Supporting Information

For

Selective carbonylation of benzene to benzaldehyde using a phosphorus-nitrogen PN³P-Rhodium (I) complex

Chunhui Zhou, Jinsong Hu, Yuan Wang, Changguang Yao, Priyanka Chakraborty, Huaifeng Li, Chao Guan, Mei-Hui Huang and Kuo-Wei Huang*

KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

E-mail: hkw@kaust.edu.sa

Table of Contents

Fig. S1 ¹H NMR spectrum of 1

Fig. S2 ³¹P NMR spectrum of 1

Fig. S3 ¹³C NMR spectrum of 1

Fig. S4 ¹H NMR spectrum of complex **2**

Fig. S5 ³¹P NMR spectrum of complex 2

Fig. S6¹³C NMR spectrum of complex 2

Fig. S7 ¹H NMR spectrum of complex 3

Fig. S8 ³¹P NMR spectrum of complex 3

Fig. S9¹³C NMR spectrum of complex 3

Fig. S10 ¹H NMR spectrum of complex 4

Fig. S11 ³¹P NMR spectrum of complex 4

Fig. S12¹³C NMR spectrum of complex 4

Fig. S13 ¹H NMR spectrum of complex 4 with HCl

Fig. S14 ³¹P NMR spectrum of complex 4 with HCl

Fig. S15 2 H NMR spectrum of 2 with C₆D₆

Fig. S16 HRMS spectrum of ligand 1

Fig. S17 HRMS spectrum of complex 2

Fig. S18 HRMS spectrum of complex 3

Fig. S19 HRMS spectrum of complex 4

Table S1 Crystal data and structure refinements for the complex 3 and 4

Experimental details

General consideration

All organic reagents were purchased from commercial sources without further purification. All solvents used were dried and distilled according to known procedures to ensure purity and absence of water. CO gas was purchased from commercial sources in high pressure cylinders and used without further purification using Schlenk techniques. All reactions were carried out inside an argon atmosphere glove box or using Schlenk techniques to ensure oxygen and external water free environments. All glassware was rigorously dried. All other chemicals were commercially available and used as received. NMR spectra were recorded at 400 MHz (¹H), 101 MHz (¹C), and 162 MHz (³¹P) using a Bruker Avance-400 NMR spectrometer, unless noted otherwise. All spectra were recorded at 25 °C, and δ values were denoted by ppm and *J* by Hz. ¹H NMR chemical shifts were referenced to the residual hydrogen signals of the deuterated solvents (7.26 ppm, CDCl₃; 7.16 ppm, C₆D₆; 2.50 ppm, DMSO-*d*₆), and the ¹³C NMR chemical shifts were referenced to the ¹³C signals of the deuterated solvents (77.16 ppm, CDCl₃; 128.06 ppm, C₆D₆; 39.52 ppm, DMSO-*d*₆), and to external H₃PO₄ (85%) for phosphorus chemical shifts. The HR-MS were obtained using a Finnigan MAT 95 system.

Synthesis of the PN³P ligand (1)

To a dry THF (60 mL) solution of 2, 6-diaminopyridine (2.18 g, 20 mmol), the Et₃N (4.05 g, 40 mmol) was added slowly. The resulting mixture was cooled to 0 °C and stirred 30 mins, then chlorodicyclopentylphosphine (9.31 g, 40 mmol) was added to the mixture dropwise with a syringe. The ultimate reaction mixture stirred and heated at 50 °C for 24 h in the argon atmosphere. After cooling to the room temperature, the suspension was filtered in the glovebox and the brown filtrate formed. The filtrate was concentrated and recrystallized by the pentane to afford the targeted colorless solid PN³P ligand **1**. Yield: 1.50 g (17%). ³¹P {¹H} NMR (CD₃Cl, 162 MHz): 38.67 (s). ¹H NMR (CD₃Cl, 400 MHz): 7.26 (t, J = 7.9 Hz, 1H, Py H4), 6.45 (dd, J = 7.9 Hz, J = 2.0 Hz, 2H, Py H3, 5), 4.41 (d, J = 7.8 Hz, 2H, NH), 1.93-2.01 (m, 4H, *c*Pe-*H*), 1.82-1.88 (m, 8H, *c*Pe-*H*), 1.52-1.66 (m, 20H, *c*Pe-*H*), 1.37-1.46 (m, 4H, *c*Pe-*H*), ¹³C NMR (CD₃Cl, 101 MHz): 159.42 (s, Py C2, 6), 139.16 (s, Py C4), 98.21 (d, J = 17.9 Hz, Py C3, 5), 39.57 (d, J = 10.1 Hz, *c*Pe-*C*), 29.13

(d, J = 6.1 Hz, cPe-C), 28.98 (d, J = 4.8 Hz, cPe-C), 26.67 (d, J = 7.6 Hz, cPe-C), 26.22 (d, J = 5.4 Hz, cPe-C). HRMS (ESI) Calcd. for C₂₅H₄₁N₃P₂ requires (M+H)⁺ 446.2849, Found: 446.2845.

