(8)-C(7)	116.02(12)
C(1)-C(9)-C(8)	120.56(12)
C(1)-C(9)-C(10)	121.26(13)
C(8)-C(9)-C(10)	118.16(13)
O(3)-C(10)-O(4)	122.87(15)
O(3)-C(10)-C(9)	125.12(15)
O(4)-C(10)-C(9)	111.99(13)

O(4)-C(11)-H(11A)	109.5
O(4)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
O(4)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
S(1)-C(12)-H(12A)	109.5
S(1)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
S(1)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
O(1)-C(13)-H(13A)	109.5
O(1)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
O(1)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
H(5B)-O(5)-H(5C)	103(2)

	U ¹¹	U ²²	U ³³	U ²³	U13	U ¹²
S (1)	94(1)	43(1)	26(1)	-6(1)	-3(1)	7(1)
O(1)	73(1)	38(1)	37(1)	1(1)	-9(1)	14(1)
O(2)	77(1)	34(1)	38(1)	-7(1)	-4(1)	8(1)
O(3)	163(2)	50(1)	56(1)	14(1)	-43(1)	-35(1)
O(4)	79(1)	53(1)	36(1)	6(1)	-22(1)	-5(1)
N(1)	50(1)	32(1)	26(1)	-3(1)	-3(1)	6(1)
C(1)	42(1)	35(1)	26(1)	-3(1)	-3(1)	1(1)
C(2)	33(1)	36(1)	26(1)	-2(1)	-4(1)	1(1)
C(3)	38(1)	37(1)	33(1)	0(1)	-6(1)	3(1)
C(4)	51(1)	48(1)	30(1)	4(1)	-12(1)	1(1)
C(5)	64(1)	54(1)	28(1)	-8(1)	-12(1)	-2(1)
C(6)	55(1)	41(1)	32(1)	-9(1)	-9(1)	0(1)
C(7)	34(1)	36(1)	28(1)	-4(1)	-4(1)	-1(1)
C(8)	38(1)	33(1)	31(1)	-4(1)	-5(1)	1(1)
C(9)	39(1)	34(1)	27(1)	-1(1)	-5(1)	1(1)
C(10)	57(1)	35(1)	30(1)	-1(1)	-7(1)	4(1)
C(11)	97(2)	57(1)	36(1)	4(1)	-19(1)	13(1)
C(12)	78(1)	48(1)	48(1)	-15(1)	10(1)	6(1)
C(13)	80(1)	38(1)	50(1)	8(1)	-12(1)	6(1)
O(5)	77(1)	37(1)	44(1)	-1(1)	0(1)	2(1)

Table S13. Anisotropic displacement parameters ($Å^2x \ 10^3$) for 4d. The anisotropic displacementfactor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^* b^* U^{12}]$

	X	У	Z	U(eq)	
H(1A)	7197	2004	1482	44	
H(4A)	6717	2440	-2819	52	
H(5A)	7393	63	-3272	57	
H(6A)	7980	-1862	-1648	50	
H(11A)	7953	-3840	5576	96	
H(11B)	9026	-2627	6124	96	
H(11C)	10131	-3824	5430	96	
H(12A)	5847	2625	4507	88	
H(12B)	4857	2066	3403	88	
H(12C)	6708	2978	3061	88	
H(13A)	7374	4730	-2053	86	
H(13B)	6025	5425	-1045	86	
H(13C)	5241	4385	-1927	86	
H(5B)	1010(40)	5190(30)	8520(30)	82(8)	
H(5C)	-60(40)	6250(30)	9080(30)	71(7)	

Table S14.Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³)for 4d.

