Supporting information

Cobalt-Catalyzed Radical Cyclization of Isocyanides
 Forming Phenanthridine Derivatives

Xiangyu Liu, ${ }^{\text {a }}$ Chengjuan Wu,* ${ }^{\mathrm{a}}$ Jing Zhang, ${ }^{\text {a }}$ Yihan Shi, ${ }^{a}$ Shengnan Zhang, ${ }^{\text {a }}$ Yan Geng, ${ }^{\text {b }}$ Chen-Ho Tung ${ }^{\text {a }}$ and Wenguang Wang* ${ }^{\text {a }}$
${ }^{\text {a }}$ Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
${ }^{\mathrm{b}}$ College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
Email: wuchengjuan@sdu.edu.cn; wwg@sdu.edu.cn

Table of Contents

1. General procedure S2
2. Experimental section S3-S12
2.1 Synthesis of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Co}\right]$ S3
2.2 Survey of reaction conditions. S4
2.3 The amplified reaction. S5
2.4 Photophysical properties S6-S7
2.5 Reaction of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Co}\right]$ with 2-bromopropanoate. S8-S9
2.6 Reaction of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Co}-\mathrm{Br}\right]$ with NaBPh_{4} S10-S11
2.7 Characterization data of cyclic voltammogram S12
3. Experimental details and characterization data of the products. S13-S29
4. Copies of ${ }^{1} \mathrm{H}$-NMR, ${ }^{19} \mathrm{~F}$-NMR and ${ }^{13} \mathrm{C}$ - NMR spectra of products S30-S72
5. Crystal data and structure refinement parameters S73-S77
6. References S78

1. General procedure

All reactions were performed in flame-dried glassware using standard Schlenk techniques or in a glovebox under a nitrogen atmosphere. Acetonitrile, hexane, DCE and tetrahydrofuran were dried and degassed by Solvent Purification Systems. All reagents were purchased from commercial suppliers, unless specified otherwise, or prepared as described in the literature. All solid heteroarenes were dried under vacuum and liquid heteroarenes were distilled prior to use. The 2-(diphenylphosphino)benzenethiol $\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{SH}\right)$ and $[\mathrm{Cp} * \mathrm{CoCl}]_{2}$ were prepared according to published procedures. ${ }^{1}$ NMR spectra were recorded on Bruker 500 (500 MHz for ${ }^{1} \mathrm{H}, 126 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 471 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}$) spectrometers. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were referenced to residual solvent resonances and are reported relative to tetramethylsilane. High resolution mass spectra (MS) were obtained using a LC/MSD TOF spectrometer system with electrospray ionization (ESI). UV-vis absorption spectra were recorded with an Agilent Cary 60 spectrophotometer. Steady-state emission spectra were recorded using a Shimadzu RF-6000 spectrofluorimeter.

2. Experimental section

2.1 Synthesis of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Co}\right]$

$\mathbf{P h}_{2} \mathbf{P C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{S N a}$. $\mathrm{NaH}(0.09 \mathrm{~g}, 3.74 \mathrm{mmol})$ was added to a THF solution of $\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{SH}(1.0 \mathrm{~g}, 3.40 \mathrm{mmol})$ under nitrogen. The mixture was stirred at room temperature for 1 h and filtered through a short pad of celite. The filtrate was concentrated in vacuo and the product was recrystallized in THF/hexane to give $\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{SNa}$ as white solid ($1.02 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{HNMR}$ (500 MHz , acetone- d_{6}): $\delta 7.37$ $(\mathrm{m}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 10 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{~m}, 1 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR: $\delta-15.4$.

Scheme S1. Synthesis of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Co}\right]$.
[$\left.\mathbf{C p} *\left(\mathbf{P h}_{2} \mathbf{P C}_{6} \mathbf{H}_{4} \mathbf{S}\right) \mathbf{C o}\right]$, 1. $\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{SNa}(312 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 10 mL THF was added to the solution of $[\mathrm{Cp} * \mathrm{CoCl}]_{2}(230 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 30 mL THF, the color turned to red brown immediately. After stirring for 3 h at room temperature, the volatile was removed under vacuum, and the residue was extracted with hexane (100 $\mathrm{mL})$. The resulting hexane solution was concentrated, cooled at $-30{ }^{\circ} \mathrm{C}$ to give [Cp* $\left.\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Co}\right]$ (397 mg , yield 80%) as red solid. MS (ESI) Calcd for $\mathrm{C}_{28} \mathrm{H}_{29}$ PSCo [M]: 487.1060; Found: 487.1038. Magnetic susceptibility ($\mu_{\text {eff }}, \mathrm{C}_{6} \mathrm{D}_{6}, 23$ $\left.{ }^{\circ} \mathrm{C}\right): 1.92 \mu \mathrm{~B}$.

2.2 Survey of reaction conditions

Table S1. Optimization of reaction conditions ${ }^{a}$

Entry	Additive	Base	Solvent	Yield/\% ${ }^{\text {b }}$
1	NO	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	MeCN	23\%
2	NO	$\mathrm{K}_{2} \mathrm{CO}_{3}$	MeCN	42\%
3	NO	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	MeCN	60\%
4	NO	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	57\%
5	NO	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DCE	38\%
6	NaBF_{4}	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	MeCN	58\%
7	KPF_{6}	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	MeCN	62\%
8	NaBPh_{4}	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	MeCN	90\%
$9^{\text {c }}$	NO	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	MeCN	0\%
$10^{\text {c }}$	NaBPh_{4}	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	MeCN	0\%

${ }^{\text {a }}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, 2a (0.4 mmol), $\mathbf{1}$ ($3 \% \mathrm{~mol}$), base (0.3 mmol), $\mathrm{MeCN}(2 \mathrm{~mL})$, rt. ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ Without 1.

2.3 The amplified reaction

Scheme S2. The amplified reaction for the synthesis of $\mathbf{6 e}$.
According to general procedure, isocyanide 4 e ($660 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv), $\mathrm{CH}_{3} \mathrm{CHBrCO}_{2} \mathrm{Et}\left(720 \mathrm{mg}, 4 \mathrm{mmol}\right.$, 2 equiv), $\mathrm{NaBPh}_{4}(70.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $1(30 \mathrm{mg}, 0.06 \mathrm{mmol}, 3 \mathrm{~mol} \%), \mathrm{CS}_{2} \mathrm{CO}_{3}(975 \mathrm{mg}, 3 \mathrm{mmol}, 1.5$ equiv), were added into $20 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$. After stirring for 12 h , the reaction mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel to afford the desired product phenanthridines ($523 \mathrm{mg}, 61 \%$) as a yellow solid (petroleum ether: $\mathrm{EtOAc}=30: 1$).