Syntheses of PN³P pincer complexes

Reaction of ligand (1) with [Rh(COD)Cl]₂ to form (PN³P)RhCl (2). A dry THF solution of synthesized PN³P ligand **1** (10 mL, 891 mg, 2.0 mmol) was dropwise added to a stirred orange solution of [Rh(COD)Cl]₂ (493 mg, 1.0 mmol) in THF (10 mL). The resulting orange suspension was stirred overnight at 60 °C in the argon atmosphere. After cooling to the room temperature, the solvent was removed under vacuum, and the residue was washed with pentane three times. Complex (PN³P)RhCl (**2**) was obtained as a yellowish solid. Yield: 1063 mg (91%). ³¹P{¹H} NMR (C₆D₆, 162 MHz): 91.81 (d, *J* = 154.5 Hz, 2P). ¹H NMR (C₆D₆, 400 MHz): 6.88 (t, *J* = 7.9 Hz, 1H, Py H4), 5.51 (d, *J* = 7.9 Hz, 2H, Py H3, 5), 4.20 (s, 2H, NH), 2.47-2.57 (m, 4H, cPe-H), 2.08-2.17 (m, 4H, cPe-H), 1.88-2.02 (m, 16H, cPe-H), 1.50-1.70 (m, 12H, cPe-H). ¹³C NMR (DMSO-*d*₆, 101 MHz): 161.65 (t, *J* = 7.9 Hz, Py C2, 6), 140.22 (s, Py C4), 97.46 (s, Py C3, 5), 38.41 (t, *J* = 14.0 Hz, cPe-C), 29.38 (t, *J*_{P-C} = 3.9 Hz, cPe-C), 27.76 (s, cPe-C), 26.47 (t, *J* = 3.2 Hz, cPe-C), 25.58 (t, *J* = 4.8 Hz, cPe-C). HRMS (ESI) Calcd. for C₂₅H₄₁N₃P₂RhCl requires (M)⁺ 583.1514, Found: 583.1507.

Reaction of (PN³P)RhCl (2) with benzene in the presence of KN(SiMe₃)₂ to form (PN³P)Rh(C₆H₅) (3). A dry benzene solution (5 mL) of KN(SiMe₃)₂ (42.0 mg, 0.20 mmol, 95% purity) was added to a stirred yellowish benzene suspension (5 mL) of 2 (116.8 mg, 0.20 mmol) under the argon atmosphere. A considerable amount of red solid was precipitated and consumed during 5 days at room temperature gradually, forming a homogeneous red solution. A red residue was obtained when the removing the solvent. Treating the residue with the pentane to make an extraction and filtered to remove the forming KCl in the reaction process. The ultimate extract was dried in vacuum to give 102.7 mg (Yield: 82%) of **3** as a red solid. ³¹P {¹H} NMR (C₆D₆, 162 MHz): 94.22 (d, *J* = 178.2 Hz, 2P). ¹H NMR (C₆D₆, 400 MHz): 7.97 (d, *J* = 7.6 Hz, 2H, Rh-Ph), 7.00-7.03 (m, 1H, Rh-Ph), 6.97 (d, *J* = 7.4 Hz, 1H, Py H4), 5.63 (d, *J* = 7.9 Hz, 2H, Py H3, 5), 4.29 (s, 2H, NH), 2.00-2.08 (m, 4H, *c*Pe-*H*), 1.81-1.93 (m, 12H, *c*Pe-

H), 1.60-1.79 (m, 20H, *c*Pe-*H*). ¹³C NMR (C₆D₆, 126 MHz): 167.61-167.81 (m, Rh-*C*), 159.73 (t, *J* = 8.3 Hz, Py C2, 6), 140.90 (s, Py C4), 96.17 (s, Py C3, 5), 133.98 (s, Ph), 125.31 (s, Ph), 119.15 (s, Ph), 39.65 (t, *J* = 10.7 Hz, *c*Pe-*C*), 29.54 (s, *c*Pe-*C*), 28.40 (t, *J* = 10.7 Hz, *c*Pe-*C*), 27.13 (s, *c*Pe-*C*). HRMS (ESI): [M-Ph+MeCN] requires 589.2071, Found: 589.1998; M = C₃₁H₄₆N₃P₂Rh.