C(2)-N(1)-C(1)-C(9)	3.4(2)
C(2)-N(1)-C(1)-S(1)	-174.78(11)
C(12)-S(1)-C(1)-N(1)	20.78(14)
C(12)-S(1)-C(1)-C(9)	-157.34(14)
C(1)-N(1)-C(2)-C(7)	-4.7(2)
C(1)-N(1)-C(2)-C(3)	175.00(13)
C(13)-O(1)-C(3)-C(4)	-5.3(2)
C(13)-O(1)-C(3)-C(2)	175.27(14)
N(1)-C(2)-C(3)-O(1)	-1.6(2)
C(7)-C(2)-C(3)-O(1)	178.13(13)
N(1)-C(2)-C(3)-C(4)	178.93(13)
C(7)-C(2)-C(3)-C(4)	-1.3(2)
O(1)-C(3)-C(4)-C(5)	-178.96(16)
C(2)-C(3)-C(4)-C(5)	0.4(2)
C(3)-C(4)-C(5)-C(6)	0.6(3)
C(4)-C(5)-C(6)-C(7)	-0.7(3)
N(1)-C(2)-C(7)-C(6)	-179.06(13)
C(3)-C(2)-C(7)-C(6)	1.2(2)
N(1)-C(2)-C(7)-C(8)	0.7(2)
C(3)-C(2)-C(7)-C(8)	-179.06(13)
C(5)-C(6)-C(7)-C(2)	-0.2(2)
C(5)-C(6)-C(7)-C(8)	-179.91(15)
C(2)-C(7)-C(8)-O(2)	-176.08(14)
C(6)-C(7)-C(8)-O(2)	3.7(2)
C(2)-C(7)-C(8)-C(9)	4.3(2)
C(6)-C(7)-C(8)-C(9)	-175.95(13)
N(1)-C(1)-C(9)-C(8)	2.1(2)
S(1)-C(1)-C(9)-C(8)	-179.85(11)
N(1)-C(1)-C(9)-C(10)	-176.09(13)
S(1)-C(1)-C(9)-C(10)	2.0(2)
O(2)-C(8)-C(9)-C(1)	174.68(14)
C(7)-C(8)-C(9)-C(1)	-5.7(2)
O(2)-C(8)-C(9)-C(10)	-7.1(2)
C(7)-C(8)-C(9)-C(10)	172.52(13)
C(11)-O(4)-C(10)-O(3)	-7.6(3)

Table S15.Torsion angles $[^{\circ}]$ for 4d.

C(11)-O(4)-C(10)-C(9)	171.02(15)
C(1)-C(9)-C(10)-O(3)	136.8(2)
C(8)-C(9)-C(10)-O(3)	-41.5(3)
C(1)-C(9)-C(10)-O(4)	-41.9(2)
C(8)-C(9)-C(10)-O(4)	139.91(15)

Figure S11. ORTEP of 6a (CCDC# 1838136).

Identification code	20171102_0m		
Empirical formula	C16 H13 N O5 S		
Formula weight	331.33		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/n		
Unit cell dimensions	a = 6.6266(6) Å	= 90°.	
	b = 18.2993(15) Å	= 99.670(6)°.	
	c = 11.8645(10) Å	= 90°.	
Volume	1418.3(2) Å ³		
Z	4		
Density (calculated)	1.552 Mg/m ³		
Absorption coefficient	0.256 mm ⁻¹		
F(000)	688		
Crystal size	0.30 x 0.28 x 0.24 mm ³		
Theta range for data collection	2.07 to 26.00°		
Index ranges	-8<=h<=8, 0<=k<=22, 0<=l<=14		
Reflections collected	2776		
Independent reflections	2776 [R(int) = 0.0000]		
Completeness to theta = 26.00°	99.8 %		
Absorption correction	Multi-scan		
Max. and min. transmission	0.9412 and 0.9273		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	2776 / 0 / 208		
Goodness-of-fit on F ²	1.103		
Final R indices [I>2sigma(I)]	R1 = 0.0785, wR2 = 0.2396		
R indices (all data)	R1 = 0.0963, wR2 = 0.2512		
Largest diff. peak and hole	0.877 and -0.436 e.Å ⁻³		

	X	у	Z	U(eq)	
<u></u> <u>S(1)</u>	6927(2)	8969(1)	1413(1)	46(1)	
O(1)	6436(5)	9713(2)	917(3)	63(1)	
O(2)	-1521(4)	6910(2)	-721(3)	48(1)	
O(3)	2063(5)	6715(2)	547(3)	59(1)	
O(4)	7584(5)	7590(2)	2123(3)	56(1)	
O(5)	6035(4)	6580(2)	1358(3)	49(1)	
N(1)	3179(5)	8882(2)	259(3)	40(1)	
C(1)	6419(9)	9049(3)	2826(4)	61(1)	
C(2)	4602(6)	8447(2)	855(3)	36(1)	
C(3)	1303(6)	8620(2)	-276(3)	37(1)	
C(4)	-86(6)	9108(2)	-894(4)	46(1)	
C(5)	-1906(7)	8851(3)	-1446(4)	52(1)	
C(6)	-2425(6)	8116(2)	-1405(4)	47(1)	
C(7)	-1088(6)	7629(2)	-789(3)	37(1)	
C(8)	865(6)	7869(2)	-199(3)	33(1)	
C(9)	2403(6)	7368(2)	438(3)	36(1)	
C(10)	4351(6)	7710(2)	951(3)	34(1)	
C(11)	-3385(7)	6646(3)	-1387(4)	54(1)	
C(12)	6140(6)	7294(2)	1547(3)	37(1)	
C(13)	7861(8)	6173(3)	1842(5)	62(1)	
Q(11)	920(20)	225(7)	4506(16)	150(6)	
Q(12)	2450(30)	226(8)	4344(14)	171(6)	
Q(13)	4790(40)	304(9)	4895(19)	246(9)	

