Supporting information

Cobalt-Catalyzed Radical Cyclization of Isocyanides

Forming Phenanthridine Derivatives

Xiangyu Liu,^a Chengjuan Wu,^{*a} Jing Zhang,^a Yihan Shi,^a Shengnan Zhang,^a Yan Geng,^b Chen-Ho Tung^a and Wenguang Wang^{*a}

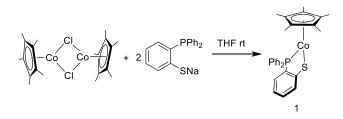
^aKey Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No.27 South Shanda Road, Jinan, 250100, P. R. China

^bCollege of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China

Email: wuchengjuan@sdu.edu.cn; wwg@sdu.edu.cn

Table of Contents

1. General procedure
2. Experimental section
2.1 Synthesis of [Cp*(Ph ₂ PC ₆ H ₄ S)Co]S3
2.2 Survey of reaction conditions
2.3 The amplified reaction
2.4 Photophysical properties
2.5 Reaction of [Cp*(Ph ₂ PC ₆ H ₄ S)Co] with 2-bromopropanoateS8-S9
2.6 Reaction of [Cp*(Ph ₂ PC ₆ H ₄ S)Co-Br] with NaBPh ₄ S10-S11
2.7 Characterization data of cyclic voltammogram
3. Experimental details and characterization data of the products
4. Copies of ¹ H-NMR, ¹⁹ F-NMR and ¹³ C- NMR spectra of productsS30-S72
5. Crystal data and structure refinement parameters
6. References


1. General procedure

All reactions were performed in flame-dried glassware using standard Schlenk techniques or in a glovebox under a nitrogen atmosphere. Acetonitrile, hexane, DCE and tetrahydrofuran were dried and degassed by Solvent Purification Systems. All reagents were purchased from commercial suppliers, unless specified otherwise, or prepared as described in the literature. All solid heteroarenes were dried under vacuum and liquid heteroarenes were distilled prior to The use. 2-(diphenylphosphino)benzenethiol (Ph₂PC₆H₄SH) and [Cp*CoCl]₂ were prepared according to published procedures.¹ NMR spectra were recorded on Bruker 500 (500 MHz for ¹H, 126 MHz for ¹³C, 471 MHz for ¹⁹F) spectrometers. Chemical shifts for ¹H and ¹³C spectra were referenced to residual solvent resonances and are reported relative to tetramethylsilane. High resolution mass spectra (MS) were obtained using a LC/MSD TOF spectrometer system with electrospray ionization (ESI). UV-vis absorption spectra were recorded with an Agilent Cary 60 spectrophotometer. Steady-state emission spectra were recorded using a Shimadzu RF-6000 spectrofluorimeter.

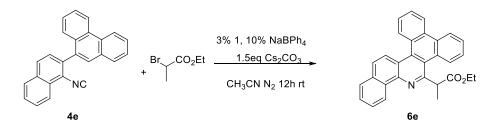
2. Experimental section

2.1 Synthesis of [Cp*(Ph₂PC₆H₄S)Co]

Ph₂**PC**₆**H**₄**SNa.** NaH (0.09 g, 3.74 mmol) was added to a THF solution of Ph₂PC₆H₄SH (1.0 g, 3.40 mmol) under nitrogen. The mixture was stirred at room temperature for 1 h and filtered through a short pad of celite. The filtrate was concentrated in vacuo and the product was recrystallized in THF/hexane to give Ph₂PC₆H₄SNa as white solid (1.02 g, 95%). ¹HNMR (500 MHz, acetone-*d*₆): δ 7.37 (m, 1H), 7.24 (m, 10H), 6.75 (m, 1H), 6.45 (m, 1H), 6.32 (m, 1H). ³¹P NMR: δ-15.4.

Scheme S1. Synthesis of [Cp*(Ph₂PC₆H₄S)Co].

[Cp*(Ph₂PC₆H₄S)Co], 1. Ph₂PC₆H₄SNa (312 mg, 0.1 mmol) in 10 mL THF was added to the solution of [Cp*CoCl]₂ (230 mg, 0.05 mmol) in 30 mL THF, the color turned to red brown immediately. After stirring for 3 h at room temperature, the volatile was removed under vacuum, and the residue was extracted with hexane (100 mL). The resulting hexane solution was concentrated, cooled at -30 °C to give [Cp*(Ph₂PC₆H₄S)Co] (397 mg, yield 80%) as red solid. MS (ESI) Calcd for C₂₈H₂₉PSCo [M]: 487.1060; Found: 487.1038. Magnetic susceptibility (μ_{eff} , C₆D₆, 23 °C): 1.92 µB.


2.2 Survey of reaction conditions

	× +	BrCO₂Et	3% 1 , 10% NaBPh ₄ 1.5eq Cs ₂ CO ₃ CH ₃ CN, N ₂		CO ₂ Et
-	Entry	Additive	Base	Solvent	Yield/% ^b
	1	NO	Na ₂ HPO ₄	MeCN	23%
	2	NO	K ₂ CO ₃	MeCN	42%
	3	NO	Cs ₂ CO ₃	MeCN	60%
	4	NO	Cs ₂ CO ₃	THF	57%
	5	NO	Cs ₂ CO ₃	DCE	38%
	6	NaBF ₄	Cs ₂ CO ₃	MeCN	58%
	7	KPF ₆	Cs ₂ CO ₃	MeCN	62%
	8	NaBPh ₄	Cs ₂ CO ₃	MeCN	90%
	9 ^c	NO	Cs ₂ CO ₃	MeCN	0%
	10 ^c	NaBPh ₄	Cs ₂ CO ₃	MeCN	0%

Table S1. Optimization of reaction conditions^a

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), **1** (3 % mol), base (0.3 mmol), MeCN (2 mL), rt. ^bIsolated yield. ^cWithout **1**.

2.3 The amplified reaction

Scheme S2. The amplified reaction for the synthesis of 6e.

According to general procedure, isocyanide **4e** (660 mg, 2 mmol, 1 equiv), $CH_3CHBrCO_2Et$ (720 mg, 4 mmol, 2 equiv), NaBPh₄ (70.0 mg, 0.2 mmol, 10 mol %), **1** (30 mg, 0.06 mmol, 3 mol %), CS_2CO_3 (975 mg, 3 mmol, 1.5 equiv), were added into 20 mL CH₃CN. After stirring for 12 h, the reaction mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel to afford the desired product phenanthridines (523 mg, 61%) as a yellow solid (petroleum ether: EtOAc = 30:1).

2.4 Photophysical properties

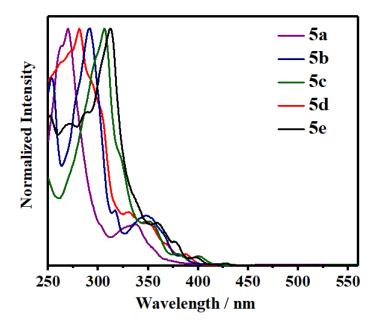
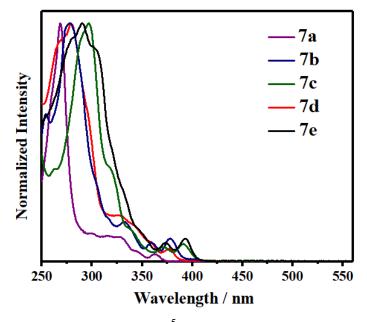
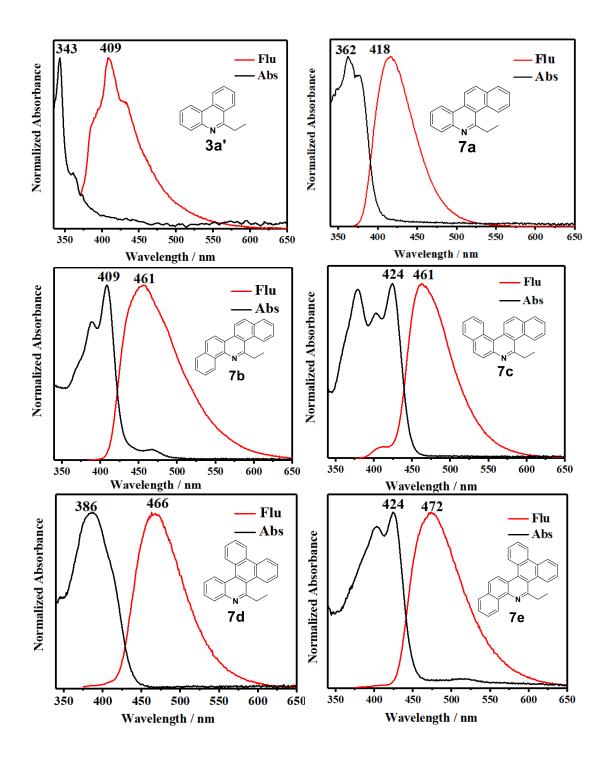




Figure S1. Absorption spectra of $5a-5e (10^{-5} \text{ M})$ in DCM.

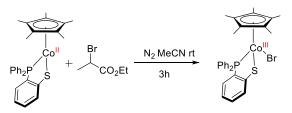
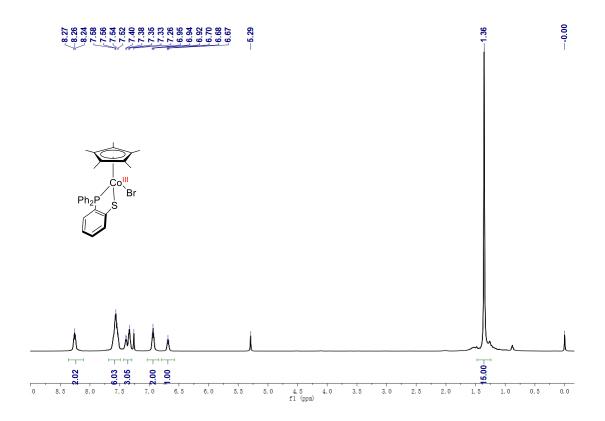


Figure S2. Absorption spectra of **7a-7e** (10^{-5} M) in DCM.


Figure S3. Absorption (black line) and fluorescence (red line) spectra of **3a**' (10^{-5} M) and **7a-7e** (10^{-5} M) in the presence of HBF₄ ($3*10^{-5}$ M) in DCM with $\lambda_{ex} = 365$ nm.

2.5 Reaction of [Cp*(Ph₂PC₆H₄S)Co] with 2-bromopropanoate

Scheme S3. Stoichiometric reaction of $[Cp^*(Ph_2PC_6H_4S)Co]$ with 2-bromopropanoate.

In a glovebox under an N₂ atmosphere, a scintillation vial (with a magnetic stir bar) was charged with (180 mg, 1 mmol) of ethyl 2-bromopropanoate, and a stoichiometric amount of [**Cp*(Ph₂PC₆H₄S)Co**] in 20 mL acetonitrile. The color turned to purple immediately. After stirring for 3 h at room temperature, the volatile was removed under vacuum, the purple solid was collected by filtration, washed with dried hexane (100 mL) in vacuo to give product [**Cp*(Ph₂PC₆H₄S)CoBr**]. Yield: (540 mg, 0.095 mmol, 95%). ¹H NMR (500 MHz, CDCl₃) δ 8.32 – 8.20 (m, 2H), 7.67 – 7.48 (m, 6H), 7.42 – 7.37 (m, 1H), 7.33 (t, J = 6.8 Hz, 2H), 6.94 (t, J = 8.1 Hz, 2H), 6.68 (t, J = 7.3 Hz, 1H), 1.36 (s, 15H). ³¹P NMR (202 MHz, CDCl₃) δ 62.12 (s). MS (ESI) Calcd for C₂₈H₂₉PS Co [M⁺]: 487.1060; Found: 487.1032.

Figure S4. The ¹H-NMR spectral copy of compound [**1-Br**].

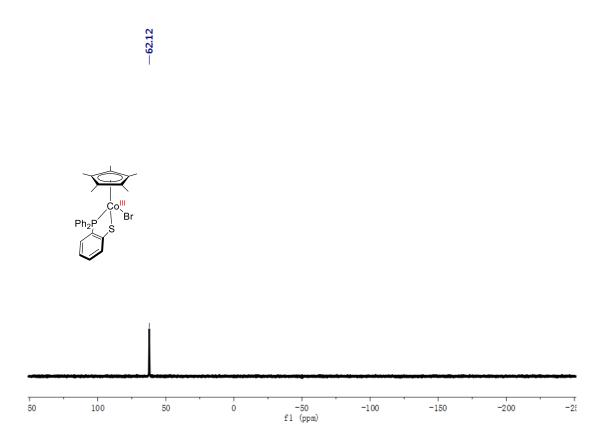
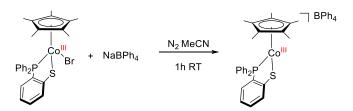
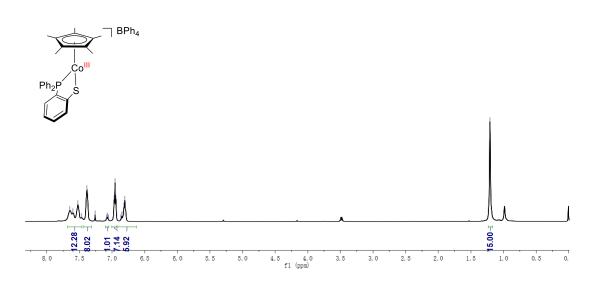
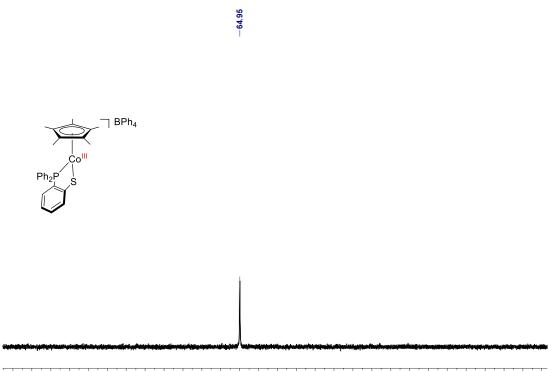



Figure S5. The ³¹P-NMR spectral copy of compound [1-Br].

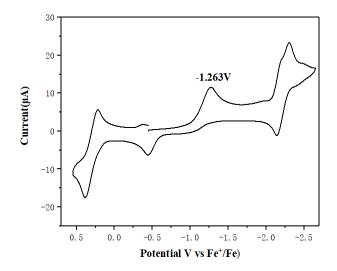

2.6 Reaction of [Cp*(Ph₂PC₆H₄S)Co-Br] with NaBPh₄

Scheme S4. Reaction of [Cp*(Ph₂PC₆H₄S)Co-Br] with NaBPh₄.