2.4 Photophysical properties

Figure S1. Absorption spectra of 5a-5e $\left(10^{-5} \mathbf{M}\right)$ in DCM.

Figure S2. Absorption spectra of 7a-7e $\left(10^{-5} \mathrm{M}\right)$ in DCM.

Figure S3. Absorption (black line) and fluorescence (red line) spectra of 3a' $\left(10^{-5} \mathrm{M}\right)$ and 7a-7e $\left(10^{-5} \mathrm{M}\right)$ in the presence of $\mathrm{HBF}_{4}\left(3 * 10^{-5} \mathrm{M}\right)$ in DCM with $\lambda_{\mathrm{ex}}=365 \mathrm{~nm}$.

2.5 Reaction of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Co}\right]$ with 2-bromopropanoate

Scheme S3. Stoichiometric reaction of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Co}\right]$ with 2-bromopropanoate.

In a glovebox under an N_{2} atmosphere, a scintillation vial (with a magnetic stir bar) was charged with ($180 \mathrm{mg}, 1 \mathrm{mmol}$) of ethyl 2-bromopropanoate, and a stoichiometric amount of $\left[\mathbf{C p} *\left(\mathbf{P h}_{\mathbf{2}} \mathbf{P C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathbf{S}\right) \mathbf{C o}\right]$ in 20 mL acetonitrile. The color turned to purple immediately. After stirring for 3 h at room temperature, the volatile was removed under vacuum, the purple solid was collected by filtration, washed with dried hexane (100 mL) in vacuo to give product $\left[\mathbf{C p} *\left(\mathbf{P h}_{\mathbf{2}} \mathbf{P C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathbf{S}\right) \mathbf{C o B r}\right]$. Yield: ($540 \mathrm{mg}, 0.095$ $\mathrm{mmol}, 95 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.48(\mathrm{~m}, 6 \mathrm{H})$, $7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 15 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.12$ (s). MS (ESI) Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{PS}$ Co [M $\left.{ }^{+}\right]$: 487.1060; Found: 487.1032.

Figure S4. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $[\mathbf{1 - B r}]$.

Figure S5. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectral copy of compound $[1-\mathrm{Br}]$.

2.6 Reaction of $\left[\mathbf{C p} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Co}-\mathrm{Br}\right]$ with NaBPh_{4}

Scheme S4. Reaction of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Co}-\mathrm{Br}\right]$ with NaBPh_{4}.

In a glovebox under an N_{2} atmosphere, a scintillation vial (with a magnetic stir bar) was charged with $\left[\mathbf{C p} *\left(\mathbf{P h}_{2} \mathbf{P C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{S}\right) \mathbf{C o B r}\right](57 \mathrm{mg} 0.1 \mathrm{mmol})$ and a stoichiometric amount of NaBPh_{4} (34 mg 0.1 mmol) in 20 mL acetonitrile. The color turned from purple to brown immediately. After stirring for 1 h at room temperature, the volatile was removed under vacuum. The brown solid was collected by filtration, washed with dried hexane (20 mL) in vacuo to give product $\left[\mathbf{C p} *\left(\mathbf{P h}_{2} \mathbf{P C}_{6} \mathbf{H}_{4} \mathbf{S}\right) \mathbf{C o}\right][\mathbf{B P h} 4$. Yield: ($75 \mathrm{mg}, 0.094 \mathrm{mmol}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.46(\mathrm{~m}, 12 \mathrm{H}$), 7.45-7.32 (br, 8H), 7.12-7.07 (m, 1H), 7.01-6.94 (m, 7H), 6.90-6.65 (m, 6H), 1.21 (s, 15 H). ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 64.95$ (s). MS (ESI) Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{PSCo}\left[\mathrm{M}^{+}\right]$: 487.1060; Found: 487.1094.

Figure S6. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\left[\mathbf{1}-\mathbf{B P h}_{4}\right]$.
$\stackrel{\text { ® }}{\substack{0 \\ \hline \\ \hline}}$

Figure S7. The ${ }^{31} \mathrm{P}$-NMR spectral copy of compound $\left[\mathbf{1}-\mathrm{BPh}_{4}\right]$.

2.7 Characterization data of cyclic voltammogram.

Figure S8. Cyclic voltammogram of [1-Br]. Conditions: 1 mM sample in THF, 0.1 M $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$; Scan rate: $200 \mathrm{mV} \mathrm{s}^{-1}$. Potential vs Fc ${ }^{+/ 0 .}$ Results: $E_{1 / 2}[\mathbf{1 - B r}]^{0 /-}=-1.263 \mathrm{~V}$.

Figure S9. Cyclic voltammogram of [1-BPh ${ }_{4}$]. Conditions: 1 mM sample in THF, 0.1 M $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$; Scan rate: 200 mV s . Potential vs $\mathrm{Fc}^{+/ 0 .}$ Results: $E_{1 / 2}\left[\mathbf{1}-\mathbf{B P h}_{4}\right]^{+/ 0}=$ -0.795 V .

3. Experimental details and characterization data of the products

General Procedure for the Synthesis of Isocyanide Substrates (4a-4e). All isonitriles were prepared according to reported methods. ${ }^{2}$

2-(2-Isocyanophenyl)naphthalene (4a).

4a

Synthesized from 2-iodoaniline (2 mmol) and naphthalen-2-ylboronic (2.4 mmol) acid and isolated as white solid ($368 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.01-7.96 (m, 2H), 7.94-7.91 (m, 2H), $7.66(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}$, $4 \mathrm{H}), 7.50(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.80,138.77,134.42,133.18,132.92,130.79,129.51,128.31,128.25$, $128.18,128.15,127.86,127.69,126.59,126.56,126.43,124.81$. MS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$230.0970; Found: 230.0961.

1-Isocyano-2,2'-binaphthalene (4b).