Table S17. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x10³) for **6a.** U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(1)	1.498(3)
S(1)-C(1)	1.771(6)
S(1)-C(2)	1.839(4)
O(2)-C(7)	1.353(5)
O(2)-C(11)	1.433(5)
O(3)-C(9)	1.226(5)
O(4)-C(12)	1.207(5)
O(5)-C(12)	1.324(5)
O(5)-C(13)	1.455(5)
N(1)-C(2)	1.340(5)
N(1)-C(3)	1.383(5)
N(1)-H(1B)	0.8600
C(1)-H(1C)	0.9600
C(1)-H(1D)	0.9600
C(1)-H(1E)	0.9600
C(2)-C(10)	1.366(5)
C(3)-C(4)	1.398(5)
C(3)-C(8)	1.411(5)
C(4)-C(5)	1.355(6)
C(4)-H(4A)	0.9300
C(5)-C(6)	1.391(6)
C(5)-H(5A)	0.9300
C(6)-C(7)	1.377(6)
C(6)-H(6A)	0.9300
C(7)-C(8)	1.433(5)
C(8)-C(9)	1.481(5)
C(9)-C(10)	1.472(5)
C(10)-C(12)	1.484(5)
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
Q(11)-Q(12)	1.07(2)

Table S18.	Bond lengths [Å] and angles [°] for 6a .
Table S18.	Bond lengths [A] and angles [°] for

Q(11)-Q(11)#1	2.00(3)
Q(12)-Q(13)	1.58(3)
Q(13)-Q(13)#2	1.17(3)
O(1)-S(1)-C(1)	103.5(2)
O(1)-S(1)-C(2)	102.56(18)
C(1)-S(1)-C(2)	95.9(2)
C(7)-O(2)-C(11)	117.8(3)
C(12)-O(5)-C(13)	114.9(3)
C(2)-N(1)-C(3)	122.3(3)
C(2)-N(1)-H(1B)	118.8
C(3)-N(1)-H(1B)	118.8
S(1)-C(1)-H(1C)	109.5
S(1)-C(1)-H(1D)	109.5
H(1C)-C(1)-H(1D)	109.5
S(1)-C(1)-H(1E)	109.5
H(1C)-C(1)-H(1E)	109.5
H(1D)-C(1)-H(1E)	109.5
N(1)-C(2)-C(10)	123.0(3)
N(1)-C(2)-S(1)	110.7(3)
C(10)-C(2)-S(1)	126.1(3)
N(1)-C(3)-C(4)	118.8(4)
N(1)-C(3)-C(8)	119.1(3)
C(4)-C(3)-C(8)	122.1(4)
C(5)-C(4)-C(3)	119.1(4)
C(5)-C(4)-H(4A)	120.5
C(3)-C(4)-H(4A)	120.5
C(4)-C(5)-C(6)	121.6(4)
C(4)-C(5)-H(5A)	119.2
C(6)-C(5)-H(5A)	119.2
C(7)-C(6)-C(5)	120.2(4)
C(7)-C(6)-H(6A)	119.9
C(5)-C(6)-H(6A)	119.9
O(2)-C(7)-C(6)	122.5(3)
O(2)-C(7)-C(8)	116.9(3)
C(6)-C(7)-C(8)	120.6(4)
C(3)-C(8)-C(7)	116.4(3)

C(3)-C(8)-C(9)	120.4(3)
C(7)-C(8)-C(9)	123.2(3)
O(3)-C(9)-C(10)	122.4(3)
O(3)-C(9)-C(8)	122.3(3)
C(10)-C(9)-C(8)	115.4(3)
C(2)-C(10)-C(9)	119.8(3)
C(2)-C(10)-C(12)	116.6(3)
C(9)-C(10)-C(12)	123.6(3)
O(2)-C(11)-H(11A)	109.5
O(2)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
O(2)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
O(4)-C(12)-O(5)	123.5(4)
O(4)-C(12)-C(10)	122.3(4)
O(5)-C(12)-C(10)	114.2(3)
O(5)-C(13)-H(13A)	109.5
O(5)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
O(5)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
Q(12)-Q(11)-Q(11)#1	143(2)
Q(11)-Q(12)-Q(13)	145(2)
Q(13)#2-Q(13)-Q(12)	101(3)