In a glovebox under an N₂ atmosphere, a scintillation vial (with a magnetic stir bar) was charged with [**Cp*(Ph₂PC₆H₄S)CoBr**] (57 mg 0.1 mmol) and a stoichiometric amount of NaBPh₄ (34 mg 0.1 mmol) in 20 mL acetonitrile. The color turned from purple to brown immediately. After stirring for 1 h at room temperature, the volatile was removed under vacuum. The brown solid was collected by filtration, washed with dried hexane (20 mL) in vacuo to give product [**Cp*(Ph₂PC₆H₄S)Co][BPh₄]**. Yield: (75 mg, 0.094 mmol, 94%). ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.46 (m, 12H), 7.45-7.32 (br, 8H), 7.12-7.07 (m, 1H), 7.01-6.94 (m, 7H), 6.90-6.65 (m, 6H), 1.21 (s, 15H). ³¹P NMR (202 MHz, CDCl₃) δ 64.95 (s). MS (ESI) Calcd for C₂₈H₃₀PSCo [M⁺]: 487.1060; Found: 487.1094.

7.52 **7**.65 **7**.65 **7**.77 **7**.73 **8**.77 **7**.73 **8**.77 **7**.73 **8**.77 **7**.73 **8**.77 **7**.73 **8**.77 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.73 **8**.75 **7**.70 **6**.95 **6**.95 **6**.95 **6**.85**7**.85 **7**.85 **7**.85 **7**.85 **7**.85 **7**.85 **7**.85 **7**.85 **7**.85 **7**.85 **7**.85 **7**.85 **7**.85 **7**.85 **1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85**1**.85 **1**.85**1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85 **1**.85**1**.85**1**.85**1**.85 **1**.85**1**.85**1**.85 **1**.85**1**

-1.21


Figure S6. The ¹H-NMR spectral copy of compound [1-BPh₄].

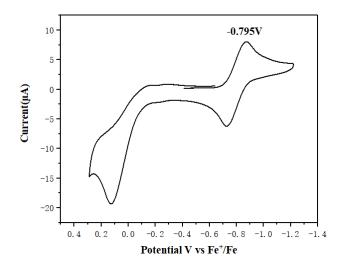

125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 fl (ppm)

Figure S7. The ³¹P-NMR spectral copy of compound [1-BPh₄].

2.7 Characterization data of cyclic voltammogram.

Figure S8. Cyclic voltammogram of [**1-Br**]. Conditions: 1 mM sample in THF, 0.1 M *n*-Bu₄NPF₆; Scan rate: 200 mV s⁻¹. Potential vs Fc^{+/0}. *Results*: $E_{1/2}$ [**1-Br**]^{0/-} = -1.263 V.

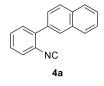
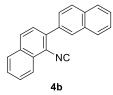
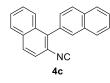


Figure S9. Cyclic voltammogram of [**1-BPh**₄]. Conditions: 1 mM sample in THF, 0.1 M *n*-Bu₄NPF₆; Scan rate: 200 mV s⁻¹. Potential vs Fc^{+/0}. *Results*: $E_{1/2}$ [**1-BPh**₄]^{+/0} = -0.795V.

3. Experimental details and characterization data of the products

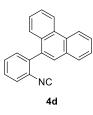

General Procedure for the Synthesis of Isocyanide Substrates (4a-4e). All isonitriles were prepared according to reported methods.²

2-(2-Isocyanophenyl)naphthalene (4a).

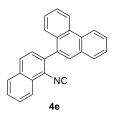


Synthesized from 2-iodoaniline (2 mmol) and naphthalen-2-ylboronic (2.4 mmol) acid and isolated as white solid (368 mg, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.01-7.96 (m, 2H), 7.94-7.91 (m, 2H), 7.66 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.59- 7.52 (m, 4H), 7.50 (td, *J* = 7.6, 1.0 Hz, 1H), 7.41 (td, *J* = 7.8, 1.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.80, 138.77, 134.42, 133.18, 132.92, 130.79, 129.51, 128.31, 128.25, 128.18, 128.15, 127.86, 127.69, 126.59, 126.56, 126.43, 124.81. MS (ESI) Calcd for C₁₇H₁₂N [M+H⁺]: 230.0970; Found: 230.0961.

1-Isocyano-2,2'-binaphthalene (4b).

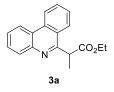


Synthesized from 2-bromonaphthalen-1-amine (2 mmol) and naphthalen-2-ylboronic acid (2.4 mmol) and isolated as white solid (414 mg, 74% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, *J* = 8.4 Hz, 1H), 8.10 (s, 1H), 8.03-7.98 (m, 2H), 7.97-7.92 (m, 3H), 7.80-7.71 (m, 2H), 7.68-7.61 (m, 2H), 7.59-7.52 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.99, 136.88, 134.93, 133.24, 132.98, 132.64, 129.55, 128.84, 128.54, 128.43, 128.35, 128.30, 128.20, 127.77, 127.54, 127.34, 126.85, 126.73, 126.52, 123.53. MS (ESI) Calcd for C₂₁H₁₄N [M+H⁺]: 280.1126; Found: 280.1134.

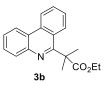

Synthesized from 1-bromonaphthalen-2-amine (2 mmol) and naphthalen-2-ylboronic acid (2.4 mmol) and isolated as white solid (380 mg, 68% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 7.3 Hz, 1H), 7.96-7.88 (m, 4H), 7.66 (d, *J* = 8.5 Hz, 1H), 7.63-7.55 (m, 4H), 7.52 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 166.16, 137.47, 133.23, 133.09, 133.04, 132.54, 132.28, 129.44, 129.06, 128.35, 128.20, 128.11, 127.85, 127.57, 127.46, 127.39, 127.08, 126.63, 126.48, 123.60, 122.82. MS (ESI) Calcd for C₂₁H₁₄N [M+H⁺]: 280.1126; Found: 280.1102.

9-(2-Isocyanophenyl) phenanthrene (4d).

Synthesized from 2-iodoaniline (2 mmol) and phenanthren-9-ylboronic (2.4 mmol) acid and isolated as white solid (431 mg, 77% yield). ¹H NMR (500 MHz, CDCl₃) δ^{1} H NMR (500 MHz, CDCl₃) δ 8.81 (d, *J* = 8.3 Hz, 1H), 8.76 (d, *J* = 8.3 Hz, 1H), 7.93 (d, *J* = 7.8 Hz, 1H), 7.77-7.68 (m, 3H), 7.67-7.64 (m, 1H), 7.63-7.46 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.46, 138.08, 133.64, 131.75, 131.17, 130.55, 130.52, 130.37, 129.23, 128.86, 128.63, 128.32, 127.21, 127.19, 126.93, 126.80, 126.77, 126.07, 123.09, 122.63. MS (ESI) Calcd for C₂₁H₁₄N [M+H⁺]: 280.1126; Found: 280.1160.

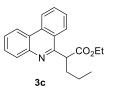

9-(1-Isocyanonaphthalen-2-yl)phenanthrene (4e).

Synthesized from 2-bromonaphthalen-1-amine (2 mmol) and phenanthren-9-ylboronic acid (2.4 mmol) and isolated as white solid (370 mg, 56% yield). ¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (500 MHz, CDCl₃) δ 8.84 (d, *J* = 8.4 Hz, 1H), 8.79 (d, *J* = 8.3 Hz, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 8.02 (dd, *J* = 8.1, 5.6 Hz, 2H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.83 (s, 1H), 7.72 (m, 5H), 7.63 – 7.47 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.69, 136.23, 134.00, 132.89, 131.18, 130.61, 130.50, 130.31, 129.10, 128.92, 128.57, 128.41, 128.29, 128.27, 127.47, 127.24, 126.97, 126.82, 126.79, 126.19, 123.43, 123.13, 122.64. MS (ESI) Calcd for C₂₅H₁₆N [M+H⁺]: 330.1283; Found: 330.1283.

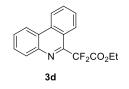

General Procedure for the Synthesis of Phenanthridines (3a-3l). A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 1 (3 mg, 0.01 mmol, 3 mol%), NaBPh₄ (14.0 mg, 0.10 mmol, 10 mol%) in a glovebox, and this was followed by addition of CS_2CO_3 (98 mg, 0.4 mmol, 1.5 equiv). The isocyanide 2 (36 mg, 0.2 mmol, 1 equiv), R-X (0.4 mmol, 2 equiv) and anhydrous MeCN (2 mL) were then added. After stirring for 12 h, the reaction mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel to afford the desired product phenanthridines.

Ethyl 2-(phenanthridin-6-yl)propanoate (3a).

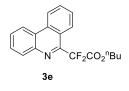
Yellow solid, 50 mg, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 8.3 Hz, 1H), 8.58-8.50 (m, 1H), 8.22 (d, J = 8.2 Hz, 1H), 8.16 (dd, J = 8.1, 1.0 Hz, 1H), 7.85 – 7.81 (m, 1H), 7.74-7.62 (m, 3H), 4.74 (q, J = 7.1 Hz, 1H), 4.30-4.11 (m, 2H), 1.79 (d, J = 7.1 Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.66, 159.48, 143.52, 133.23, 130.28, 130.17, 128.53, 127.33, 126.78, 125.56, 124.64, 123.68, 122.63, 121.80, 60.90, 45.54, 16.39, 14.09. MS (ESI) Calcd for C₁₈H₁₈NO₂ [M+H⁺]: 280.1338; Found: 280.1335.


Ethyl 2-methyl-2-(phenanthridin-6-yl)propanoate (3b).

Yellow liquid, 45 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 8.3 Hz, 1H), 8.55 (dd, J = 8.2, 1.2 Hz, 1H), 8.18 (dd, J = 8.1, 1.0 Hz, 1H), 8.06 (d, J = 8.1 Hz, 1H), 7.80 – 7.77 (m, 1H), 7.74 – -7.71 (m, 1H), 7.66 – 7.60 (m, 2H), 4.11 (q, J = 7.1 Hz, 2H), 1.88 (s, 6H), 1.01 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 178.07,


161.22, 143.06, 133.49, 130.35, 129.68, 128.45, 126.81, 126.05, 124.30, 123.79, 122.81, 121.75, 60.98, 49.93, 26.56, 13.85. MS (ESI) Calcd for $C_{19}H_{20}NO_2 [M+H^+]$: 294.1489; Found: 294.1492.

2-(phenanthridin-6-yl)pentanoate (3c).



Yellow liquid, 47 mg, 77% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, J = 8.6 Hz, 1H), 8.53 (d, J = 7.4 Hz, 1H), 8.29 (d, J = 8.2 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.87 – 7.77 (m, 1H), 7.74 – 7.67 (m, 2H), 7.65 – 7.58 (m, 1H), 4.65 (t, J = 7.2 Hz, 1H), 4.38 – 3.92 (m, 2H), 2.53 – 2.16 (m, 2H), 1.62 – 1.36 (m, 2H), 1.16 (t, J = 7.1 Hz, 3H), 1.00 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.88, 158.45, 143.49, 133.14, 130.21, 130.20, 128.45, 127.27, 126.71, 125.54, 125.01, 123.56, 122.53, 121.73, 60.74, 50.87, 33.28, 21.24, 14.06, 14.01. MS (ESI) Calcd for C₂₀H₂₂NO₂ [M+H⁺]: 308.1651; Found: 308.1639.

Ethyl 2,2-difluoro-2-(phenanthridin-6-yl)acetate (3d).

White solid, 41 mg, 72% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.68 (d, J = 8.1 Hz, 1H), 8.58 – 8.56 (m, 2H), 8.12 (dd, J = 5.8, 3.6 Hz, 1H), 7.95 – 7.87 (m, 1H), 7.83 – 7.68 (m, 3H), 4.57 (q, J = 7.1 Hz, 2H), 1.48 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -98.78 (s). ¹³C NMR (126 MHz, CDCl₃) δ 163.66 (t, J = 30.9 Hz), 150.19 (t, J = 29.0 Hz), 141.75, 133.87, 131.20, 130.86, 128.99, 128.88, 127.86, 126.27 (t, J = 4.9 Hz), 124.84, 122.49, 122.31, 122.03, 117.84, 115.82, 113.80, 62.98, 14.08. MS (ESI) Calcd for C₁₇H₁₃F₂NO₂ [M+H⁺]: 302.0993; Found: 302.0990.

Yellow liquid, 48 mg, 73% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.63 (d, J = 8.4 Hz, 1H), 8.59 – 8.50 (m, 2H), 8.14 – 8.05 (m, 1H), 7.92 – 7.83 (m, 1H), 7.79 – 7.66 (m, 3H), 4.53 (t, J = 6.6 Hz, 2H), 1.87 – 1.75 (m, 2H), 1.53 – 1.39 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -98.39 (s). ¹³C NMR (126 MHz, CDCl₃) δ 163.75 (t, J = 30.8 Hz), 150.14 (t, J = 29.0 Hz), 141.68, 133.80, 131.14, 130.74, 128.92, 128.81, 127.7, 126.19 (t, J = 4.9 Hz), 124.77, 122.43, 122.25 (t, J = 2.0 Hz), 121.98, 117.98, 115.96, 113.94, 66.70, 30.39, 18.98, 13.55. MS (ESI) Calcd for C₁₉H₁₈F₂NO₂ [M+H⁺]: 330.1306; Found: 330.1307.

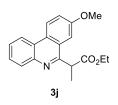
6-(Perfluorobutyl)phenanthridine (3f).

Yellow solid, 65 mg, 82% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.72 (d, J = 8.4 Hz, 1H), 8.64 – 8.58 (m, 1H), 8.47 (d, J = 8.5 Hz, 1H), 8.33 – 8.22 (m, 1H), 7.93-7.90 (m, 1H), 7.85 – 7.69 (m, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -78.11 – -85.55 (m, 3F), -104.89 – 104.95 (m, 2F), -119.74 – -119.82 (m, 2F), -122.62 – -123.69 (m, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 146.65 (t, J = 25.0 Hz), 141.72, 133.99, 131.18, 131.16, 129.38, 129.28, 127.97, 126.13 (t, J = 6.8 Hz), 124.80, 122.94, 122.60, 122.00, 120 – 100 (m). MS (ESI) Calcd for C₁₇H₉F₉N [M+H⁺]: 398.0591; Found: 398.0586.