4b

Synthesized from 2-bromonaphthalen-1-amine (2 mmol) and naphthalen-2-ylboronic acid (2.4 mmol) and isolated as white solid (414 mg, 74\% yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 3 \mathrm{H})$, 7.80-7.71 (m, 2H), 7.68-7.61 (m, 2H), 7.59-7.52 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 169.99,136.88,134.93,133.24,132.98,132.64,129.55,128.84,128.54,128.43$, $128.35,128.30,128.20,127.77,127.54,127.34,126.85,126.73,126.52,123.53 . \operatorname{MS}$ (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$280.1126; Found: 280.1134 .

1-Isocyano-1,2'-binaphthalene (4c).

Synthesized from 1-bromonaphthalen-2-amine (2 mmol) and naphthalen-2-ylboronic acid (2.4 mmol) and isolated as white solid ($380 \mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.66$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.16, 137.47, 133.23, 133.09, 133.04, 132.54, 132.28, 129.44, 129.06, 128.35, 128.20, 128.11, 127.85, 127.57, 127.46, 127.39, 127.08, 126.63, 126.48, 123.60, 122.82. MS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 280.1126; Found: 280.1102.

9-(2-Isocyanophenyl) phenanthrene (4d).

4d

Synthesized from 2-iodoaniline (2 mmol) and phenanthren-9-ylboronic (2.4 mmol) acid and isolated as white solid ($431 \mathrm{mg}, 77 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.46(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.46,138.08,133.64,131.75,131.17,130.55,130.52$, 130.37, 129.23, 128.86, 128.63, 128.32, 127.21, 127.19, 126.93, 126.80, 126.77, 126.07, 123.09, 122.63. MS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 280.1126; Found: 280.1160.

9-(1-Isocyanonaphthalen-2-yl)phenanthrene (4e).

$4 e$

Synthesized from 2-bromonaphthalen-1-amine (2 mmol) and phenanthren-9-ylboronic acid (2.4 mmol) and isolated as white solid ($370 \mathrm{mg}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.84(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.79$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.34$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02$ (dd, $J=8.1,5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 5 \mathrm{H}), 7.63-7.47(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.69,136.23,134.00,132.89,131.18,130.61,130.50$, 130.31, 129.10, 128.92, 128.57, 128.41, 128.29, 128.27, 127.47, 127.24, 126.97, 126.82, 126.79, 126.19, 123.43, 123.13, 122.64. MS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 330.1283; Found: 330.1283.

General Procedure for the Synthesis of Phenanthridines (3a-31). A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with $1(3 \mathrm{mg}, 0.01 \mathrm{mmol}, 3$ $\left.\mathrm{mol}^{2}\right), \mathrm{NaBPh}_{4}(14.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in a glovebox, and this was followed by addition of $\mathrm{CS}_{2} \mathrm{CO}_{3}$ ($98 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.5$ equiv). The isocyanide 2 ($36 \mathrm{mg}, 0.2$ mmol, 1 equiv), R-X (0.4 mmol , 2 equiv) and anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ were then added. After stirring for 12 h , the reaction mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel to afford the desired product phenanthridines.

Ethyl 2-(phenanthridin-6-yl)propanoate (3a).

3a

Yellow solid, $50 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.58-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ - $7.81(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.62(\mathrm{~m}, 3 \mathrm{H}), 4.74(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.11(\mathrm{~m}, 2 \mathrm{H}), 1.79$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.66$, $159.48,143.52,133.23,130.28,130.17,128.53,127.33,126.78,125.56,124.64$, 123.68, 122.63, 121.80, 60.90, 45.54, 16.39, 14.09. MS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 280.1338$; Found: 280.1335.

Ethyl 2-methyl-2-(phenanthridin-6-yl)propanoate (3b).

3b

Yellow liquid, $45 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.55$ (dd, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (dd, $J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (d, $J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.07$,
$161.22,143.06,133.49,130.35,129.68,128.45,126.81,126.05,124.30,123.79$, 122.81, 121.75, 60.98, 49.93, 26.56, 13.85. MS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 294.1489; Found: 294.1492.

2-(phenanthridin-6-yl)pentanoate (3c).

Yellow liquid, $47 \mathrm{mg}, 77 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.53$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ $-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38-3.92(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.88,158.45,143.49$, $133.14,130.21,130.20,128.45,127.27,126.71,125.54,125.01,123.56,122.53$, 121.73, 60.74, 50.87, 33.28, 21.24, 14.06, 14.01. MS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 308.1651; Found: 308.1639.

Ethyl 2,2-difluoro-2-(phenanthridin-6-yl)acetate (3d).

3d

White solid, $41 \mathrm{mg}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.58-8.56$ (m, 2H), 8.12 (dd, $J=5.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.87$ (m, 1H), $7.83-$ $7.68(\mathrm{~m}, 3 \mathrm{H}), 4.57(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $(471 \mathrm{MHz}$, CDCl_{3}) δ-98.78 (s). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.66(\mathrm{t}, J=30.9 \mathrm{~Hz}$), $150.19(\mathrm{t}$, $J=29.0 \mathrm{~Hz}), 141.75,133.87,131.20,130.86,128.99,128.88,127.86,126.27(\mathrm{t}, J=$ $4.9 \mathrm{~Hz}), 124.84,122.49,122.31,122.03,117.84,115.82,113.80,62.98,14.08 . \mathrm{MS}$ (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 302.0993$; Found: 302.0990.

Butyl 2,2-difluoro-2-(phenanthridin-6-yl)acetate (3e).

3e

Yellow liquid, $48 \mathrm{mg}, 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.59-8.50(\mathrm{~m}, 2 \mathrm{H}), 8.14-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.66(\mathrm{~m}$, $3 \mathrm{H}), 4.53(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}$) ${ }^{19}{ }^{1} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-98.39(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $163.75(\mathrm{t}, J=30.8 \mathrm{~Hz}), 150.14(\mathrm{t}, J=29.0 \mathrm{~Hz}), 141.68$, 133.80, 131.14, 130.74, 128.92, 128.81, 127.7, $126.19(\mathrm{t}, J=4.9 \mathrm{~Hz}), 124.77,122.43,122.25(\mathrm{t}, J=2.0 \mathrm{~Hz})$, 121.98, 117.98, 115.96, 113.94, 66.70, 30.39, 18.98, 13.55. MS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 330.1306$; Found: 330.1307.