#1 -x,-y,-z+1 #2 -x+1,-y,-z+1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U12
S (1)	40(1)	38(1)	53(1)	5(1)	-6(1)	-9(1)
O(1)	65(2)	41(2)	76(2)	14(2)	-11(2)	-16(2)
O(2)	39(2)	41(2)	58(2)	2(1)	-12(1)	-9(1)
O(3)	50(2)	33(2)	83(2)	10(2)	-22(2)	-11(1)
O(4)	47(2)	41(2)	69(2)	-4(2)	-22(2)	0(1)
O(5)	43(2)	32(2)	67(2)	4(1)	-8(1)	0(1)
N(1)	37(2)	30(2)	46(2)	3(1)	-9(2)	-6(1)
C(1)	68(3)	47(3)	63(3)	0(2)	0(2)	1(2)
C(2)	35(2)	34(2)	36(2)	-1(2)	-4(2)	-5(2)
C(3)	38(2)	35(2)	35(2)	3(2)	0(2)	-1(2)
C(4)	40(2)	37(2)	56(3)	8(2)	-3(2)	-1(2)
C(5)	42(2)	47(3)	59(3)	15(2)	-13(2)	4(2)
C(6)	34(2)	53(3)	50(3)	1(2)	-6(2)	-7(2)
C(7)	39(2)	35(2)	33(2)	0(2)	-3(2)	-2(2)
C(8)	30(2)	35(2)	32(2)	0(2)	0(2)	-2(2)
C(9)	40(2)	32(2)	32(2)	-1(2)	-3(2)	-2(2)
C(10)	34(2)	32(2)	33(2)	0(2)	-1(2)	-2(2)
C(11)	45(2)	49(3)	62(3)	-3(2)	-12(2)	-13(2)
C(12)	37(2)	34(2)	37(2)	3(2)	0(2)	0(2)
C(13)	48(3)	43(3)	87(4)	10(2)	-5(2)	10(2)
Q(11)	133(9)	68(6)	228(16)	16(7)	-29(10)	8(7)
Q(12)	280(20)	94(8)	144(11)	-17(7)	35(16)	-13(15)
Q(13)	320(20)	138(13)	300(20)	52(14)	109(19)	118(17)

Table S19. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **6a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	У	Z	U(eq)	
H(1B)	3443	9340	208	48	
H(1C)	7505	9318	3282	91	
H(1D)	6331	8571	3146	91	
H(1E)	5148	9303	2815	91	
H(4A)	233	9601	-926	55	
H(5A)	-2828	9174	-1861	62	
H(6A)	-3680	7953	-1796	56	
H(11A)	-3508	6131	-1261	82	
H(11B)	-3366	6734	-2183	82	
H(11C)	-4528	6896	-1163	82	
H(13A)	7654	5663	1669	92	
H(13B)	8128	6239	2657	92	
H(13C)	9007	6348	1522	92	

Table S20.Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10 ³) for**6a.**

Table S21.	Torsion angles [°] for 6a .	
------------	------------------------------------	--

C(3)-N(1)-C(2)-C(10)	2.3(6)
C(3)-N(1)-C(2)-S(1)	178.4(3)
O(1)-S(1)-C(2)-N(1)	-3.8(3)
C(1)-S(1)-C(2)-N(1)	101.5(3)
O(1)-S(1)-C(2)-C(10)	172.1(4)
C(1)-S(1)-C(2)-C(10)	-82.7(4)
C(2)-N(1)-C(3)-C(4)	-179.1(4)
C(2)-N(1)-C(3)-C(8)	-0.3(6)
N(1)-C(3)-C(4)-C(5)	178.2(4)
C(8)-C(3)-C(4)-C(5)	-0.6(7)
C(3)-C(4)-C(5)-C(6)	0.4(7)
C(4)-C(5)-C(6)-C(7)	0.4(8)
C(11)-O(2)-C(7)-C(6)	4.6(6)
C(11)-O(2)-C(7)-C(8)	-174.5(4)
C(5)-C(6)-C(7)-O(2)	179.9(4)
C(5)-C(6)-C(7)-C(8)	-1.1(7)
N(1)-C(3)-C(8)-C(7)	-178.9(4)
C(4)-C(3)-C(8)-C(7)	-0.1(6)
N(1)-C(3)-C(8)-C(9)	-0.5(6)
C(4)-C(3)-C(8)-C(9)	178.3(4)
O(2)-C(7)-C(8)-C(3)	180.0(3)
C(6)-C(7)-C(8)-C(3)	0.9(6)
O(2)-C(7)-C(8)-C(9)	1.6(6)
C(6)-C(7)-C(8)-C(9)	-177.4(4)
C(3)-C(8)-C(9)-O(3)	178.3(4)
C(7)-C(8)-C(9)-O(3)	-3.5(6)
C(3)-C(8)-C(9)-C(10)	-0.6(5)
C(7)-C(8)-C(9)-C(10)	177.7(4)
N(1)-C(2)-C(10)-C(9)	-3.4(6)
S(1)-C(2)-C(10)-C(9)	-178.8(3)
N(1)-C(2)-C(10)-C(12)	174.4(4)
S(1)-C(2)-C(10)-C(12)	-1.0(5)
O(3)-C(9)-C(10)-C(2)	-176.4(4)
C(8)-C(9)-C(10)-C(2)	2.5(5)
O(3)-C(9)-C(10)-C(12)	5.9(6)