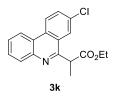
6-(Perfluorohexyl)phenanthridine (3g).

White solid, 90 mg, 91% yield. ¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, *J* = 8.3 Hz, 1H), 8.50 – 8.40 (m, 2H), 8.24 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.84 – 7.77 (m, 1H), 7.75 – 7.67 (m, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -80.77 – -80.81 (m, 3F), -104.91 (t, *J* = 13.8 Hz, 2F), -118.99 – 119.08 (m, 2F), -119.89 (s, 2F), -122.48 – -123.36 (m, 2F), -125.58 – -126.41 (m, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 146.63 (t, *J* = 24.8 Hz), 141.70, 133.88, 131.10, 130.98, 129.23, 129.14, 127.84, 126.02 (t, *J* = 6.9 Hz), 124.69, 122.92, 122.43, 121.84, 120 – 100 (m). MS (ESI) Calcd for C₁₉H₉F₁₃N [M+H⁺]: 498.0527; Found: 498.0532.

6-(Perfluorooctyl)phenanthridine (3h).

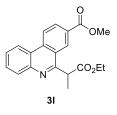

Grey solid, 108 mg, 93% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.73 (d, J = 8.4 Hz, 1H), 8.67 – 8.56 (m, 1H), 8.47 (d, J = 8.4 Hz, 1H), 8.38 – 8.22 (m, 1H), 7.94 – 7.90(m, 1H), 7.87 – 7.69 (m, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -80.78 (t, J = 10.6 Hz, 3F), -102.11 – -108.81 (m, 2F), -118.96 – -119.04 (m, 2F), -119.71 (s, 2F), -121.17 – -122.22 (m, 4F), -122.25 – -123.49 (m, 2F), -125.59 – -126.73 (m, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 146.68 (t, J = 24.5 Hz), 141.80, 134.01, 131.23, 131.15, 129.38, 129.29, 127.98, 126.19 (t, J = 6.9 Hz), 124.82, 123.04, 122.60, 122.00, 120 – 100(m). MS (ESI) Calcd for C₂₁H₉F₁₇N [M+H⁺]: 598.0464; Found: 598.0465.

6-(Trichloromethyl)phenanthridine (3i).


White solid, 44 mg, 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.97 (d, J = 8.5 Hz, 1H), 8.73 (d, J = 8.3 Hz, 1H), 8.64-8.50 (m, 1H), 8.28 (d, J = 7.5 Hz, 1H), 7.90 (t, J = 7.6 Hz, 1H), 7.82 – 7.73 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) 152.85, 140.80, 134.92, 131.26, 130.72, 129.24, 129.06, 128.42, 126.71, 125.02, 122.81, 121.87, 120.71, 98.45. MS (ESI) Calcd for C₁₄H₉Cl₃N [M+H⁺] 295.9801; Found 295.9800.

Ethyl 2-(8-methoxyphenanthridin-6-yl)propanoate (3j).

White solid, 57 mg, 92% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.53 (d, *J* = 9.1 Hz, 1H), 8.43 (dd, *J* = 8.1, 1.0 Hz, 1H), 8.13 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.62 (m, 2H), 7.56 (d, *J* = 2.5 Hz, 1H), 7.44 (dd, *J* = 9.0, 2.6 Hz, 1H), 4.68 (q, *J* = 7.1 Hz, 1H), 4.28 – 4.13 (m, 2H), 3.96 (s, 3H), 1.81 (d, *J* = 7.1 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.72, 158.64, 158.35, 142.68, 130.09, 127.50, 126.80, 125.91, 124.24, 123.76, 121.28, 120.75, 105.76, 60.90, 55.43, 45.89, 16.09, 14.11. MS (ESI) Calcd for C₁₉H₂₀NO₃ [M+H⁺]: 310.1443; Found: 310.1443.


Ethyl 2-(8-chlorophenanthridin-6-yl)propanoate (3k).

Yellow solid, 56 mg, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.54 (d, J = 8.8 Hz, 1H), 8.44 (d, J = 8.2 Hz, 1H), 8.19 (d, J = 2.0 Hz, 1H), 8.14 (dd, J = 8.1, 1.0 Hz, 1H), 7.77 – 7.68 (m, 2H), 7.62 (m, 1H), 4.67 (q, J = 7.1 Hz, 1H), 4.32 – 4.13 (m, 2H), 1.78 (d, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.21, 158.21, 143.41, 133.30, 131.55, 130.77, 130.30, 128.84, 127.18, 125.61, 124.91, 124.35, 123.02, 121.65, 61.01, 45.12, 16.28, 14.08. MS (ESI) Calcd for C₁₈H₁₇ClNO₂

[M+H⁺]: 314.0948; Found: 314.0952.

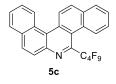
Methyl 6-(1-ethoxy-1-oxopropan-2-yl)phenanthridine-8-carboxylate (3l).

Yellow solid, 55 mg, 81% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.96 (d, J = 1.4 Hz, 1H), 8.71 (d, J = 8.7 Hz, 1H), 8.57 (d, J = 8.2 Hz, 1H), 8.44 (dd, J = 8.6, 1.6 Hz, 1H), 8.16 (dd, J = 8.1, 1.0 Hz, 1H), 7.80 – 7.74 (m, 1H), 7.71 – 7.64 (m, 1H), 4.84 (q, J = 7.1 Hz, 1H), 4.30 – 4.14 (m, 2H), 4.03 (s, 3H), 1.79 (d, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.31, 166.47, 159.98, 144.34, 136.29, 130.39, 130.14, 129.74, 128.74, 127.95, 127.21, 124.22, 123.04, 123.01, 122.43, 61.03, 52.52, 44.98, 16.54, 14.10. MS (ESI) Calcd for C₂₀H₂₀NO₄ [M+H⁺]: 338.1392; Found: 338.1394.

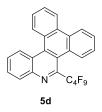
General Procedure for the Synthesis of Phenanthridines (5a-5e), (6a-6e). A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 1 (3 mg, 0.01 mmol, 3 mol%), NaBPh₄ (14.0 mg, 0.10 mmol, 10 mol%) in a glovebox, and this was followed by addition of CS_2CO_3 (98 mg, 0.4 mmol, 1.5 equiv). The isocyanide 4a-4e (0.2 mmol, 1 equiv), C_4F_9I or $CH_3CHBrCO_2Et$ (0.4 mmol, 2 equiv) and anhydrous MeCN (2 mL) were then added. After stirring for 12 h, the reaction mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel to afford the desired product phenanthridines.

5-(Perfluorobutyl)benzo[i]phenanthridine (5a).

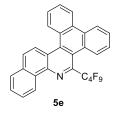
Yellow solid, 77 mg, 86% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.94 (d, J = 8.4 Hz, 1H), 8.73 – 8.53 (m, 2H), 8.30-8.23 (m, 1H), 8.19 (d, J = 8.9 Hz, 1H), 8.00 (dd, J = 7.8, 1.4 Hz, 1H), 7.87 – 7.79 (m, 2H), 7.76 – 7.96 m, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -81.37 (t, J = 11.5 Hz, 3F), -99.29 – -102.86 (m, 2F), -115.87 (s, 2F), -120.60 – -120.67 (m, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 145.31 (t, J = 29.6 Hz), 141.63, 135.31, 133.15, 132.96, 130.15, 129.59, 129.30, 128.47, 128.37, 128.33, 128.24, 128.14, 127.50, 127.23, 124.56, 122.60, 120.54, 119.74, 119 – 100 (m). MS (ESI) Calcd for C₂₁H₁₁F₉N [M+H⁺]: 448.0748; found: 448.0739.


14-(Perfluorobutyl)dibenzo[c,i]phenanthridine (5b).

Pale yellow solid, 74 mg, 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.28 (d, J = 8.2 Hz, 1H), 8.92 (d, J = 8.2 Hz, 1H), 8.58 (d, J = 9.0 Hz, 1H), 8.50 (d, J = 9.1 Hz, 1H), 8.15 (d, J = 9.0 Hz, 1H), 8.08 (d, J = 9.1 Hz, 1H), 7.98 (t, J = 7.0 Hz, 2H), 7.84 –


7.81(m, 1H), 7.77 – 7.72 (m, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -81.16 (t, *J* = 11.1 Hz, 3F), -100.95 – -101.47 (m, 2F), -115.75 (d, *J* = 9.9 Hz, 2F), -122.34 – -122.61 (m, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 143.61 (t, *J* = 31.1 Hz), 139.66, 135.38, 133.27, 132.86, 132.76, 131.31, 130.41, 128.78 (t, *J* = 11.2 Hz), 128.42, 128.25, 127.89, 127.74, 127.65, 127.04, 125.18, 122.32, 121.47, 119.95, 119.64, 119-100 (m). MS (ESI) Calcd for [M+H⁺]: C₂₅H₁₃F₉N: 498.0904; found: 498.0903.

5-(Perfluorobutyl)dibenzo[a,i]phenanthridine (5c).

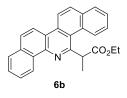

White solid, 72 mg, 72% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.01 – 8.94 (m, 1H), 8.93 – -8.84 (m, 2H), 8.12 – 8.02 (m, 5H), 7.79 – 7.67 (m, 4H). ¹⁹F NMR (471 MHz, CDCl₃) δ -81.35 (t, J = 11.6 Hz, 3F), -100.90 – -101.11 (m, 2F), -115.72 (s, 2F), -120.32 – 120.38 (m, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 143.97 (t, J = 29.1 Hz), 141.76, 135.86, 134.21, 132.37, 131.54, 131.14, 129.00, 128.80, 128.74, 128.69, 128.65, 128.56, 127.90, 127.86, 127.66, 127.14, 127.01, 126.95, 124.86, 122.71, 122.40, 120-100 (m). MS (ESI) Calcd for [M+H⁺]: C₂₅H₁₃F₉N: 498.0904; found: 498.0910.

5-(Perfluorobutyl)dibenzo[i,k]phenanthridine (5d).

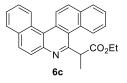
White solid, 83 mg, 83% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.78 – 8.65 (m, 3H), 8.60 (d, J = 7.8 Hz, 1H), 8.48 (d, J = 7.9 Hz, 1H), 8.28 (d, J = 8.2 Hz, 1H), 7.88 – 7.77 (m, 2H), 7.75 – 7.64 (m, 4H). ¹⁹F NMR (471 MHz, CDCl₃) δ -81.08 (t, J = 11.2Hz, 3F), -100.93 – -101.27 (m, 2F), -116.82 – -116.89 (m, 2F), -121.62 – -125.67 (m, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 144.49 (t, J = 28.3 Hz), 143.67, 137.01, 132.68, 130.22, 129.82, 129.50, 129.41, 129.40, 129.36, 128.52, 128.15, 127.64, 127.49, 127.30, 127.23, 127.01, 123.95, 123.53, 123.19, 121.07, 120 – 100(m). MS (ESI) Calcd for [M+H⁺]: C₂₅H₁₃F₉N: 498.0904; found: 498.0900.

16-(Perfluorobutyl)tribenzo[c,i,k]phenanthridine (5e).

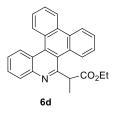
White solid, 82 mg, 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.35 (d, J = 8.1 Hz, 1H), 8.69 (dd, J = 22.4, 8.1 Hz, 2H), 8.61 – 8.58 (m, 2H), 8.51 (d, J = 7.9 Hz, 1H), 7.99 (dd, J = 15.1, 8.5 Hz, 2H), 7.87 – 7.64 (m, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -80.97 (t, J = 10.0 Hz, 3F), -100.84 (s, 2F), -116.50 (dd, J = 9.1, 5.2 Hz, 2F), -123.59 (td, J = 12.3, 5.5 Hz, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 142.21 (t, J = 27.7 Hz), 141.73, 137.53, 132.94, 132.67, 130.83, 130.40, 130.16, 129.76 (t, J = 9.0 Hz), 129.42, 129.27, 128.62, 128.33, 127.84, 127.79, 127.46, 127.41, 127.14, 127.07, 125.40, 124.18, 123.99, 123.21, 122.58, 121.62, 120 –100 (m). MS (ESI) Calcd for [M+H⁺] C₂₉H₁₅F₉N: 548.1061; found: 548.1058.


Ethyl 2-(benzo[i]phenanthridin-5-yl)propanoate (6a).

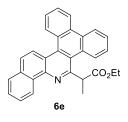
Pale yellow solid, 54 mg, 83% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.76 (d, J = 8.5 Hz, 1H), 8.61 (t, J = 8.5 Hz, 2H), 8.16 (dd, J = 20.0, 8.5 Hz, 2H), 8.04 (d, J = 7.8 Hz, 1H), 7.77 – 7.65 (m, 4H), 5.24 (q, J = 6.8 Hz, 1H), 4.25 – 4.06 (m, 2H), 1.86 (d, J = 6.8 Hz, 3H), 1.09 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.57, 159.02, 144.02, 134.12, 133.27, 131.79, 129.62, 129.51, 129.08, 128.81, 127.09, 126.55,


123.16, 122.39, 121.84, 120.33, 60.72, 47.95, 17.78, 14.09. MS (ESI) Calcd for $[M+H^+] C_{22}H_{20}NO_2$: 330.1494; Found: 330.1497.

Ethyl 2-(dibenzo[c,i]phenanthridin-14-yl)propanoate (6b).


Pale yellow solid, 51 mg, 67% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.43 (d, *J* = 8.2 Hz, 1H), 8.83 (d, *J* = 8.5 Hz, 1H), 8.58 (d, *J* = 9.1 Hz, 1H), 8.47 (d, *J* = 9.2 Hz, 1H), 8.07 (d, *J* = 9.0 Hz, 1H), 8.03 – 7.99 (m, 1H), 7.94 (d, *J* = 8.8 Hz, 2H), 7.80 – 7.66 (m, 4H), 5.33 (q, *J* = 6.8 Hz, 1H), 4.40 – 3.97 (m, 2H), 1.98 (d, *J* = 6.9 Hz, 3H), 1.07 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.69, 157.62, 141.13, 134.37, 133.17, 133.00, 131.62, 131.40, 129.61, 129.04, 127.68, 127.43, 127.35, 127.15, 126.94, 126.62, 126.59, 125.12, 60.68, 48.24, 18.15, 14.10. MS (ESI) Calcd for [M+H⁺] C₂₆H₂₂NO₂: 380.1651; Found: 380.1648.

Ethyl 2-(dibenzo[a,i]phenanthridin-5-yl)propanoate (6c).