6-(Perfluorobutyl)phenanthridine (3f).

3f

Yellow solid, $65 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.64-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.90(\mathrm{~m}$, $1 \mathrm{H}), 7.85-7.69(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.11--85.55(\mathrm{~m}, 3 \mathrm{~F})$, $-104.89-104.95$ (m, 2F), -119.74--119.82 (m, 2F), -122.62--123.69 (m, 2F). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.65(\mathrm{t}, J=25.0 \mathrm{~Hz}$), 141.72, 133.99, 131.18, 131.16, 129.38, 129.28, 127.97, 126.13 (t, $J=6.8 \mathrm{~Hz}$), 124.80, 122.94, 122.60, 122.00, 120 100 (m). MS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{9} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 398.0591; Found: 398.0586.

6-(Perfluorohexyl)phenanthridine (3g).

3 g

White solid, 90 mg , 91% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.50-8.40(\mathrm{~m}, 2 \mathrm{H}), 8.24(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.77-$ -80.81 (m, 3F), -104.91 (t, $J=13.8 \mathrm{~Hz}, 2 \mathrm{~F}),-118.99-119.08$ (m, 2F), -119.89 ($\mathrm{s}, 2 \mathrm{~F}$), $-122.48--123.36(\mathrm{~m}, 2 \mathrm{~F}),-125.58--126.41(\mathrm{~m}, 2 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $146.63(\mathrm{t}, \mathrm{J}=24.8 \mathrm{~Hz})$, 141.70, 133.88, 131.10, 130.98, 129.23, 129.14, 127.84, $126.02(\mathrm{t}, J=6.9 \mathrm{~Hz}), 124.69,122.92,122.43,121.84,120-100(\mathrm{~m})$. MS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{9} \mathrm{~F}_{13} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 498.0527; Found: 498.0532.

6-(Perfluorooctyl)phenanthridine (3h).

3h

Grey solid, $108 \mathrm{mg}, 93 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.67-8.56(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.38-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.90(\mathrm{~m}$, $1 \mathrm{H}), 7.87-7.69(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.78(\mathrm{t}, J=10.6 \mathrm{~Hz}, 3 \mathrm{~F})$, $-102.11--108.81(m, 2 F),-118.96--119.04(m, 2 F),-119.71(\mathrm{~s}, 2 \mathrm{~F}),-121.17-$ $-122.22(\mathrm{~m}, 4 \mathrm{~F}),-122.25--123.49(\mathrm{~m}, 2 \mathrm{~F}),-125.59--126.73(\mathrm{~m}, 2 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.68(\mathrm{t}, J=24.5 \mathrm{~Hz}), 141.80,134.01,131.23$, 131.15, 129.38, $129.29,127.98,126.19(\mathrm{t}, J=6.9 \mathrm{~Hz}), 124.82,123.04,122.60,122.00,120-100(\mathrm{~m})$. MS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{9} \mathrm{~F}_{17} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 598.0464; Found: 598.0465.

6-(Trichloromethyl)phenanthridine (3i).

$3 i$

White solid, $44 \mathrm{mg}, 74 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.64-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.73(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 152.85, 140.80, $134.92,131.26,130.72,129.24,129.06,128.42,126.71,125.02,122.81,121.87$, 120.71, 98.45. MS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$295.9801; Found 295.9800.

Ethyl 2-(8-methoxyphenanthridin-6-yl)propanoate (3j).

3j

White solid, $57 \mathrm{mg}, 92 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.43$ (dd, $J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 2 \mathrm{H}), 7.56$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-$ $4.13(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.72, 158.64, 158.35, 142.68, 130.09, 127.50, 126.80, $125.91,124.24,123.76,121.28,120.75,105.76,60.90,55.43,45.89,16.09,14.11$. MS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 310.1443$; Found: 310.1443 .

Ethyl 2-(8-chlorophenanthridin-6-yl)propanoate (3k).

3k

Yellow solid, $56 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.44$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.19 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (dd, $J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.77-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.13(\mathrm{~m}, 2 \mathrm{H}), 1.78$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.21$, $158.21,143.41,133.30,131.55,130.77,130.30,128.84,127.18,125.61,124.91$, $124.35,123.02,121.65,61.01,45.12,16.28,14.08$. MS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNO}_{2}$
$\left[\mathrm{M}+\mathrm{H}^{+}\right]: 314.0948$; Found: 314.0952.

Methyl 6-(1-ethoxy-1-oxopropan-2-yl)phenanthridine-8-carboxylate (3l).

31

Yellow solid, $55 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.96(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 8.16 (dd, $J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.31,166.47,159.98,144.34,136.29$, $130.39,130.14,129.74,128.74,127.95,127.21,124.22,123.04,123.01,122.43$, 61.03, 52.52, 44.98, 16.54, 14.10. MS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 338.1392$; Found: 338.1394.

General Procedure for the Synthesis of Phenanthridines (5a-5e), (6a-6e). A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with $\mathbf{1}$ ($3 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 3 \mathrm{~mol} \%), \mathrm{NaBPh}_{4}(14.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in a glovebox, and this was followed by addition of $\mathrm{CS}_{2} \mathrm{CO}_{3}$ ($98 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.5$ equiv). The isocyanide $\mathbf{4 a - 4 e}$ (0.2 mmol , 1 equiv), $\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{I}$ or $\mathrm{CH}_{3} \mathrm{CHBrCO}_{2} \mathrm{Et}$ (0.4 mmol , 2 equiv) and anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ were then added. After stirring for 12 h , the reaction mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel to afford the desired product phenanthridines.

5-(Perfluorobutyl)benzo[i]phenanthridine (5a).

5a

Yellow solid, $77 \mathrm{mg}, 86 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.73-8.53(\mathrm{~m}, 2 \mathrm{H}), 8.30-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=$ 7.8, 1.4 Hz, 1H), $7.87-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.96 \mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-81.37(\mathrm{t}, J=11.5 \mathrm{~Hz}, 3 \mathrm{~F}),-99.29--102.86(\mathrm{~m}, 2 \mathrm{~F}),-115.87(\mathrm{~s}, 2 \mathrm{~F})$, $-120.60--120.67(\mathrm{~m}, 2 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.31(\mathrm{t}, J=29.6 \mathrm{~Hz}$), $141.63,135.31,133.15,132.96,130.15,129.59,129.30,128.47,128.37,128.33$, $128.24,128.14,127.50,127.23,124.56,122.60,120.54,119.74,119$ - 100 (m). MS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{~F}_{9} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 448.0748 ; found: 448.0739.