C(8)-C(9)-C(10)-C(12)	-175.2(3)
C(13)-O(5)-C(12)-O(4)	-3.6(6)
C(13)-O(5)-C(12)-C(10)	174.2(4)
C(2)-C(10)-C(12)-O(4)	15.0(6)
C(9)-C(10)-C(12)-O(4)	-167.2(4)
C(2)-C(10)-C(12)-O(5)	-162.8(4)
C(9)-C(10)-C(12)-O(5)	14.9(6)
Q(11)#1-Q(11)-Q(12)-Q(13)	-52(5)
Q(11)-Q(12)-Q(13)-Q(13)#2	91(4)

#1 -x,-y,-z+1 #2 -x+1,-y,-z+1
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1B)O(1)#3	0.86	2.20	2.957(4)	147.1
N(1)-H(1B)O(1)	0.86	2.13	2.649(4)	118.1

Table S22.	Hydrogen bonds for 6a [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z+1 #2 -x+1,-y,-z+1 #3 -x+1,-y+2,-z

Figure S12. ORTEP of 6c (CCDC# 1838137).

Identification code	20170522_0m	
Empirical formula	C13 H19 N O8 S	
Formula weight	349.35	
Temperature	296(1) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.2412(9) Å	= 85.640(6)°.
	b = 9.7236(12) Å	= 87.406(6)°.
	c = 11.4552(15) Å	= 77.1 8 3(6)°.
Volume	783.86(17) Å ³	
Z	2	
Density (calculated)	1.480 Mg/m ³	
Absorption coefficient	0.248 mm ⁻¹	
F(000)	368	
Crystal size	0.15 x 0.15 x 0.30 mm ³	
Theta range for data collection	1.78 to 26.00°.	
Index ranges	-8<=h<=8, -11<=k<=11, -14<=	=l<=14
Reflections collected	10645	
Independent reflections	2965 [R(int) = 0.0349]	
Completeness to theta = 26.00°	96.5 %	
Absorption correction	Multi-scan	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	2965 / 5 / 232	
Goodness-of-fit on F^2	1.077	
Final R indices [I>2sigma(I)]	R1 = 0.0429, wR2 = 0.1227	
R indices (all data)	R1 = 0.0509, wR2 = 0.1289	
Largest diff. peak and hole	0.303 and -0.326 e.Å ⁻³	

Table S23. Crystal data and structure refinement for 6c.

	Х	у	Z	U(eq)	
S(1)	348(1)	1121(1)	3443(1)	37(1)	
O(1)	3099(2)	-2913(2)	638(1)	57(1)	
O(2)	1824(2)	3283(1)	-343(1)	52(1)	
O(3)	1603(2)	-3411(1)	2812(1)	46(1)	
O(4)	-185(2)	2648(1)	3009(1)	48(1)	
O(5)	1075(2)	-1609(2)	3969(1)	53(1)	
N(1)	1583(2)	1248(2)	1266(1)	34(1)	
C(1)	2310(3)	1958(2)	-726(2)	37(1)	
C(2)	2890(3)	1597(2)	-1838(2)	44(1)	
C(3)	3329(3)	167(2)	-2079(2)	46(1)	
C(4)	3235(3)	-882(2)	-1234(2)	42(1)	
C(5)	2671(2)	-543(2)	-87(2)	34(1)	
C(6)	2198(2)	877(2)	151(2)	32(1)	
C(7)	1829(4)	4454(2)	-1180(2)	62(1)	
C(8)	1413(2)	271(2)	2122(2)	31(1)	
C(9)	1864(2)	-1157(2)	1985(2)	34(1)	
C(10)	2579(3)	-1657(2)	845(2)	37(1)	
C(11)	1500(3)	-2069(2)	3014(2)	37(1)	
C(12)	1153(4)	-4295(2)	3814(2)	57(1)	
C(13)	2512(3)	987(3)	4194(2)	54(1)	
O(11)	3916(3)	4238(2)	1551(2)	72(1)	
O(12)	5954(3)	3736(2)	3562(2)	76(1)	
O(13)	4247(3)	3328(3)	5829(2)	80(1)	