Pale yellow solid, 46 mg, 61% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.91 (t, J = 8.1 Hz, 1H), 8.74 (d, J = 8.2 Hz, 1H), 8.10 – 8.03 (m, 5H), 7.77 – 7.64 (m, 4H), 5.26 (q, J = 6.9 Hz, 1H), 4.28 – 4.04 (m, 2H), 1.88 (d, J = 6.9 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.70, 158.08, 144.25, 134.83, 133.17, 132.69, 130.25, 130.09, 129.49, 129.28, 128.77, 128.41, 128.15, 127.93, 126.88, 126.77, 126.41, 126.38 125.40, 123.48, 119.95, 60.76, 47.47, 17.88, 14.10. MS Calcd for [M+H⁺] C₂₆H₂₂NO₂: 380.1651; Found: 380.1646.

Ethyl 2-(dibenzo[i,k]phenanthridin-5-yl)propanoate (6d).

Pale yellow solid, 55 mg, 72% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (d, J = 8.1 Hz, 1H), 8.71 – 8.63 (m, 3H), 8.60 (d, J = 7.6 Hz, 1H), 8.22 (d, J = 8.2 Hz, 1H), 7.79 – 7.63 (m, 5H), 7.60 – 7.57 (m, 1H), 5.15 (q, J = 6.8 Hz, 1H), 4.30-4.15 (m, 2H), 1.72 (d, J = 6.9 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 173.56, 157.85, 145.69, 134.94, 132.18, 130.77, 129.69, 128.70, 128.57, 128.52, 128.38, 128.13, 127.35, 127.26, 127.04, 127.02, 125.95, 123.65, 122.37, 121.89, 60.84, 46.87, 18.44, 14.11. MS (ESI) Calcd for [M+H⁺] C₂₆H₂₂NO₂: 380.1651; Found: 380.1654.

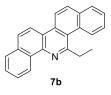
Ethyl 2-(tribenzo[c,i,k]phenanthridin-16-yl)propanoate (6e).

Pale yellow solid, 62 mg, 83% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.48 (d, *J* = 8.1 Hz, 1H), 8.78 (d, *J* = 8.1 Hz, 1H), 8.72 – 8.63 (m, 3H), 8.60 – 8.58 (m, 1H), 7.94 (d, *J* = 7.7 Hz, 1H), 7.88 (d, *J* = 9.1 Hz, 1H), 7.81 – 7.64 (m, 6H), 5.23 (q, *J* = 6.8 Hz, 1H), 4.31 – 4.18 (m, 2H), 1.82 (d, *J* = 6.8 Hz, 3H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.76, 156.07, 143.07, 135.71, 132.94, 132.28, 131.05, 130.91, 130.15, 128.80, 128.58, 128.48, 127.87, 127.50, 127.38, 127.19, 127.17, 126.95, 126.86, 126.44, 125.45, 124.63, 123.74, 123.69, 122.73, 119.56, 60.82, 47.07, 18.87, 14.16. MS (ESI) Calcd for [M+H⁺] C₃₀H₂₄NO₂: 430.1807; Found: 430.1806.

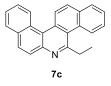
General Procedure for the Hydrolysis of Phenanthridine Esters. The compound 6 (0.1 mmol) was treated by 2 mL 60% KOH in MeOH (2 mL), and stirred at room temperature for 12 h. After saponification, the pH value was adjusted to 2~4 with HCl, then the mixture was poured into a separatory funnel containing 10 mL H₂O and 10 mL EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc (2 × 10 mL). The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel to afford the desired product phenanthridine derivatives **7**.

6-Ethylphenanthridine (3a').

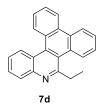
White solid, 18 mg, 86% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, J = 8.2 Hz, 1H), 8.52 (d, J = 8.2 Hz, 1H), 8.24 (d, J = 8.2 Hz, 1H), 8.14 (dd, J = 8.1, 0.7 Hz, 1H), 7.82 – 7.92 (m, 1H), 7.75-7.54 (m, 3H), 3.41 (q, J = 7.6 Hz, 2H), 1.52 (t, J = 7.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.10, 143.80, 132.88, 130.17, 129.58, 128.49, 127.16, 126.20, 126.14, 125.00, 123.62, 122.44, 121.85, 29.32, 13.45. MS (ESI) Calcd for [M+H⁺] C₁₅H₁₄N: 208.1126; Found: 208.1126.


5-Ethylbenzo[i]phenanthridine (7a).

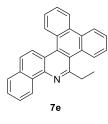
Pale yellow solid, 24 mg, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.85 (d, J = 8.6 Hz, 1H), 8.65 – 8.52 (m, 2H), 8.19 (dd, J = 8.2, 0.7 Hz, 1H), 8.11 (d, J = 8.9 Hz, 1H), 8.01 (dd, J = 7.9, 1.3 Hz, 1H), 7.79 – 7.71 (m, 2H), 7.67 – 7.63 (m, 2H), 3.75 (q, J = 7.4 Hz, 2H), 1.66 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.59, 143.98,


133.76, 133.25, 131.66, 130.23, 129.02, 128.94, 128.75, 127.21, 126.83, 126.30, 126.12, 123.21, 122.68, 122.45, 120.30, 34.56, 13.62. MS (ESI) Calcd for C₁₉H₁₆N [M+H⁺]: 258.1283; Found: 258.1280.

14-Ethyldibenzo[c,i]phenanthridine (7b).


Pale yellow solid, 26 mg, 86% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.53 (d, J = 8.1 Hz, 1H), 8.94 (d, J = 8.5 Hz, 1H), 8.64 (d, J = 8.9 Hz, 1H), 8.54 (d, J = 9.0 Hz, 1H), 8.11 (d, J = 9.0 Hz, 1H), 8.03 (d, J = 7.5 Hz, 1H), 7.98 – 7.96 (m, 2H), 7.81 – 7.68 (m, 4H), 3.87 (q, J = 7.4 Hz, 2H), 1.78 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.84, 141.02, 133.87, 133.29, 133.07, 131.70, 131.39, 130.42, 128.89, 127.52, 127.48, 126.88, 126.79, 126.33, 124.96, 123.32, 120.73, 120.29, 119.87, 34.81, 13.49. MS (ESI) Calcd for C₂₃H₁₈N [M+H⁺]: 308.1439; Found: 308.1440.

5-Ethyldibenzo[a,i]phenanthridine (7c).


Pale yellow solid, 28 mg, 92% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.92 –8.90 (m, 2H), 8.83 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.8 Hz, 1H), 8.06 – 8.03 (m, 4H), 7.77 – 7.63(m, 4H), 3.78 (q, J = 7.4 Hz, 2H), 1.70 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.70, 144.04, 134.49, 132.99, 132.67, 130.16, 130.11, 130.03, 129.39, 128.74, 128.32, 128.07, 127.66, 127.48, 126.65, 126.51, 126.34, 126.13, 125.41, 124.13, 119.90, 33.89, 13.83. MS (ESI) Calcd for [M+H⁺] C₂₃H₁₈N: 308.1439; Found: 308.1442.

5-Ethyldibenzo[i,k]phenanthridine (7d).

Pale yellow solid, 29 mg, 93% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.76 (d, J = 8.2 Hz, 1H), 8.69 – 8.57 (m, 3H), 8.43 (dd, J = 7.8, 0.7 Hz, 1H), 8.21 (d, J = 8.7 Hz, 1H), 7.76 – 7.69 (m, 2H), 7.68 – 7.60 (m, 3H), 7.58 – 7.53 (m, 1H), 3.61 (q, J = 7.4 Hz, 2H), 1.61 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.34, 145.55, 134.41, 132.09, 130.58, 129.66, 129.04, 128.36, 128.33, 128.14, 128.09, 127.50, 127.17, 127.08, 126.85, 126.75, 125.47, 123.60, 123.44, 123.00, 122.43, 32.81, 14.19. MS (ESI) Calcd for C₂₃H₁₈N [M+H⁺]: 308.1439; Found: 308.1432.

16-Ethyltribenzo[c,i,k]phenanthridine (7e).

Pale yellow solid, 33 mg, 92% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.56 (d, J = 8.2 Hz, 1H), 8.76 (dd, J = 8.2, 0.9 Hz, 1H), 8.65 (td, J = 7.8, 1.0 Hz, 2H), 8.59 (d, J = 9.1 Hz, 1H), 8.51 (dd, J = 8.0, 1.4 Hz, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 9.1 Hz, 1H), 7.81 – 7.78 (m, 1H), 7.77 – 7.60 (m, 5H), 3.73 (q, J = 7.3 Hz, 2H), 1.74 (t, J = 7.3 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 158.34, 142.85, 134.96, 133.00, 132.17, 131.15, 130.74, 130.15, 129.37, 128.53, 128.37, 127.72, 127.66, 127.29, 127.13, 126.88, 126.77, 126.70, 125.82, 125.19, 124.85, 123.85, 123.70, 123.49, 119.44, 33.03, 14.07. MS (ESI) Calcd for C₂₇H₂₀N [M+H⁺]: 358.1596; Found: 358.1597.

4. Copies of ¹H-NMR, ¹⁹F-NMR and ¹³C-NMR spectra of products

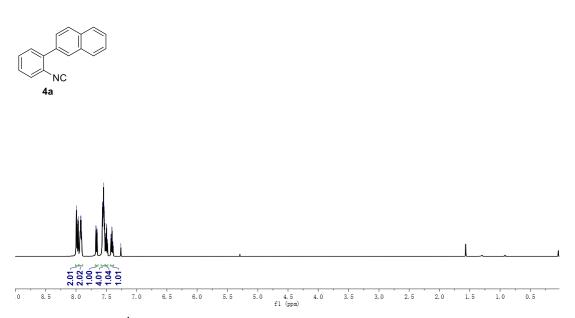


Figure S10. The ¹H-NMR spectral copy of compound 4a.

-166.80

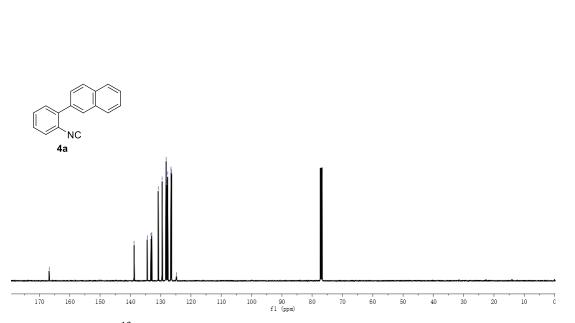


Figure S11. The ¹³C-NMR spectral copy of compound 4a.

8.32 <li

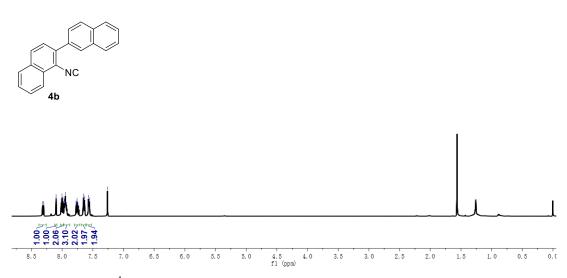


Figure S12. The ¹H-NMR spectral copy of compound 4b.

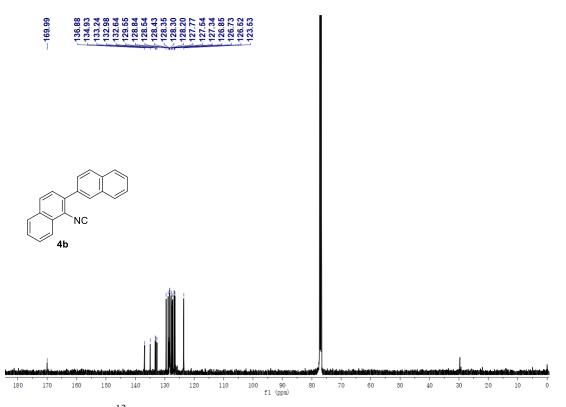


Figure S13. The ¹³C-NMR spectral copy of compound 4b.

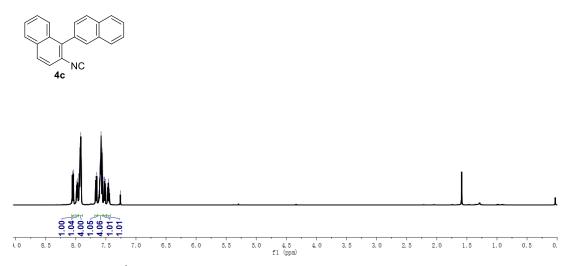
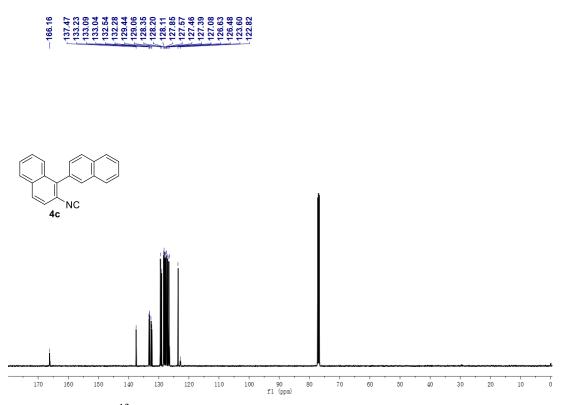
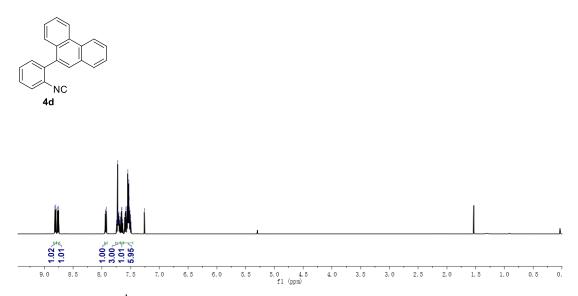




Figure S14. The ¹H-NMR spectral copy of compound 4c.

Figure S15. The ¹³C-NMR spectral copy of compound **4c**.

Figure S16. The ¹H-NMR spectral copy of compound **4d**.

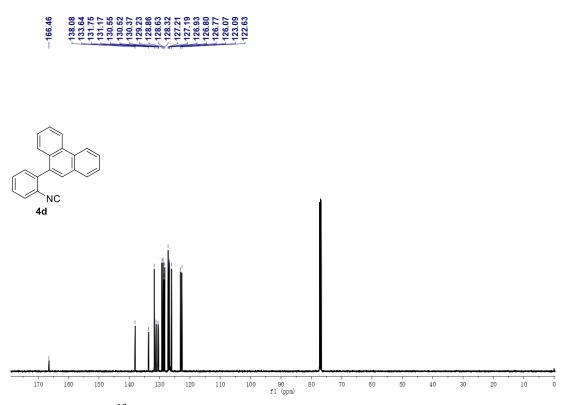
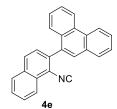



Figure S17. The ¹³C-NMR spectral copy of compound 4d.