14-(Perfluorobutyl)dibenzo[c,i]phenanthridine (5b).

5b

Pale yellow solid, $74 \mathrm{mg}, 74 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.28(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-$
$7.81(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-81.16(\mathrm{t}, J=11.1$ $\mathrm{Hz}, 3 \mathrm{~F}),-100.95--101.47(\mathrm{~m}, 2 \mathrm{~F}),-115.75(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{~F}),-122.34-122.61(\mathrm{~m}$, 2F). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.61(\mathrm{t}, J=31.1 \mathrm{~Hz}), 139.66,135.38$, 133.27, 132.86, 132.76, 131.31, 130.41, 128.78 ($\mathrm{t}, J=11.2 \mathrm{~Hz}$), 128.42, 128.25, 127.89, $127.74,127.65,127.04,125.18,122.32,121.47,119.95,119.64,119-100$ (m). MS (ESI) Calcd for $\left[\mathrm{M}+\mathrm{H}^{+}\right]: \mathrm{C}_{25} \mathrm{H}_{13} \mathrm{~F} 9 \mathrm{~N}$: 498.0904; found: 498.0903.

5-(Perfluorobutyl)dibenzo[a,i]phenanthridine (5c).

White solid, $72 \mathrm{mg}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01-8.94(\mathrm{~m}, 1 \mathrm{H})$, $8.93-8.84(\mathrm{~m}, 2 \mathrm{H}), 8.12-8.02(\mathrm{~m}, 5 \mathrm{H}), 7.79-7.67(\mathrm{~m}, 4 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-81.35(\mathrm{t}, J=11.6 \mathrm{~Hz}, 3 \mathrm{~F}),-100.90--101.11(\mathrm{~m}, 2 \mathrm{~F}),-115.72(\mathrm{~s}, 2 \mathrm{~F})$, $-120.32-120.38(\mathrm{~m}, 2 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.97(\mathrm{t}, J=29.1 \mathrm{~Hz})$, $141.76,135.86,134.21,132.37,131.54,131.14,129.00$, 128.80, 128.74, 128.69, $128.65,128.56,127.90,127.86,127.66,127.14,127.01,126.95,124.86,122.71$, 122.40, 120-100 (m). MS (ESI) Calcd for $\left[\mathrm{M}+\mathrm{H}^{+}\right]: \mathrm{C}_{25} \mathrm{H}_{13} \mathrm{~F}_{9} \mathrm{~N}$: 498.0904; found: 498.0910 .

5-(Perfluorobutyl)dibenzo[i,k]phenanthridine (5d).

5d

White solid, $83 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78-8.65(\mathrm{~m}, 3 \mathrm{H})$, $8.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-$ $7.77(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.64(\mathrm{~m}, 4 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-81.08(\mathrm{t}, J=11.2$ $\mathrm{Hz}, 3 \mathrm{~F}),-100.93--101.27(\mathrm{~m}, 2 \mathrm{~F}),-116.82--116.89(\mathrm{~m}, 2 \mathrm{~F}),-121.62--125.67(\mathrm{~m}$,

2F). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.49(\mathrm{t}, J=28.3 \mathrm{~Hz}), 143.67,137.01,132.68$, $130.22,129.82,129.50,129.41,129.40,129.36,128.52,128.15,127.64,127.49$, 127.30, 127.23, 127.01, 123.95, 123.53, 123.19, 121.07, 120 - 100(m). MS (ESI) Calcd for $\left[\mathrm{M}+\mathrm{H}^{+}\right]: \mathrm{C}_{25} \mathrm{H}_{13} \mathrm{~F}_{9} \mathrm{~N}$: 498.0904; found: 498.0900 .

16-(Perfluorobutyl)tribenzo[c,i,k]phenanthridine (5e).

5e

White solid, $82 \mathrm{mg}, 75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.69(\mathrm{dd}, J=22.4,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.61-8.58(\mathrm{~m}, 2 \mathrm{H}), 8.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.99(\mathrm{dd}, J=15.1,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.64(\mathrm{~m}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-80.97(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}),-100.84(\mathrm{~s}, 2 \mathrm{~F}),-116.50(\mathrm{dd}, J=9.1,5.2 \mathrm{~Hz}, 2 \mathrm{~F}),-123.59$ $(\mathrm{td}, J=12.3,5.5 \mathrm{~Hz}, 2 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.21(\mathrm{t}, J=27.7 \mathrm{~Hz})$, $141.73,137.53,132.94,132.67,130.83,130.40,130.16,129.76(\mathrm{t}, J=9.0 \mathrm{~Hz})$, $129.42,129.27,128.62,128.33,127.84,127.79,127.46,127.41,127.14,127.07$, 125.40, 124.18, 123.99, 123.21, 122.58, 121.62, 120 - 100 (m). MS (ESI) Calcd for $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{C}_{29} \mathrm{H}_{15} \mathrm{~F} 9 \mathrm{~N}$: 548.1061; found: 548.1058.

Ethyl 2-(benzo[i]phenanthridin-5-yl)propanoate (6a).

6a

Pale yellow solid, $54 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.61(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{dd}, J=20.0,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77-7.65$ (m, 4H), 5.24 (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.06$ (m, 2H), 1.86 (d, $J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.57,159.02$, 144.02, 134.12, 133.27, 131.79, 129.62, 129.51, 129.08, 128.81, 127.09, 126.55,
123.16, 122.39, 121.84, 120.33, 60.72, 47.95, 17.78, 14.09. MS (ESI) Calcd for $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{2}$: 330.1494; Found: 330.1497.

Ethyl 2-(dibenzo[c,i]phenanthridin-14-yl)propanoate (6b).

6b

Pale yellow solid, $51 \mathrm{mg}, 67 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.43$ (d, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.66(\mathrm{~m}$, $4 \mathrm{H}), 5.33(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-3.97(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.69,157.62,141.13$, 134.37, 133.17, 133.00 , 131.62, $131.40,129.61,129.04,127.68,127.43$, 127.35, 127.15, 126.94, 126.62, 126.59, 125.12, 60.68, 48.24, 18.15, 14.10. MS (ESI) Calcd for $\left[\mathrm{M}+\mathrm{H}^{+}\right]$ $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{2}$: 380.1651; Found: 380.1648 .