Table S24. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x10³) for 6c. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(4)	1.5002(14)
S(1)-C(13)	1.796(2)
S(1)-C(8)	1.8355(18)
O(1)-C(10)	1.233(2)
O(2)-C(1)	1.359(2)
O(2)-C(7)	1.432(2)
O(3)-C(11)	1.328(2)
O(3)-C(12)	1.450(2)
O(5)-C(11)	1.214(2)
N(1)-C(8)	1.334(2)
N(1)-C(6)	1.380(2)
N(1)-H(1A)	0.8600
C(1)-C(2)	1.370(3)
C(1)-C(6)	1.411(2)
C(2)-C(3)	1.402(3)
C(2)-H(2A)	0.9300
C(3)-C(4)	1.363(3)
C(3)-H(3A)	0.9300
C(4)-C(5)	1.400(3)
C(4)-H(4B)	0.9300
C(5)-C(6)	1.392(3)
C(5)-C(10)	1.472(3)
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-C(9)	1.374(3)
C(9)-C(10)	1.461(3)
C(9)-C(11)	1.470(2)
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
O(11)-H(11A)	0.822(19)

Table S25.	Bond lengths [Å] and angles [°] for 6c .

O(11)-H(11B)	0.88(3)
O(12)-H(12D)	0.875(18)
O(12)-H(12E)	0.819(17)
O(13)-H(13D)	0.835(19)
O(13)-H(13E)	0.880(19)
O(4)-S(1)-C(13)	103.87(10)
O(4)-S(1)-C(8)	102.10(8)
C(13)-S(1)-C(8)	97.17(9)
C(1)-O(2)-C(7)	118.08(17)
C(11)-O(3)-C(12)	115.22(16)
C(8)-N(1)-C(6)	121.35(15)
C(8)-N(1)-H(1A)	119.3
C(6)-N(1)-H(1A)	119.3
O(2)-C(1)-C(2)	126.96(17)
O(2)-C(1)-C(6)	113.99(17)
C(2)-C(1)-C(6)	119.05(18)
C(1)-C(2)-C(3)	119.22(18)
C(1)-C(2)-H(2A)	120.4
C(3)-C(2)-H(2A)	120.4
C(4)-C(3)-C(2)	122.01(19)
C(4)-C(3)-H(3A)	119.0
C(2)-C(3)-H(3A)	119.0
C(3)-C(4)-C(5)	119.88(19)
C(3)-C(4)-H(4B)	120.1
C(5)-C(4)-H(4B)	120.1
C(6)-C(5)-C(4)	118.29(17)
C(6)-C(5)-C(10)	120.80(16)
C(4)-C(5)-C(10)	120.91(17)
N(1)-C(6)-C(5)	119.64(15)
N(1)-C(6)-C(1)	118.82(16)
C(5)-C(6)-C(1)	121.54(17)
O(2)-C(7)-H(7A)	109.5
O(2)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
O(2)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5

H(7B)-C(7)-H(7C)	109.5
N(1)-C(8)-C(9)	123.67(16)
N(1)-C(8)-S(1)	110.21(13)
C(9)-C(8)-S(1)	125.99(13)
C(8)-C(9)-C(10)	119.13(15)
C(8)-C(9)-C(11)	115.89(16)
C(10)-C(9)-C(11)	124.92(17)
O(1)-C(10)-C(9)	124.50(17)
O(1)-C(10)-C(5)	120.17(17)
C(9)-C(10)-C(5)	115.33(16)
O(5)-C(11)-O(3)	122.75(17)
O(5)-C(11)-C(9)	121.99(17)
O(3)-C(11)-C(9)	115.23(17)
O(3)-C(12)-H(12A)	109.5
O(3)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
O(3)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
S(1)-C(13)-H(13A)	109.5
S(1)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
S(1)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
H(11A)-O(11)-H(11B)	113(3)
H(12D)-O(12)-H(12E)	113(3)
H(13D)-O(13)-H(13E)	113(4)

Symmetry transformations used to generate equivalent atoms:

	U11	U ²²	U ³³	U ²³	U ¹³	U ¹²
S (1)	43(1)	34(1)	33(1)	-7(1)	7(1)	-8(1)
O(1)	91(1)	30(1)	47(1)	-9(1)	4(1)	-4(1)
O(2)	79(1)	34(1)	42(1)	5(1)	2(1)	-17(1)
O(3)	67(1)	30(1)	42(1)	1(1)	0(1)	-16(1)
O(4)	63(1)	30(1)	48(1)	-8(1)	12(1)	-6(1)
O(5)	82(1)	39(1)	38(1)	-3(1)	11(1)	-14(1)
N(1)	45(1)	26(1)	31(1)	-5(1)	5(1)	-9(1)
C(1)	39(1)	39(1)	37(1)	-2(1)	-1(1)	-14(1)
C(2)	44(1)	56(1)	34(1)	4(1)	1(1)	-16(1)
C(3)	42(1)	64(2)	31(1)	-10(1)	5(1)	-9(1)
C(4)	43(1)	43(1)	37(1)	-14(1)	2(1)	-4(1)
C(5)	34(1)	37(1)	32(1)	-7(1)	-1(1)	-7(1)
C(6)	32(1)	34(1)	30(1)	-4(1)	1(1)	-10(1)
C(7)	94(2)	44(1)	51(1)	15(1)	-9(1)	-28(1)
C(8)	35(1)	30(1)	30(1)	-2(1)	2(1)	-9(1)
C(9)	38(1)	30(1)	34(1)	-4(1)	0(1)	-8(1)
C(10)	41(1)	31(1)	38(1)	-7(1)	-2(1)	-5(1)
C(11)	42(1)	31(1)	39(1)	-1(1)	-3(1)	-9(1)
C(12)	82(2)	39(1)	53(1)	12(1)	-4(1)	-23(1)
C(13)	54(1)	67(2)	43(1)	-18(1)	1(1)	-17(1)
O(11)	104(2)	44(1)	64(1)	-8(1)	-27(1)	-1(1)
O(12)	63(1)	105(2)	47(1)	-7(1)	3(1)	8(1)
O(13)	96(2)	94(2)	57(1)	8(1)	8(1)	-40(1)

Table S26. Anisotropic displacement parameters (Å²x 10³) for **6c**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(1A)	1304	2126	1410	41
H(2A)	2990	2293	-2427	53
H(3A)	3697	-73	-2839	55
H(4B)	3545	-1822	-1419	50
H(7A)	1461	5321	-796	93
H(7B)	952	4446	-1782	93
H(7C)	3079	4379	-1524	93
H(12A)	1269	-5242	3590	86
H(12B)	-121	-3929	4089	86
H(12C)	2014	-4298	4428	86
H(13A)	2954	33	4509	80
H(13B)	2286	1612	4820	80
H(13C)	3451	1245	3654	80
H(11A)	4420(60)	3960(40)	930(20)	147(19)
H(11B)	3480(50)	5160(40)	1530(30)	114(12)
H(12D)	5200(40)	3850(30)	2970(20)	111(13)
H(12E)	7060(30)	3380(30)	3390(30)	94(10)
H(13D)	4770(50)	3280(40)	5160(20)	126(14)
H(13E)	4580(60)	3960(40)	6240(30)	159(19)

Table S27. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10 ³) for**6c.**

Table S28.	Torsion angles	[°] for 6c .
------------	----------------	---------------------

C(7)-O(2)-C(1)-C(2)	2.8(3)
C(7)-O(2)-C(1)-C(6)	-177.85(17)
O(2)-C(1)-C(2)-C(3)	-179.74(18)
C(6)-C(1)-C(2)-C(3)	0.9(3)
C(1)-C(2)-C(3)-C(4)	-1.3(3)
C(2)-C(3)-C(4)-C(5)	0.5(3)
C(3)-C(4)-C(5)-C(6)	0.7(3)
C(3)-C(4)-C(5)-C(10)	-179.28(17)
C(8)-N(1)-C(6)-C(5)	-0.6(3)
C(8)-N(1)-C(6)-C(1)	178.59(15)
C(4)-C(5)-C(6)-N(1)	178.09(16)
C(10)-C(5)-C(6)-N(1)	-1.9(3)
C(4)-C(5)-C(6)-C(1)	-1.1(3)
C(10)-C(5)-C(6)-C(1)	178.88(16)
O(2)-C(1)-C(6)-N(1)	1.7(2)
C(2)-C(1)-C(6)-N(1)	-178.93(16)
O(2)-C(1)-C(6)-C(5)	-179.13(16)
C(2)-C(1)-C(6)-C(5)	0.3(3)
C(6)-N(1)-C(8)-C(9)	1.5(3)
C(6)-N(1)-C(8)-S(1)	-174.48(13)
O(4)-S(1)-C(8)-N(1)	7.21(15)
C(13)-S(1)-C(8)-N(1)	-98.70(15)
O(4)-S(1)-C(8)-C(9)	-168.68(16)
C(13)-S(1)-C(8)-C(9)	85.41(18)
N(1)-C(8)-C(9)-C(10)	0.2(3)
S(1)-C(8)-C(9)-C(10)	175.58(13)
N(1)-C(8)-C(9)-C(11)	-177.27(16)
S(1)-C(8)-C(9)-C(11)	-1.9(2)
C(8)-C(9)-C(10)-O(1)	176.90(18)
C(11)-C(9)-C(10)-O(1)	-5.9(3)
C(8)-C(9)-C(10)-C(5)	-2.6(3)
C(11)-C(9)-C(10)-C(5)	174.67(16)
C(6)-C(5)-C(10)-O(1)	-176.07(18)
C(4)-C(5)-C(10)-O(1)	3.9(3)
C(6)-C(5)-C(10)-C(9)	3.4(3)