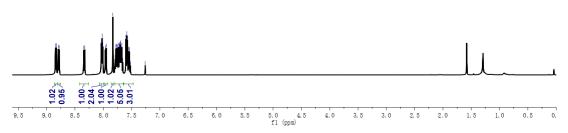


Figure S18. The ¹H-NMR spectral copy of compound 4e.

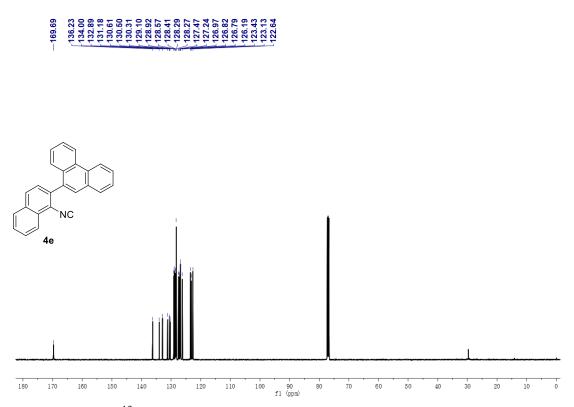
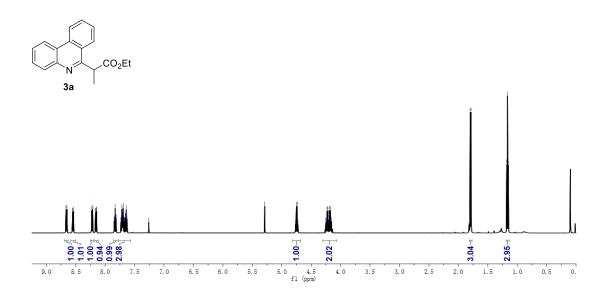



Figure S19. The ¹³C-NMR spectral copy of compound 4e.

Figure S20. The ¹H-NMR spectral copy of compound **3a**.

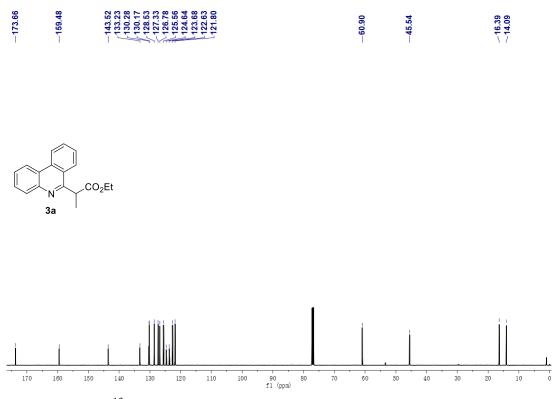


Figure S21. The ¹³C-NMR spectral copy of compound 3a.

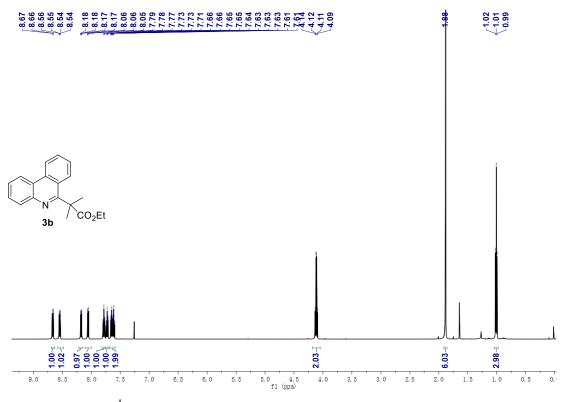
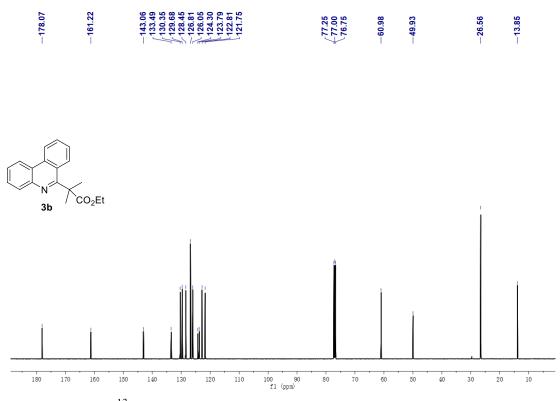
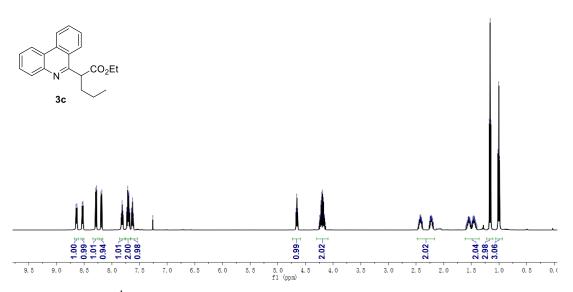
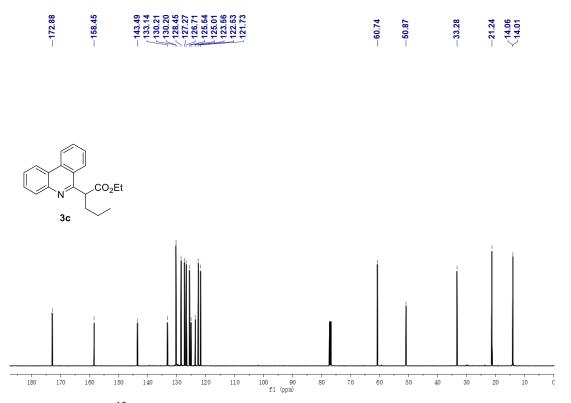
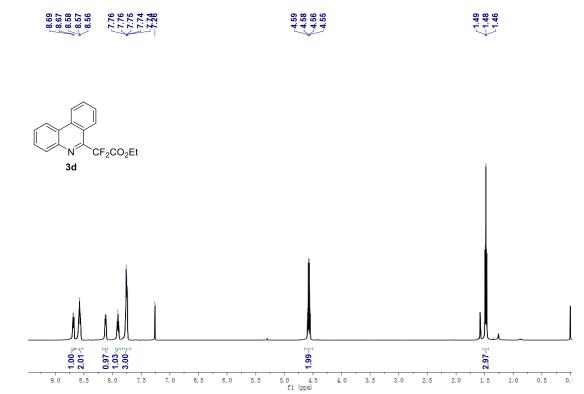


Figure S22. The ¹H-NMR spectral copy of compound 3b.


Figure S23. The ¹³C-NMR spectral copy of compound 3b.

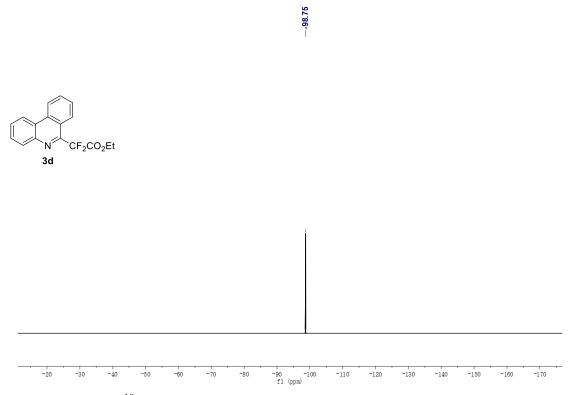

Figure S24. The ¹H-NMR spectral copy of compound **3c**.

Figure S25. The ¹³C-NMR spectral copy of compound **3c**.

Figure S26. The ¹H-NMR spectral copy of compound **3d**.

Figure S27. The ¹⁹F-NMR spectral copy of compound **3d**.

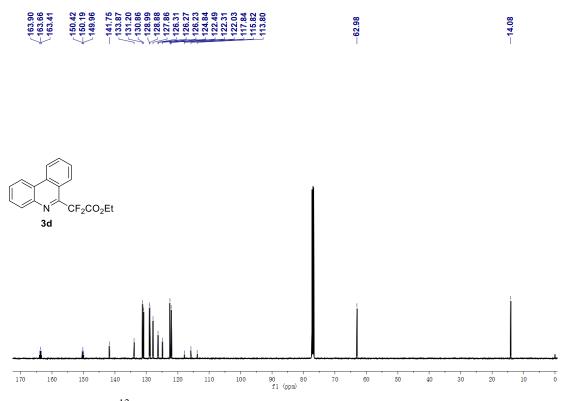


Figure S28. The ¹³C-NMR spectral copy of compound 3d.

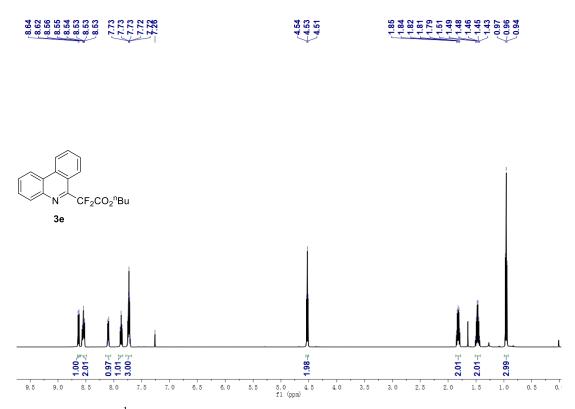


Figure S29. The ¹H-NMR spectral copy of compound 3e.

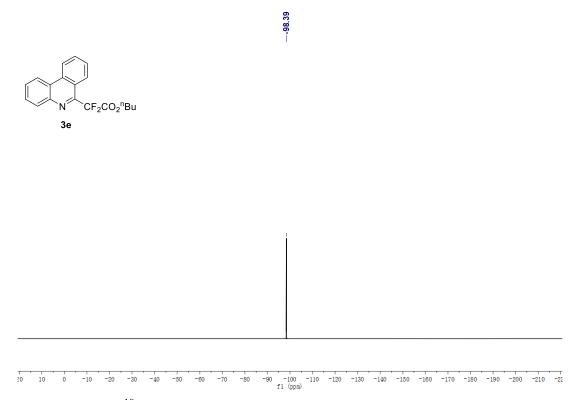
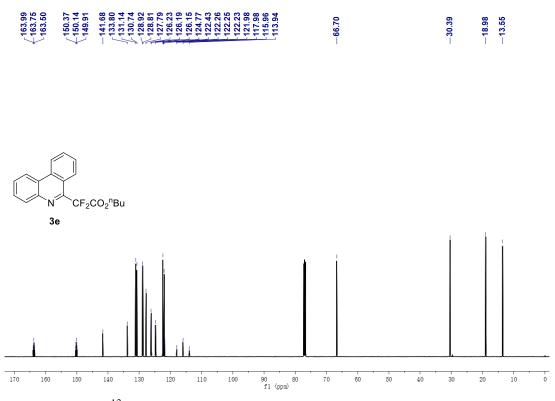



Figure S30. The ¹⁹F-NMR spectral copy of compound 3e.

Figure S31. The ¹³C-NMR spectral copy of compound **3e**.

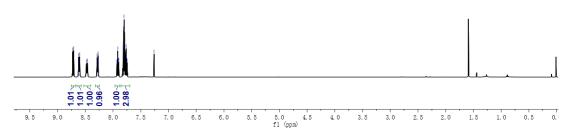


Figure S32. The ¹H-NMR spectral copy of compound 3f.

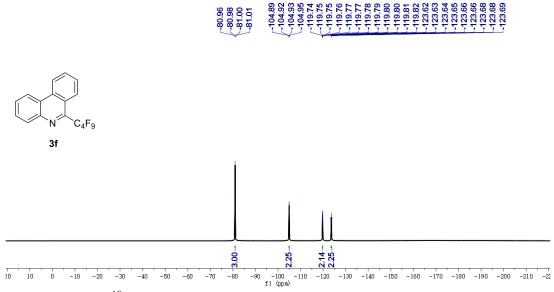


Figure S33. The ¹⁹F-NMR spectral copy of compound 3f.

146.85 146.65 148.65 148.65 148.65 148.65 133.99 13

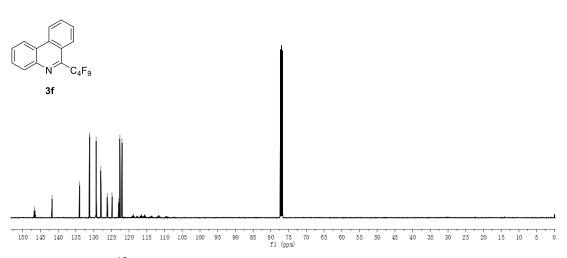


Figure S34. The ¹³C-NMR spectral copy of compound 3f.

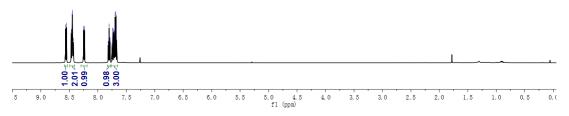


Figure S35. The ¹H-NMR spectral copy of compound 3g.

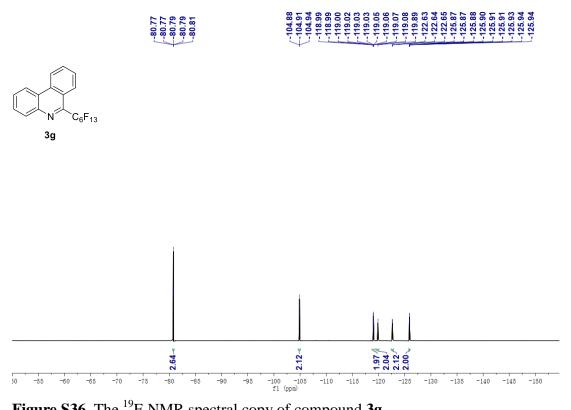


Figure S36. The ¹⁹F-NMR spectral copy of compound 3g.