Ethyl 2-(dibenzo[a,i]phenanthridin-5-yl)propanoate (6c).

Pale yellow solid, $46 \mathrm{mg}, 61 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.91(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.03(\mathrm{~m}, 5 \mathrm{H}), 7.77-7.64(\mathrm{~m}, 4 \mathrm{H}), 5.26(\mathrm{q}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.04(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.70,158.08,144.25,134.83,133.17,132.69$, $130.25,130.09,129.49,129.28,128.77,128.41,128.15,127.93,126.88,126.77$, 126.41, $126.38125 .40,123.48,119.95,60.76,47.47,17.88,14.10$. MS Calcd for $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{2}$: 380.1651; Found: 380.1646.

6d

Pale yellow solid, $55 \mathrm{mg}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.81(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.71-8.63(\mathrm{~m}, 3 \mathrm{H}), 8.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ - 7.63 (m, 5H), $7.60-7.57(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.15(\mathrm{~m}, 2 \mathrm{H}), 1.72$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.56$, $157.85,145.69,134.94,132.18,130.77,129.69,128.70$, 128.57, 128.52, 128.38, $128.13,127.35,127.26,127.04,127.02,125.95,123.65,122.37,121.89,60.84,46.87$, 18.44, 14.11. MS (ESI) Calcd for [M+ $\left.\mathrm{H}^{+}\right] \mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{2}: 380.1651$; Found: 380.1654 .

Ethyl 2-(tribenzo[c,i,k]phenanthridin-16-yl)propanoate (6e).

$6 e$

Pale yellow solid, $62 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.48(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.78$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.72-8.63(\mathrm{~m}, 3 \mathrm{H}), 8.60-8.58(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.64(\mathrm{~m}, 6 \mathrm{H}), 5.23(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31-4.18(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.76,156.07,143.07,135.71,132.94,132.28,131.05,130.91$, 130.15, 128.80, 128.58, 128.48, 127.87, 127.50, 127.38, 127.19, 127.17, 126.95, 126.86, 126.44, 125.45, 124.63, 123.74, 123.69, 122.73, 119.56, 60.82, 47.07, 18.87, 14.16. MS (ESI) Calcd for $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}_{2}: 430.1807$; Found: 430.1806 .

General Procedure for the Hydrolysis of Phenanthridine Esters. The compound 6 (0.1 mmol) was treated by $2 \mathrm{~mL} 60 \% \mathrm{KOH}$ in $\mathrm{MeOH}(2 \mathrm{~mL}$), and stirred at room temperature for 12 h . After saponification, the pH value was adjusted to $2 \sim 4$ with HCl , then the mixture was poured into a separatory funnel containing $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and 10 mL EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel to afford the desired product phenanthridine derivatives 7.

6-Ethylphenanthridine (3a').

3a'

White solid, $18 \mathrm{mg}, 86 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.52$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (dd, $J=8.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.82-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.54(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.10, 143.80, 132.88, 130.17, 129.58, 128.49, 127.16, 126.20, 126.14, 125.00, 123.62, 122.44, 121.85, 29.32, 13.45. MS (ESI) Calcd for $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}$: 208.1126; Found: 208.1126.

5-Ethylbenzo[i]phenanthridine (7a).

7a

Pale yellow solid, $24 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.65-8.52(\mathrm{~m}, 2 \mathrm{H}), 8.19(\mathrm{dd}, J=8.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{q}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.59,143.98$,
133.76, 133.25, 131.66, 130.23, 129.02, 128.94, 128.75, 127.21, 126.83, 126.30, 126.12, 123.21, 122.68, 122.45, 120.30, 34.56, 13.62. MS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]:$258.1283; Found: 258.1280.

14-Ethyldibenzo[c,i]phenanthridine (7b).

Pale yellow solid, $26 \mathrm{mg}, 86 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.96 \quad(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.68$ $(\mathrm{m}, 4 \mathrm{H}), 3.87(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 159.84,141.02,133.87,133.29,133.07,131.70,131.39,130.42,128.89$, $127.52,127.48,126.88,126.79,126.33,124.96,123.32,120.73,120.29,119.87$, 34.81, 13.49. MS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 308.1439; Found: 308.1440 .

5-Ethyldibenzo[a,i]phenanthridine (7c).

7c
Pale yellow solid, $28 \mathrm{mg}, 92 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.92-8.90(\mathrm{~m}$, $2 \mathrm{H}), 8.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.03(\mathrm{~m}, 4 \mathrm{H}), 7.77-$ $7.63(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 160.70,144.04,134.49,132.99,132.67,130.16,130.11,130.03,129.39$, 128.74, 128.32, 128.07, 127.66, 127.48, 126.65, 126.51, 126.34, 126.13, 125.41, 124.13, 119.90, 33.89, 13.83. MS (ESI) Calcd for $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}$: 308.1439; Found: 308.1442.

5-Ethyldibenzo[i,k]phenanthridine (7d).

7d

Pale yellow solid, $29 \mathrm{mg}, 93 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.69-8.57(\mathrm{~m}, 3 \mathrm{H}), 8.43(\mathrm{dd}, J=7.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{q}, J=7.4 \mathrm{~Hz}$, 2 H), $1.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.34,145.55,134.41$, $132.09,130.58,129.66,129.04,128.36,128.33,128.14,128.09,127.50,127.17$, $127.08,126.85,126.75,125.47,123.60,123.44,123.00,122.43,32.81,14.19$. MS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 308.1439; Found: 308.1432.

16-Ethyltribenzo[c,i,k]phenanthridine (7e).

7e

Pale yellow solid, $33 \mathrm{mg}, 92 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.76$ (dd, $J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{td}, J=7.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.59(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.51(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.60(\mathrm{~m}, 5 \mathrm{H}), 3.73(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.34,142.85,134.96,133.00,132.17$, $131.15,130.74,130.15,129.37,128.53,128.37,127.72,127.66,127.29,127.13$, 126.88, 126.77, 126.70, 125.82, 125.19, 124.85, 123.85, 123.70, 123.49, 119.44, 33.03, 14.07. MS (ESI) Calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 358.1596$; Found: 358.1597.