C(4)-C(5)-C(10)-C(9)	-176.59(17)
C(12)-O(3)-C(11)-O(5)	0.6(3)
C(12)-O(3)-C(11)-C(9)	-177.13(17)
C(8)-C(9)-C(11)-O(5)	-9.7(3)
C(10)-C(9)-C(11)-O(5)	172.96(18)
C(8)-C(9)-C(11)-O(3)	167.99(16)
C(10)-C(9)-C(11)-O(3)	-9.3(3)

Symmetry transformations used to generate equivalent atoms:

Table S29. DFT Calculations of Enol and Keto forms^[a]

Compounds	OH O OH O N S 4b	OH O N S O 4d					O HN OH O HN OH Ivacaftor
3D Structure (Keto Form)	x the	the second	the second	÷ →→→ ×	Jan K	345th	
3D Structure (Enol Form)	atoger	Jon a	÷,	2000	July .	3 cr	the second
Total Energy ^{b)} (Keto Form)	-1257.104712	-1257.105067	-1029.223871	-1332.283898	-1332.293932	-1446.809791	-1266.729149
Total Energy (Enol Form)	-1257.121779	-1257.116410	-1029.220480	-1332.281645	-1332.283839	-1446.801635	-1266.724704
Relative Energy ^{c)} (E _{keto} – E _{enol})	10.71	7.12	-2.13	-1.41	-6.33	-5.12	-2.79

[a] Calculated with DFT methods using Jaguar Tool. (DFT Method; B3LYP, Basis set; $6-31+G^{**}$), Jaguar Version 9.9, release 11; [b] Energy unit ; Hartrees (1Hartrees = 627.509 kcal); [c] Engergy unit ; kcal/mol, The negative energy value means that keto form is more stable.

Table S30. H-bonding Energy Calculations of Enol forms^[a]

Compounds	4b	4d	5d	6a	6с	6d	Ivacaftor
3D Structure (Hydrogen bond)	atter	J.	54 5	Zoge	July 1	J.C.	the second
3D Structure (Non-hydrogen bond)	and the second s	July 1	у с	June 1	July 1		the second
Total Energy ^{b)} (H-bond)	-1257.121779	-1257.116410	-1029.220480	-1332.281645	-1332.283839	-1446.801635	-1266.724704
Total Energy (Non H-bond)	-1257.098347	-1257.094672	-	-1332.264637	-1332.275750	-1446.797728	-1266.702562
$\begin{array}{c} Hydrogen \ Bond \\ Energy^{c)} \\ (E_{HB}-E_{NHB}) \end{array}$	-14.70	-13.64	-	-3.70	-12.05	-2.45	-13.89

[a] Calculated with DFT methods using Jaguar Tool. (DFT Method; B3LYP, Basis set; 6-31+G**), Jaguar Version 9.9, release 11; [b] Energy unit ; Hartrees (1Hartrees = 627.509 kcal); [c] Engergy unit ; kcal/mol, E_{HB}; Hydrogen Bonding, E_{NHB}; Non-hydrogen Bonding.

Table S31. H-bonding Energy Calculations of Keto forms^[a]

Compounds	4d	ба	60	6d
3D Structure (Keto Form)	Jose Land	2000 to	₹	Just,
Hydrogen Bond Energy	0.26	4.19	2.5	2.61

[a] Calculated with DFT methods using Jaguar Tool. (DFT Method; B3LYP, Basis set; $6-31+G^{**}$), Jaguar Version 9.9, release 11; [b] Energy unit ; Hartrees (1Hartrees = 627.509 kcal), kcal/mol, Unit; kcal/mol, The Molecular Tailoring Approach (MTA) for EHB Calculation method was used for calculating H-bonding Energy of Keto forms.

Figure S13. The Molecular Tailoring Approach (MTA) for Hydrogen-bonding Energy Calculation²

The Molecular Tailoring Approach (MTA) for E_{HB} Calculation

² D. Rusinska-Roszak, *Molecules* **2017**, *22*, 481.