Reaction of (PN³P)Rh(C₆H₅) (3) with CO to form (PN³P)RhCOC₆H₅ (4). To a dry benzene (10 mL) solution of complex 3 (62.5 mg, 0.1 mmol) was charged with carbon monoxide for thirty minutes at the room temperature, a deep-red solution was obtained. Then the solution was evaporated to give a red solid, and the analytically pure complex 4 was formed. Yield: 56.5 mg (86%). ³¹P {¹H} NMR (C₆D₆, 162 MHz): 97.67 (d, J= 188.8 Hz, 2P). ¹H NMR (C₆D₆, 400 MHz): 8.63 (d, J = 7.0 Hz, 2H, Rh-Ph), 7.32 (t, J = 7.5 Hz, 2H, Rh-Ph), 7.15-7.18 (m, 1H, Rh-Ph), 6.98 (t, J = 7.9 Hz, 1H, Py H4), 5.82 (d, J = 7.9 Hz, 2H, Py H 3,5), 5.42 (s, 2H, NH), 1.98-2.06 (m, 12H, *c***Pe-***H***), 1.66-1.81 (24H,** *c***Pe-***H***). ¹³C NMR (C₆D₆, 126 MHz): 159.46 (t, J = 8.1 Hz, Py C2, 6), 151.64-151.48 (m, RhCOPh), 139.20 (s, Py C4),135.75 (s, Ph), 129.20 (s, Ph), 128.35 (s, Ph), 127.36 (s, Ph), 96.49 (s, Py C3, 5), 40.89-41.07 (m,** *c***Pe-***C***), 34.45 (s,** *c***Pe-***C***), 29.75 (s,** *c***Pe-***C***), 28.74 (t, J = 5.3 Hz,** *c***Pe-***C***), 26.98 (dt, J = 3.8 Hz, J= 32.9 Hz,** *c***Pe-***C***). HRMS (ESI): [M-COPh+MeCN] requires 589.2091, Found: 589.2104; M = C₃₂H₄₆N₃OP₂Rh.**

Reaction of (PN³P)RhCO (C₆H₅) (4) with dilute HCl to form (PN³P)RhCl (2) and release benzaldehyde. A dilute hydrochloric acid (HCl) solution (1 mmol/mL, 0.10 mmol) was added to the THF (5 mL) solution of complex **4** (65.4 mg, 0.1 mmol) at room temperature, and a yellow solution was obtained immediately. Then the forming solution was evaporated, leaving a yellowish solid. The residue was washed with pentane and dried in the vacuum to give the 51.3 mg (Yield: 88%) of the starting complex **2** as a yellowish solid.

Single X-ray structure determination

The X-ray diffraction data of **3** and **4** were collected at the low temperature using Bruker-AXS KAPPA-APEXII CCD diffractometer with graphite-monochromated Cu-K α radiation (λ = 1.54178

Å), and the tested crystals were epoxy-coated and mounted on the glass fiber. The structures of complexes **3** and **4** are solved by direct methods, for the non-hydrogen atoms, we used the trial structure for the locating and then they were refined anisotropically with the SHELXTL using a full-matrix least-squares procedure based on F^2 values. As to the hydrogen atoms, the positions were fixed geometrically at calculated distances and allowed to ride on the parent atoms. A semi-empirical absorption correction was applied using the SADABS program. The free solvent (benzene and THF) was squeezed (complex **4**) with PLATON during the structure refinement. The detail of the crystal data and structure refinements for complex **3** and **4** are listed in **Table S1**.

Fig. S2 ³¹P NMR spectrum of 1 (CDCl₃, 162MHz)

Fig. S3 ¹³C NMR spectrum of 1 (CDCl₃, 101 MHz)

Fig. S4 ¹H NMR spectrum of **2** (C₆D₆, 400MHz)

Fig. S6 ¹³C NMR spectrum of **2** (DMSO-*d*₆, 101MHz)

Fig. S8 ³¹P NMR spectrum of 3 (C₆D₆, 162MHz)

Fig. S12 13 C NMR spectrum of 4 (C₆D₆, 126 MHz)

Fig. S14 1 P NMR spectrum of 4 with HCl (C₆D₆, 162MHz)

Fig. S15 ²H NMR spectrum of 2 with C₆D₆ (benzene, 600MHz, 1024 scan times)

Fig. S16 HRMS spectrum of ligand 1

Fig. S18 HRMS spectrum of complex 3

Fig. S19 HRMS spectrum of complex 4

identification code	complex 3	complex 4
empirical formula	C31H44N3P2Rh	$C_{92}H_{120}N_6O_3P_4Rh_2$
formula weight	623.54	1687.64
temperature (K)	230	200
wavelength (Å)	1.54178	1.54178
crystal system	Monoclinic	Monoclinic
space group	$P2_{1}/n$	C2/c
<i>a</i> (Å)	10.9778(7)	29.2408(9)
<i>b</i> (Å)	16.1480(10)	13.8295(4)
<i>c</i> (Å)	17.5888(11)	25.4214(7)
α (deg)	90	90
β (deg)	106.2308(16)	120.9250(10)
γ (deg)	90	90
Ζ	4	4
$V(Å^3)$	2993.7(3)	8818.6(5)
D_{calcd} (g cm ⁻³)	1.383	1.271
μ (mm ⁻¹)	5.798	4.101
F (000)	1304	3552
theta min-max (deg)	4.3, 66.9	3.5, 72.2
total uniq. Data	20033, 5214	79256, 8674
<i>R</i> (int)	0.043	0.030
observed data $[I > 2\sigma(I)]$	5064	8302
$R_1, wR_2 (I > 2\sigma(I))$	0.0339, 0.0937	0.0276, 0.0763
S	1.05	1.01

Table 1 crystal data and structure refinements for the complex 3 and 4

 $\overline{R_1 = \Sigma ||F_0| - |F_c|| / |\Sigma|F_0|}, wR_2 = \{ \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}, \text{ where } w = 1 / [\sigma^2 (F_0^2) + (aP)^2 + bP], P = (F_0^2 + 2F_c^2) / 3.$