4. Copies of ${ }^{1} \mathrm{H}$-NMR, ${ }^{19} \mathrm{~F}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra of products

Figure S10. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{4 a}$.

Figure S11. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{4 a}$.

Figure S12. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{4 b}$.

Figure S13. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{4 b}$.

Figure S14. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{4 c}$.

Figure S15. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{4 c}$.

Figure S16. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{4 d}$.

Figure S17. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{4 d}$.

Figure S18. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{4 e}$.


```
|
```


Figure S19. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{4 e}$.

$3 a$

Figure S20. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound 3a.

Figure S21. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{3 a}$.

Figure S22. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{3 b}$.

$\begin{aligned} & \hat{\circ} \\ & \stackrel{\infty}{\sim} \end{aligned}$	$\underset{\stackrel{\sim}{\circ}}{ }$	 	$\stackrel{N}{N}$	$$	$\begin{gathered} \text { ๗ু } \\ \text { j} \end{gathered}$	$\stackrel{\circ}{\circ}$

Figure S23. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{3 b}$.

Figure S24. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{3 c}$.

$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \end{aligned}$	$\%$	
	¢	

Figure S25. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{3 c}$.

-

Figure S26. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound 3d.

Figure S27. The ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 d}$.

∞
©
i

$\stackrel{\infty}{\stackrel{\circ}{\dot{~}}}$

Figure S28. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 d}$.

Figure S29. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 e}$.

Figure S30. The ${ }^{19} \mathrm{~F}$-NMR spectral copy of compound $\mathbf{3 e}$.

Figure S31. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 e}$.

$3 f$

Figure S32. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 f}$.

3f

Figure S33. The ${ }^{19}$ F-NMR spectral copy of compound $\mathbf{3 f}$.

Figure S34. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{3 f}$.

Figure S35. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 g}$.

3g

Figure S36. The ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 g}$.

Figure S37. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 g}$.

3h

Figure S38. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 h}$.

Figure S39. The ${ }^{19}$ F-NMR spectral copy of compound $\mathbf{3 h}$.

が

Figure S40. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{3 h}$.

$3 i$

Figure S41. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 i}$.

$3 i$

Figure S42. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound 3 i.

3j

Figure $\mathbf{S 4 3}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 j}$.

3j

Figure S44. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{3 j}$.

3k

Figure $\mathbf{S 4 5}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 k}$.

$\underset{\sim}{\sim}$	$\begin{aligned} & \bar{j} \\ & \underset{\sim}{\infty} \end{aligned}$	

3k

Figure S46. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{3 k}$.

31

Figure S47. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 1}$.

후운

31

Figure S48. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound 31 .

Figure S49．The ${ }^{1} \mathrm{H}$－NMR spectral copy of compound 5a

ড়ি

	No¢
ら「ら	ஸi Mें

Figure S50．The ${ }^{19}$ F－NMR spectral copy of compound 5a．

5a

Figure S51. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{5 a}$

Figure S52. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{5 b}$.

Figure S53. The ${ }^{19}$ F-NMR spectral copy of compound $\mathbf{5 b}$.

5b

Figure S54. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{5 b}$.

Figure S55. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{5 c}$.
M

Figure S56. The ${ }^{19}$ F-NMR spectral copy of compound $\mathbf{5 c}$.

Figure S57. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{5 c}$.
$\stackrel{\bullet}{\square}$

Figure S58. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{5 d}$.

Figure S59. The ${ }^{19} \mathrm{~F}$-NMR spectral copy of compound $\mathbf{5 d}$.

5d

Figure S60. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{5 d}$.

5e

Figure S61. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{5 e}$.

5e

Figure S62. The ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectral copy of compound $\mathbf{5 e}$.

$5 e$

Figure S63. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{5 e}$.
$\stackrel{\text { äo }}{\sim}$

Figure S64. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{6 a}$.
N

$\stackrel{N}{\text { No }}$

6a

Figure S65. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{6 a}$.

Figure S66. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{6 b}$.

6b

Figure S67. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{6 b}$.

®®

Figure S68. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{6 c}$.

$\stackrel{\infty}{\infty} \stackrel{0}{\dot{j}}$

6d

Figure S70. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound $\mathbf{6 d}$.

Figure $\mathbf{S 7 1}$. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{6 d}$.

$6 e$

Figure S72. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{6 e}$.

$6 e$

Figure S73. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{6 e}$.

3a'

Figure S74. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{3 a}{ }^{\prime}$.

3a'

Figure $\mathbf{S 7 5}$. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound 3a'.

7a

Figure S76. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound 7a.
 !

Figure S77. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound 7a.

$\stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$

Figure S78. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound 7b.

7b

Figure S79. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{7 b}$.

Figure S80. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{7 c}$.

Figure S81. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound 7 c .

Figure S82. The ${ }^{1} \mathrm{H}$-NMR spectral copy of compound 7d.

Figure S83. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{7 d}$.

7e

Figure S84. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral copy of compound $\mathbf{7 e}$.

Figure S85. The ${ }^{13} \mathrm{C}$-NMR spectral copy of compound $\mathbf{7 e}$.

5. Crystal data and structure refinement parameters

Figure S86. X-ray structure of 1 showing 50% probability ellipsoids.

Table S2. Crystal data and structure refinement for $\mathbf{1}$.

Identification code	1
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{CoPS}$
Formula weight	487.47
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	9.0319(4)
b/Å	18.9034(9)
c/Å	14.4632(7)
$\alpha /^{\circ}$	90
$\beta /{ }^{\circ}$	96.640(2)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	2452.8(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.320
μ / mm^{-1}	0.863
F(000)	1020.0
Crystal size/mm ${ }^{3}$	$0.22 \times 0.24 \times 0.3 \mathrm{~mm}^{3}$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.710)$
2Θ range for data collection/ $/{ }^{\circ} 3.558$ to 49.994	
Index ranges	$-10 \leq \mathrm{h} \leq 10,-22 \leq \mathrm{k} \leq 19,-10 \leq 1 \leq 17$
Reflections collected	16180
Independent reflections	$4327\left[\mathrm{R}_{\text {int }}=0.0218, \mathrm{R}_{\text {sigma }}=0.0237\right]$
Data/restraints/parameters	4327/0/285
Goodness-of-fit on F^{2}	1.042
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0285, \mathrm{wR}_{2}=0.0704$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0352, \mathrm{wR}_{2}=0.0740$
Largest diff. peak/hole / e $\AA^{-3} 0.64 /-0.30$	

Figure S87. X-ray structure of $\mathbf{1 - B r}$ showing 50% probability ellipsoids.