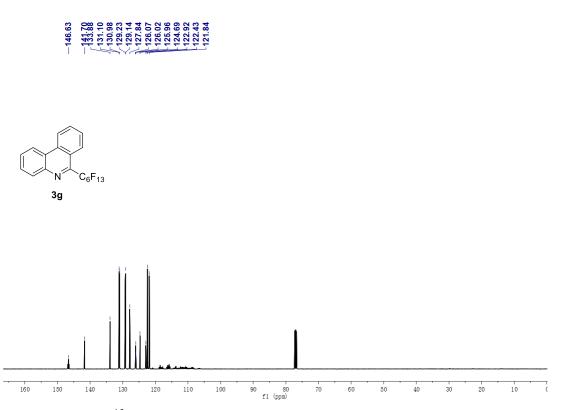
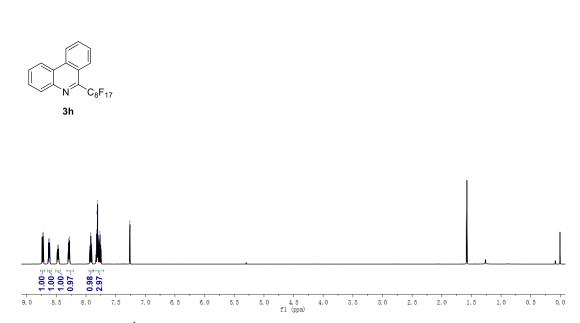
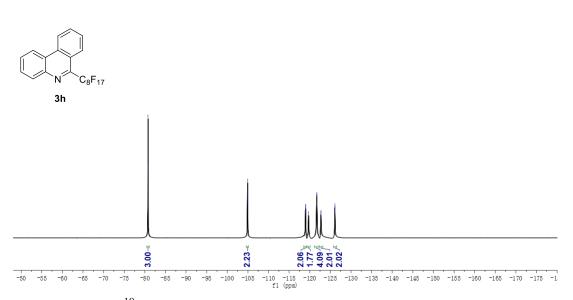


Figure S37. The ¹³C-NMR spectral copy of compound 3g.




Figure S38. The ¹H-NMR spectral copy of compound 3h.

7.82 7.81 7.81 7.81

8.30

8.74

-80.76 -80.80 -80.80 -80.80 -80.80 -80.80 -104.90 -118.90 -118.90 -118.90 -118.90 -118.90 -118.90 -118.90 -118.90 -112.70 -119.00 -112.70 -112.00 -126.12 -126

Figure S39. The ¹⁹F-NMR spectral copy of compound **3h**.

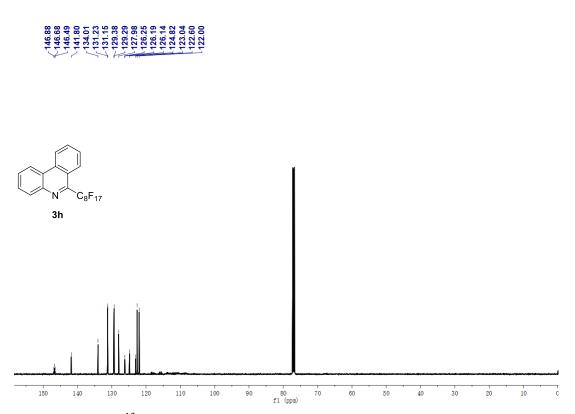


Figure S40. The ¹³C-NMR spectral copy of compound 3h.

8.97 8.73 8.73 8.73 8.72 8.73 8.58 8.58 8.28 8.28 8.28 7.77 7.78 7.77

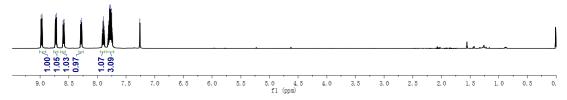


Figure S41. The ¹H-NMR spectral copy of compound 3i.

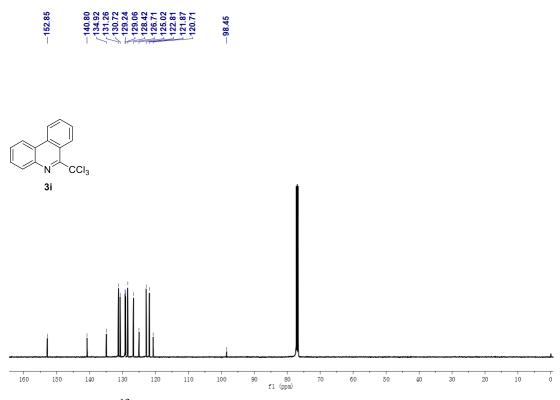


Figure S42. The ¹³C-NMR spectral copy of compound 3i.

8 13 8 13 8 13 8 13 8 13 8 13 16 17 16 17 16 17 16 17 16 17 16 17 16 17 15 16 17</td

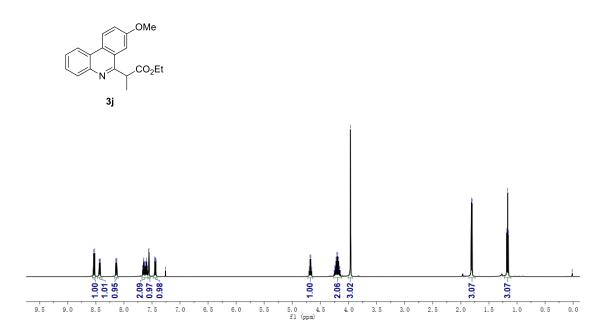


Figure S43. The ¹H-NMR spectral copy of compound 3j.

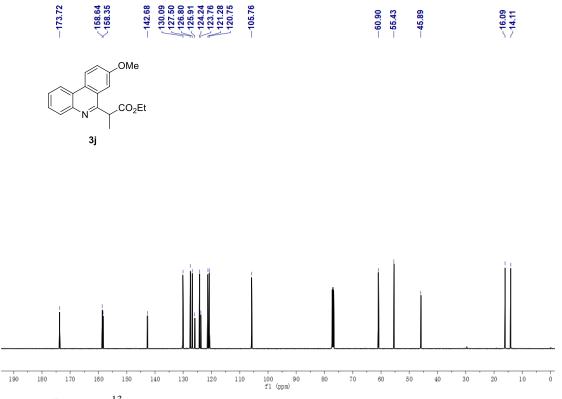


Figure S44. The ¹³C-NMR spectral copy of compound 3j.

 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01

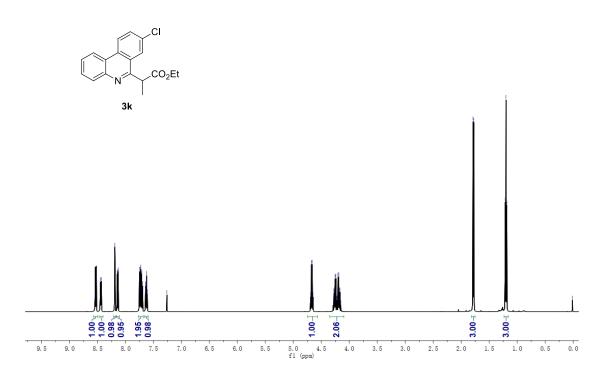


Figure S45. The ¹H-NMR spectral copy of compound 3k.

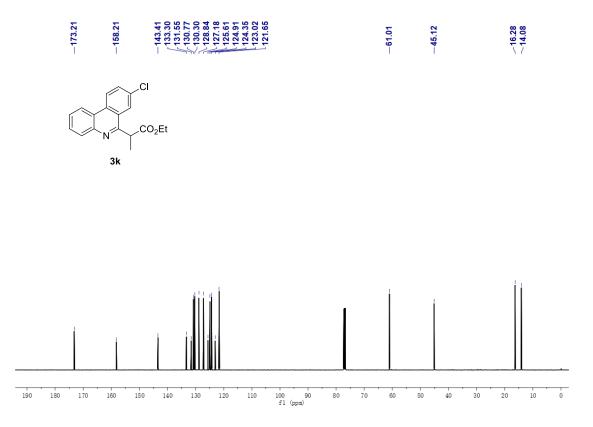


Figure S46. The ¹³C-NMR spectral copy of compound 3k.

A 4 85 A 4 85

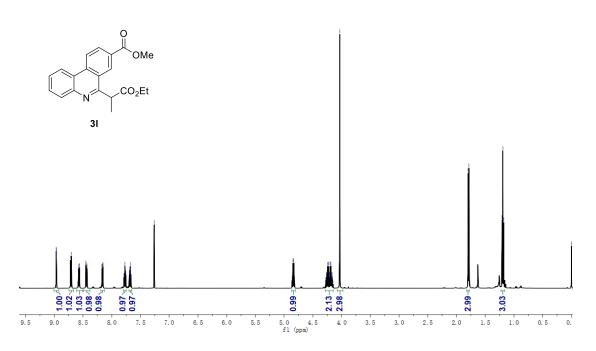


Figure S47. The ¹H-NMR spectral copy of compound 3l.

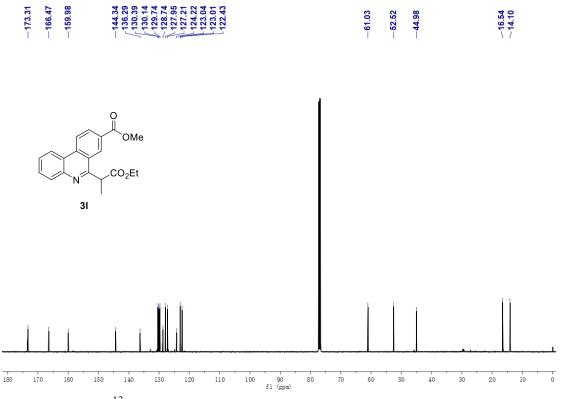
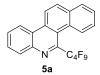



Figure S48. The ¹³C-NMR spectral copy of compound 3l.

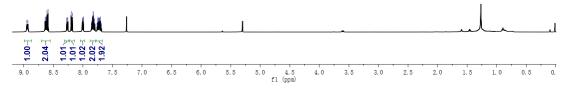


Figure S49. The ¹H-NMR spectral copy of compound 5a.

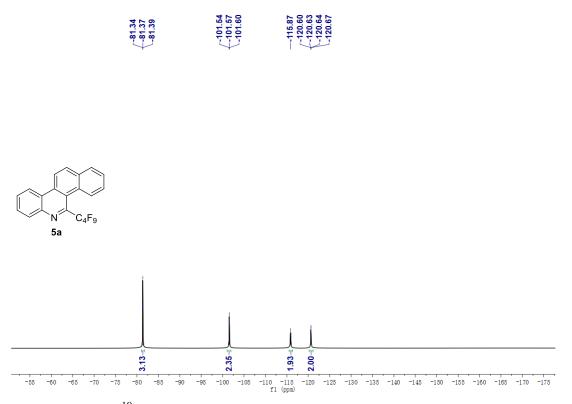


Figure S50. The ¹⁹F-NMR spectral copy of compound 5a.

145.55 145.65 145.87 144.63 144.63 144.63 135.31 135.31 135.31 133.15 135.15 135.15 13

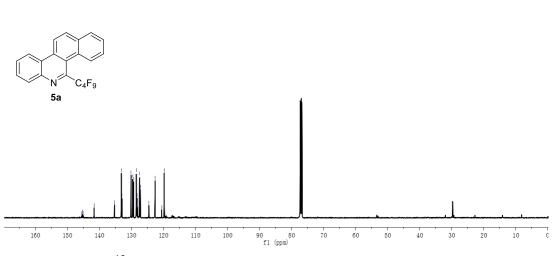
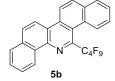



Figure S51. The ¹³C-NMR spectral copy of compound 5a

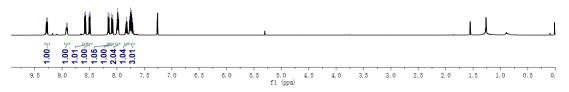
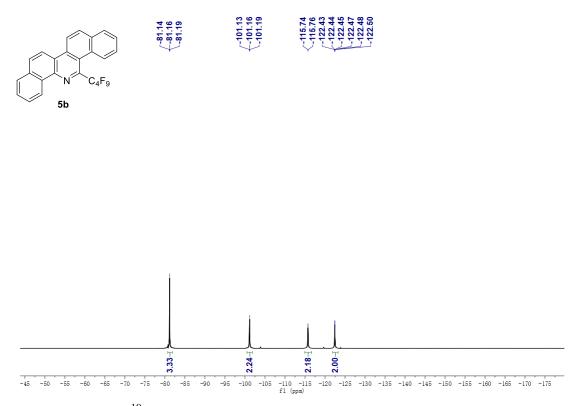



Figure S52. The ¹H-NMR spectral copy of compound 5b.

Figure S53. The ¹⁹F-NMR spectral copy of compound **5b**.

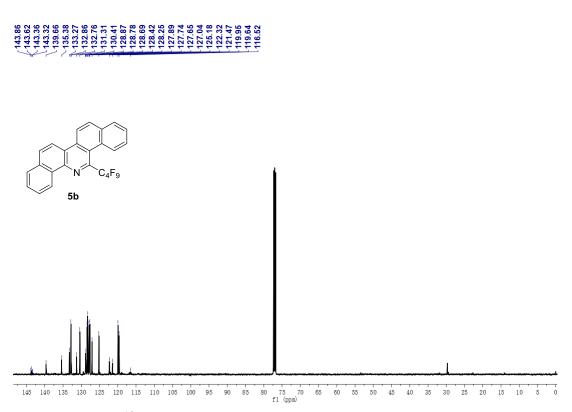
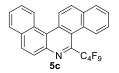
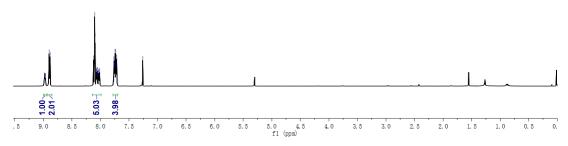
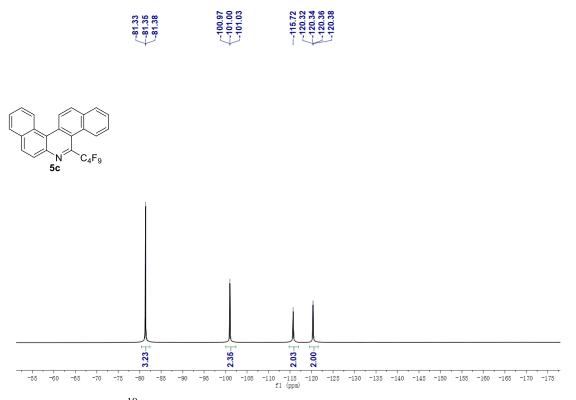
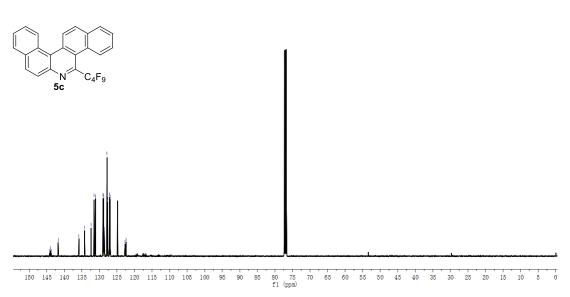
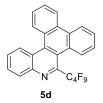
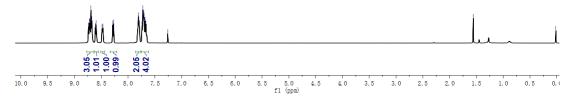




Figure S54. The ¹³C-NMR spectral copy of compound 5b.

8.93 8.97 8.97 8.97 8.99 8.88 8.88 8.88 8.12 8.10 8.12 8.10 8.10 7.73 7.73 7.73

Figure S55. The ¹H-NMR spectral copy of compound **5c**.


Figure S56. The ¹⁹F-NMR spectral copy of compound 5c.

144.18 143.95 143.95 143.95 143.95 143.95 135.84 135.84 131.62 131.62 131.62 131.62 131.62 131.62 131.62 131.62 132.85 133.85 132.85 12.85 12.85 12.85 12.85 12.85 12.85 12.85 12.85 12.85 12.8

Figure S57. The ¹³C-NMR spectral copy of compound **5c**.

-1.56

-0.02

Figure S58. The ¹H-NMR spectral copy of compound 5d.

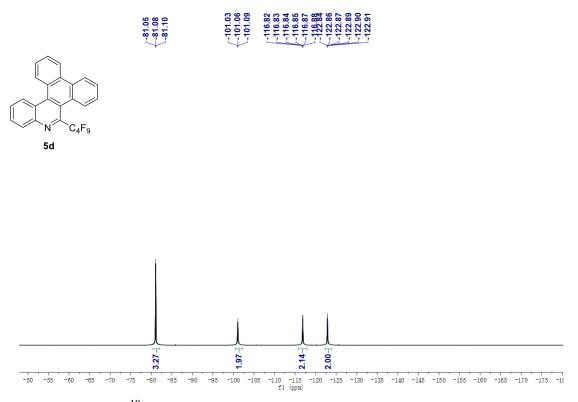


Figure S59. The ¹⁹F-NMR spectral copy of compound 5d.

144.71 144.46 144.46 144.46 137.01 132.08 132.08 132.08 132.08 132.08 122.93 122.93 122.93 122.93 122.16 122.16 122.15 122.53 122.15 122.53 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 12

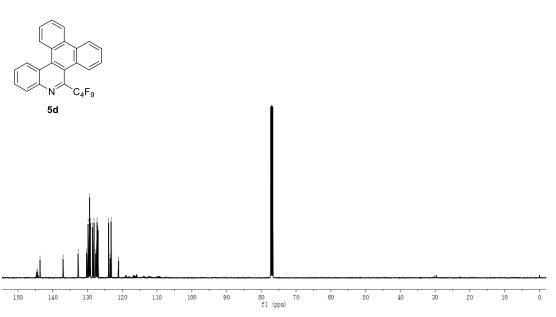


Figure S60. The ¹³C-NMR spectral copy of compound 5d.

9.36 9.35 9.35 9.35 9.61 8.69 8.69 8.69 8.69 8.69 8.60 8.61 8.60 8.01 7.72 7.72 7.72

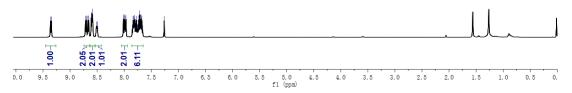
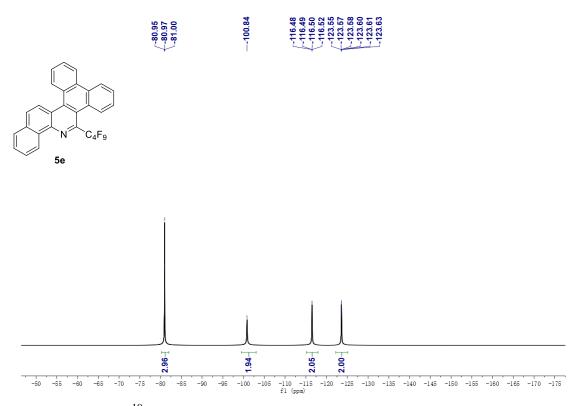
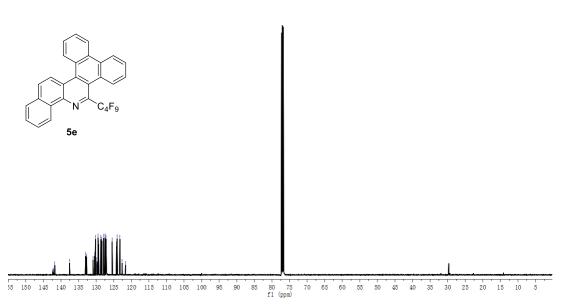




Figure S61. The ¹H-NMR spectral copy of compound 5e.

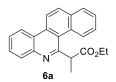


Figure S62. The ¹⁹F-NMR spectral copy of compound **5e**.

142.48 142.24 141.77 142.24 141.77 137.57 132.99 132.99 132.98 132.98 132.98 132.98 132.99 132.98 132.98 132.98 122.48 122.48 122.48 122.48 122.48 122.48 122.48 122.49 122.49 122.44 122.44 122.44 122.44 122.44 122.44 122.45 12

Figure S63. The ¹³C-NMR spectral copy of compound **5e**.

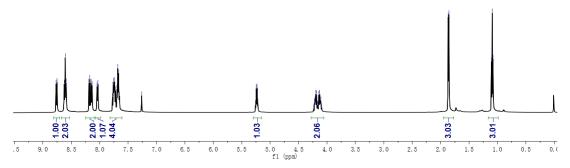


Figure S64. The ¹H-NMR spectral copy of compound 6a.

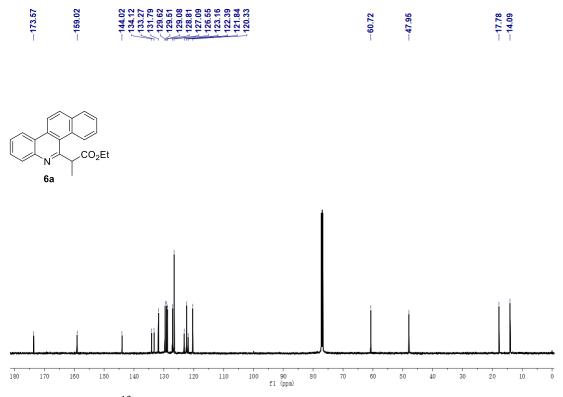


Figure S65. The ¹³C-NMR spectral copy of compound 6a.

0.000 <td

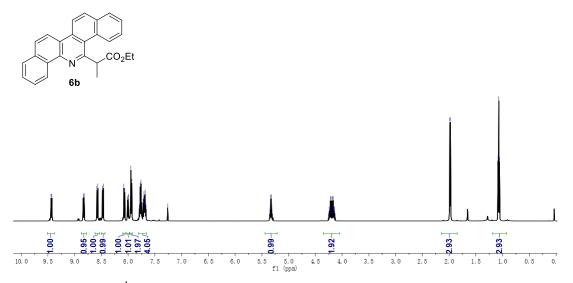


Figure S66. The ¹H-NMR spectral copy of compound 6b.

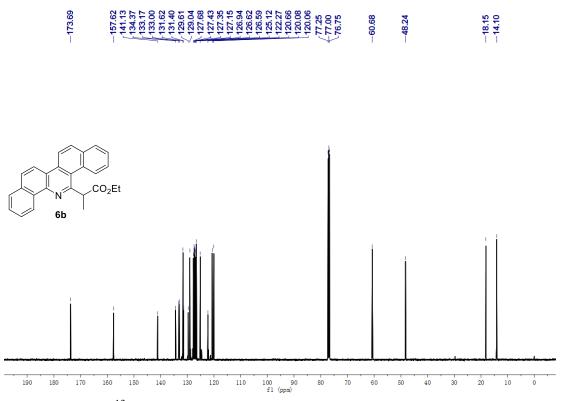
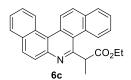



Figure S67. The ¹³C-NMR spectral copy of compound 6b.

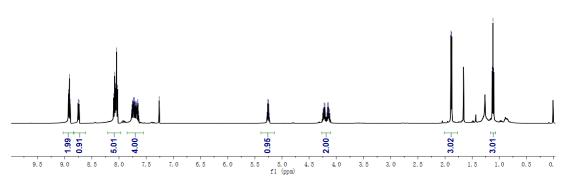


Figure S68. The ¹H-NMR spectral copy of compound 6c.

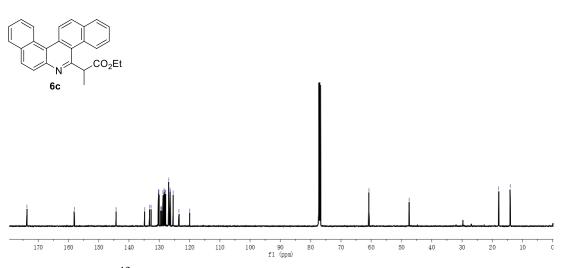


Figure S69. The ¹³C-NMR spectral copy of compound 6c

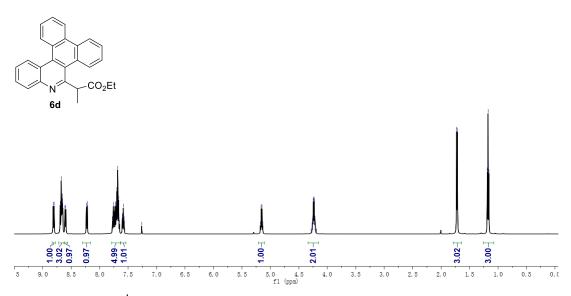


Figure S70. The ¹H-NMR spectral copy of compound 6d.

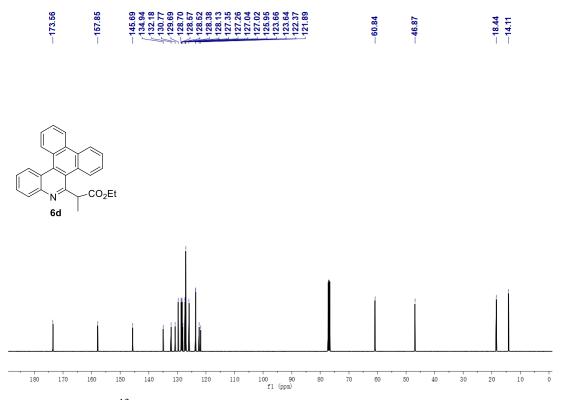


Figure S71. The ¹³C-NMR spectral copy of compound 6d.

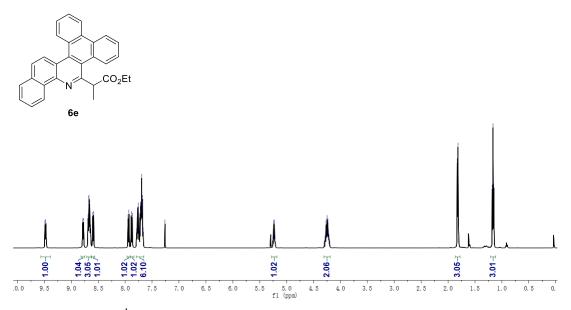


Figure S72. The ¹H-NMR spectral copy of compound 6e.

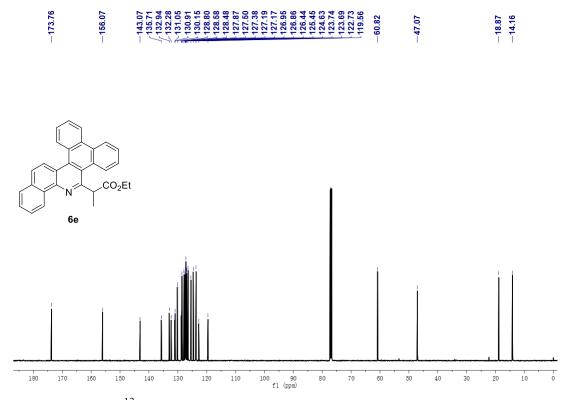


Figure S73. The ¹³C-NMR spectral copy of compound 6e.

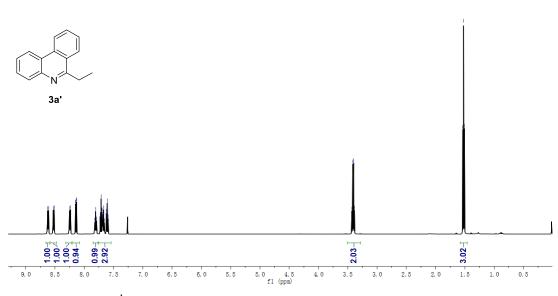


Figure S74. The ¹H-NMR spectral copy of compound 3a'.

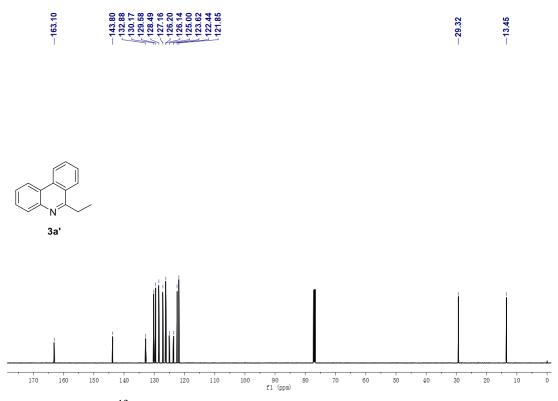


Figure S75. The ¹³C-NMR spectral copy of compound **3a**'.

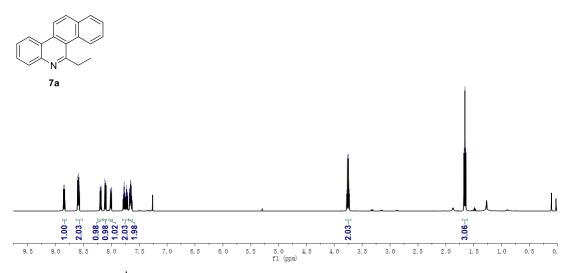


Figure S76. The ¹H-NMR spectral copy of compound 7a.