Table S3. Crystal data and structure refinement for 1-Br.

Identification code	$1-\mathrm{Br}$
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{BrCoPS}$
Formula weight	567.38
Temperature/K	172.99(10)
Crystal system	orthorhombic
Space group	Pna 1_{1}
a/A	16.6717(15)
b/Å	10.051(2)
c/A	14.516(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ ${ }^{\text { }}$	2432.4(11)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.549
μ / mm^{-1}	2.515
$\mathrm{F}(000)$	1160.0
Crystal size/mm ${ }^{3}$	$0.31 \times 0.28 \times 0.42 \mathrm{~mm}^{3}$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 6.944$ to 50.67	
Index ranges	$-18 \leq \mathrm{h} \leq 20,-12 \leq \mathrm{k} \leq 12,-17 \leq 1 \leq 17$
Reflections collected	10560
Independent reflections	$3956\left[\mathrm{R}_{\text {int }}=0.0649, \mathrm{R}_{\text {sigma }}=0.0790\right]$
Data/restraints/parameters	3956/1/295
Goodness-of-fit on F^{2}	1.044
Final R indexes [I $>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0480, \mathrm{wR}_{2}=0.0977$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0588, \mathrm{wR}_{2}=0.1016$
Largest diff. peak/hole / e $\AA^{-3} 0.54 /-0.45$	
Flack parameter	0.024(19)

Figure S88. X-ray structure of 6a showing 50% probability ellipsoids.

Table S4. Crystal data and structure refinement for $\mathbf{6 a}$.

Identification code	6 a
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{2}$
Formula weight	328.37
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a/Å	12.7660(3)
b/Å	7.3952(2)
c/Å	18.2702(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	103.067(2)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	1680.16(7)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.298
μ / mm^{-1}	0.660
$\mathrm{F}(000)$	692.0
Crystal size/mm ${ }^{3}$	$0.3 \times 0.24 \times 0.3 \mathrm{~mm}^{3}$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 7.698$ to 134.134	
Index ranges	$-15 \leq \mathrm{h} \leq 15,-8 \leq \mathrm{k} \leq 8,-21 \leq 1 \leq 17$
Reflections collected	8706
Independent reflections	2978 [$\left.\mathrm{R}_{\text {int }}=0.0396, \mathrm{R}_{\text {sigma }}=0.0325\right]$
Data/restraints/parameters	2978/20/238
Goodness-of-fit on F^{2}	1.187
Final R indexes $[1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0707, \mathrm{wR}_{2}=0.1844$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0807, \mathrm{wR}_{2}=0.1974$
Largest diff. peak/hole / e \AA^{-3}	0.36/-0.71

Figure S89. X-ray structure of $\mathbf{6 c}$ showing 50% probability ellipsoids.

Table S5.Crystal data and structure refinement for $\mathbf{6 c}$.

Identification code	6 c
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{2}$
Formula weight	379.44
Temperature/K	173.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	7.4718(9)
b/Å	10.1700(13)
c/Å	13.6849(15)
$\alpha /{ }^{\circ}$	80.313(10)
$\beta /{ }^{\circ}$	76.092(10)
γ°	74.405(11)
Volume/A ${ }^{3}$	966.3(2)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.304
μ / mm^{-1}	0.082
F(000)	400.0
Crystal size/mm ${ }^{3}$	$0.36 \times 0.21 \times 0.32 \mathrm{~mm}^{3}$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ $/{ }^{7} 7.064$ to 49.992	
Index ranges	$-8 \leq \mathrm{h} \leq 8,-12 \leq \mathrm{k} \leq 12,-16 \leq 1 \leq 16$
Reflections collected	10401
Independent reflections	3378 [$\left.\mathrm{R}_{\text {int }}=0.0453, \mathrm{R}_{\text {sigma }}=0.0481\right]$
Data/restraints/parameters	3378/0/264
Goodness-of-fit on F^{2}	1.079
Final R indexes [$\mathrm{l}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0523, \mathrm{wR}_{2}=0.1325$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0706, \mathrm{wR}_{2}=0.1454$
Largest diff. peak/hole / e \AA^{-3}	0.36/-0.27

Figure S90. X-ray structure of $\mathbf{6 e}$ showing 50% probability ellipsoids.

Table S6. Crystal data and structure refinement for $\mathbf{6 e}$.

Identification code	6 e
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NO}_{2}$
Formula weight	429.49
Temperature/K	173.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	7.3192(6)
b/Å	11.4476(7)
c/Å	14.2878(11)
$\alpha /{ }^{\circ}$	109.541(6)
$\beta /{ }^{\circ}$	103.435(7)
$\gamma /{ }^{\circ}$	90.850(6)
Volume/A ${ }^{3}$	1091.70(15)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.307
μ / mm^{-1}	0.640
F(000)	452.0
Crystal size/ mm^{3}	$0.35 \times 0.28 \times 0.43 \mathrm{~mm}^{3}$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 8.238$ to 134.138	
Index ranges	$-8 \leq h \leq 7,-13 \leq \mathrm{k} \leq 13,-17 \leq 1 \leq 15$
Reflections collected	9483
Independent reflections	$3840\left[\mathrm{R}_{\text {int }}=0.0422, \mathrm{R}_{\text {sigma }}=0.0519\right]$
Data/restraints/parameters	3840/0/300
Goodness-of-fit on F^{2}	1.065
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0504, \mathrm{wR}_{2}=0.1343$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0655, \mathrm{wR}_{2}=0.1468$
Largest diff. peak/hole / e $\AA^{-3} 0.26 /-0.29$	

6. References

1. E. E. Bunel, L. Valle and J. M. Manriquez, Organometallics, 1985, 4, 1680.
2. H. Jiang, Y. Cheng, R. Wang, M. Zheng, Y. Zhang and S. Yu, Angew. Chem. Int. Ed., 2013, 52, 13289.