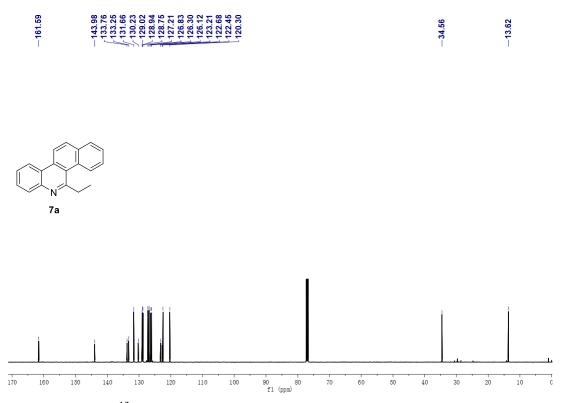
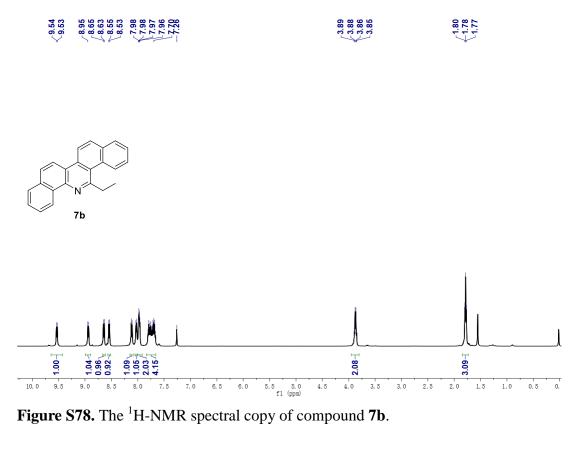



Figure S77. The ¹³C-NMR spectral copy of compound 7a.

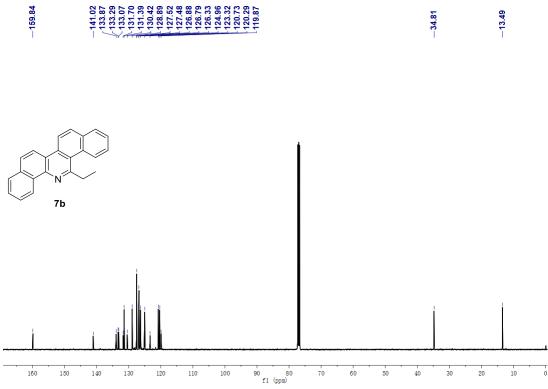


Figure S79. The ¹³C-NMR spectral copy of compound 7b.

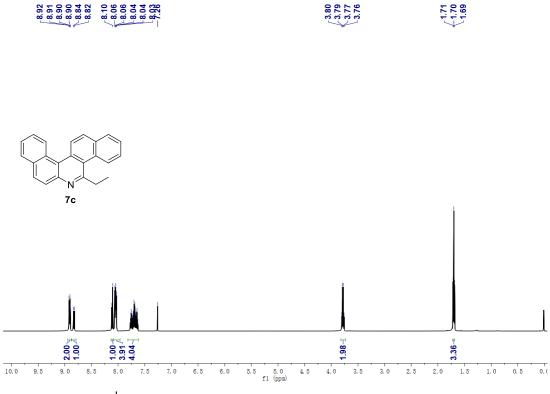


Figure S80. The ¹H-NMR spectral copy of compound 7c.

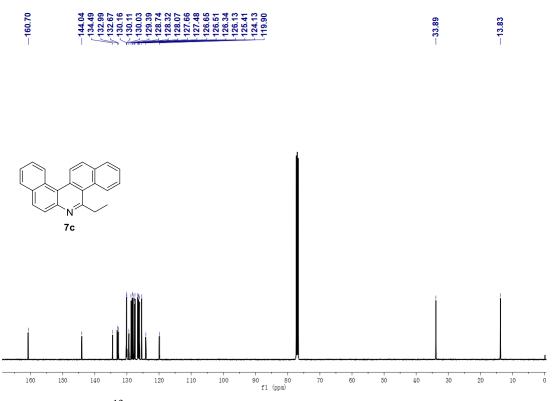


Figure S81. The ¹³C-NMR spectral copy of compound 7c.

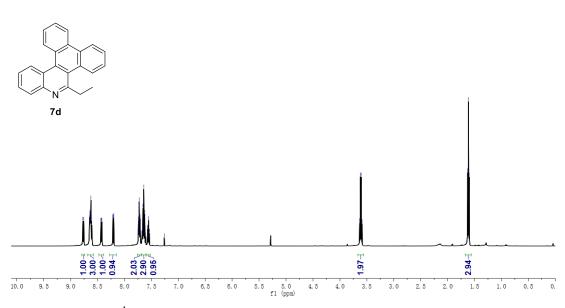


Figure S82. The ¹H-NMR spectral copy of compound 7d.

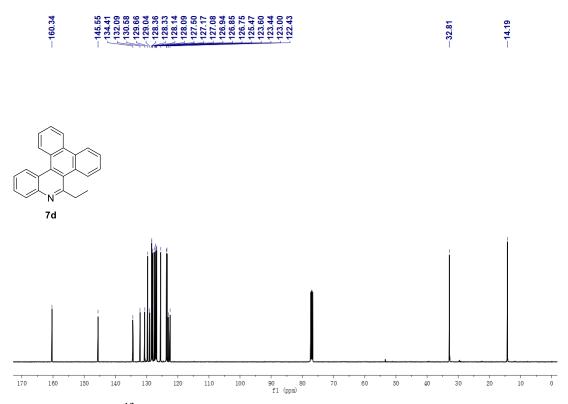


Figure S83. The ¹³C-NMR spectral copy of compound 7d.

(a) 2.55 (b) 2.55 (c) 2.55</p

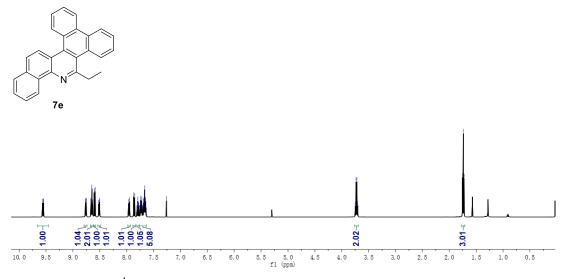
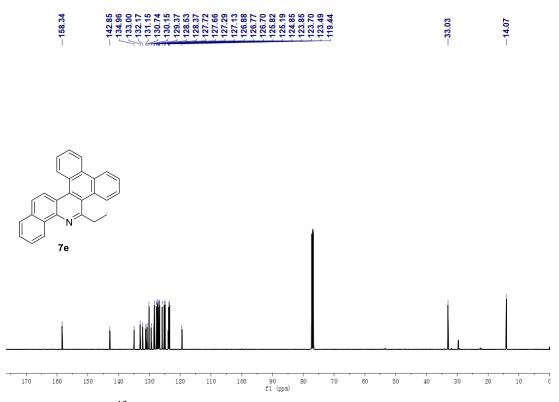



Figure S84. The ¹H-NMR spectral copy of compound 7e.

Figure S85. The ¹³C-NMR spectral copy of compound **7e**.

5. Crystal data and structure refinement parameters

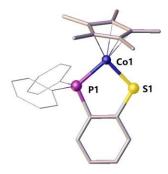


Figure S86. X-ray structure of 1 showing 50% probability ellipsoids.

Table S2. Crystal data and st	ructure refinement for 1 .	
Identification code	1	
Empirical formula	C ₂₈ H ₂₉ CoPS	
Formula weight	487.47	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	$P2_1/n$	
a/Å	9.0319(4)	
b/Å	18.9034(9)	
c/Å	14.4632(7)	
$\alpha/^{\circ}$	90	
β/°	96.640(2)	
$\gamma/^{\circ}$	90	
Volume/Å ³	2452.8(2)	
Z	4	
$\rho_{calc}g/cm^3$	1.320	
μ/mm^{-1}	0.863	
F(000)	1020.0	
Crystal size/mm ³	$0.22 \text{ x } 0.24 \text{ x } 0.3 \text{mm}^3$	
Radiation	MoKa ($\lambda = 0.710$)	
2Θ range for data collection/	° 3.558 to 49.994	
Index ranges	$-10 \le h \le 10, -22 \le k \le 19, -10 \le l \le 17$	
Reflections collected	16180	
Independent reflections	4327 [$R_{int} = 0.0218$, $R_{sigma} = 0.0237$]	
Data/restraints/parameters	4327/0/285	
Goodness-of-fit on F ²	1.042	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0285, wR_2 = 0.0704$	
Final R indexes [all data]	$R_1 = 0.0352, wR_2 = 0.0740$	
Largest diff. peak/hole / e Å ⁻³ 0.64/-0.30		

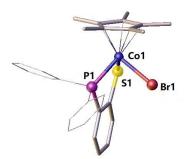


Figure S87. X-ray structure of 1-Br showing 50% probability ellipsoids.

Identification and	
Identification code	1-Br
Empirical formula	C ₂₈ H ₂₉ BrCoPS
Formula weight	567.38
Temperature/K	172.99(10)
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	16.6717(15)
b/Å	10.051(2)
c/Å	14.516(6)
α/\circ	90
β/°	90
γ/°	90
Volume/Å ³	2432.4(11)
Z	4
$\rho_{calc}g/cm^3$	1.549
μ/mm^{-1}	2.515
F(000)	1160.0
Crystal size/mm ³	0.31 x 0.28 x 0.42mm ³
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	° 6.944 to 50.67
Index ranges	$-18 \le h \le 20, -12 \le k \le 12, -17 \le l \le 17$
Reflections collected	10560
Independent reflections	3956 [$R_{int} = 0.0649, R_{sigma} = 0.0790$]
Data/restraints/parameters	3956/1/295
Goodness-of-fit on F ²	1.044
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0480, wR_2 = 0.0977$
Final R indexes [all data]	$R_1 = 0.0588, wR_2 = 0.1016$
Largest diff. peak/hole / e Å ⁻	³ 0.54/-0.45
Flack parameter	0.024(19)
L	

Table S3. Crystal data and structure refinement for 1-Br.

Figure S88. X-ray structure of 6a showing 50% probability ellipsoids.

Identification code	6a	
Empirical formula	$C_{22}H_{18}NO_2$	
Formula weight	328.37	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	$P2_1/n$	
a/Å	12.7660(3)	
b/Å	7.3952(2)	
c/Å	18.2702(4)	
α/\circ	90	
β/°	103.067(2)	
γ/°	90	
Volume/Å ³	1680.16(7)	
Z	4	
$\rho_{calc}g/cm^3$	1.298	
μ/mm^{-1}	0.660	
F(000)	692.0	
Crystal size/mm ³	0.3 x 0.24 x 0.3mm ³	
Radiation	$CuK\alpha (\lambda = 1.54184)$	
2Θ range for data collection/° 7.698 to 134.134		
Index ranges	$-15 \le h \le 15, -8 \le k \le 8, -21 \le l \le 17$	
Reflections collected	8706	
Independent reflections	2978 [$R_{int} = 0.0396$, $R_{sigma} = 0.0325$]	
Data/restraints/parameters	2978/20/238	
Goodness-of-fit on F ²	1.187	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0707, wR_2 = 0.1844$	
Final R indexes [all data]	$R_1 = 0.0807, wR_2 = 0.1974$	
Largest diff. peak/hole / e Å ⁻³ 0.36/-0.71		

Table S4. Crystal data and structure refinement for 6a.

.

Figure S89. X-ray structure of 6c showing 50% probability ellipsoids.

Table S5.Crystal data and structure refinement for 6c.		
Identification code	бс	
Empirical formula	$C_{26}H_{21}NO_2$	
Formula weight	379.44	
Temperature/K	173.00(10)	
Crystal system	triclinic	
Space group	P-1	
a/Å	7.4718(9)	
b/Å	10.1700(13)	
c/Å	13.6849(15)	
$\alpha/_{\circ}$	80.313(10)	
β/°	76.092(10)	
$\gamma/^{\circ}$	74.405(11)	
Volume/Å ³	966.3(2)	
Z	2	
$\rho_{calc}g/cm^3$	1.304	
μ/mm^{-1}	0.082	
F(000)	400.0	
Crystal size/mm ³	0.36 x 0.21 x 0.32mm ³	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/	°7.064 to 49.992	
Index ranges	$-8 \le h \le 8, -12 \le k \le 12, -16 \le l \le 16$	
Reflections collected	10401	
Independent reflections	3378 [$R_{int} = 0.0453$, $R_{sigma} = 0.0481$]	
Data/restraints/parameters	3378/0/264	
Goodness-of-fit on F ²	1.079	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0523, wR_2 = 0.1325$	
Final R indexes [all data]	$R_1 = 0.0706, wR_2 = 0.1454$	
Largest diff. peak/hole / e $Å^{-3}$ 0.36/-0.27		

.

Figure S90. X-ray structure of 6e showing 50% probability ellipsoids.

Table S6. Crystal data and structure refinement for 6e.		
Identification code	бе	
Empirical formula	$C_{30}H_{23}NO_2$	
Formula weight	429.49	
Temperature/K	173.00(10)	
Crystal system	triclinic	
Space group	P-1	
a/Å	7.3192(6)	
b/Å	11.4476(7)	
c/Å	14.2878(11)	
α/\circ	109.541(6)	
β/°	103.435(7)	
$\gamma/^{\circ}$	90.850(6)	
Volume/Å ³	1091.70(15)	
Z	2	
$\rho_{calc}g/cm^3$	1.307	
μ/mm^{-1}	0.640	
F(000)	452.0	
Crystal size/mm ³	$0.35 \ge 0.28 \ge 0.43 \text{ mm}^3$	
Radiation	$CuK\alpha (\lambda = 1.54184)$	
2Θ range for data collection/	° 8.238 to 134.138	
Index ranges	$-8 \le h \le 7, -13 \le k \le 13, -17 \le l \le 15$	
Reflections collected	9483	
Independent reflections	3840 [$R_{int} = 0.0422$, $R_{sigma} = 0.0519$]	
Data/restraints/parameters	3840/0/300	
Goodness-of-fit on F ²	1.065	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0504, wR_2 = 0.1343$	
Final R indexes [all data]	$R_1 = 0.0655, wR_2 = 0.1468$	
Largest diff. peak/hole / e Å ⁻³ 0.26/-0.29		

Table S6. Crystal data and structure refinement for 6e.

6. References

- 1. E. E. Bunel, L. Valle and J. M. Manriquez, Organometallics, 1985, 4, 1680.
- 2. H. Jiang, Y. Cheng, R. Wang, M. Zheng, Y. Zhang and S. Yu, *Angew. Chem. Int. Ed.*, 2013, **52**, 13289.