Supporting Information for

Total Synthesis of (-)-8-epi-Chromazonarol Enabled by a Unique $\mathbf{N}_{2} \mathbf{H}_{4} \cdot \mathbf{H}_{2} \mathrm{O}$

Promoted Intramolecular oxa-Michael Cyclization Reaction

Lin Liu, ${ }^{\dagger}$ Huayue Song, ${ }^{\dagger}$ Peng Chen, ZiyunYuan, Shangbiao Feng, Weiwei Zhang, Bowen Fang, Xingang Xie*, Xuegong She
\dagger L. Liu and H. Y. Song contributed equally

E-mail: xiexg@lzu.edu.cn
Contents

1. General experiment methods
2.Experimental procedures and characterization data of all synthetic new compounds
2.1 Preparation and spectra data of aryl stannane 9
2.2 Preparation and spectra data of bicyclic triflate $\mathbf{1 0}$
2.3 Preparation and spectra data of α, β-unsaturated aryl ketone $\mathbf{1 4}$
2.4 Preparation and spectra data of cyclization precursor $\mathbf{8}$
2.5 Preparation and spectra data of tetracyclic ketone 7a and 7a'
2.6 Spectra data of $\mathbf{8 b - 8 d}$ and cyclization products $\mathbf{7 b - 7 d}$
2.7 Preparation and spectra data of benzyl ether $\mathbf{1 8}$
2.8 Preparation and spectra data of compound 19
2.9 Preparation and spectra data of 8-epi-chromazonarol 2
2.10 Preparation and spectra data of ester 20
2.11 Spectra data of Intermediate 17
2.12 Comparison of the spectra data of synthetic (-)-8-epi-chromazonarol and those of natural product
2. Reference
3. NMR spectra of all synthetic new compounds

1. General Experimental Methods.

All reactions sensitive to air or moisture were carried out under argon atmosphere in dry and freshly distilled solvents under anhydrous conditions, unless otherwise noted. Column chromatography was performed on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using 300 and $75 \mathrm{MHz}, 400$ and 101 MHz , or 600 and 150 MHz NMR spectrometers respectively. Chemical shifts (δ) are given in ppm with reference to solvent signals [${ }^{1} \mathrm{H}$ NMR: CDCl_{3} (7.26); ${ }^{13} \mathrm{C}$ NMR: CDCl_{3} (77.0)]. The high resolution mass spectra (HRMS) were recorded on an FT-ICR mass spectrometer using electrospray ionization (ESI). Optical rotations were measured on a precision automated polarimeter. Melting points were measured on a melting point apparatus.

2. Experimental procedures and characterization dataof all synthetic new

 compounds2.1 Preparation and spectra data of aryl stannane 9

To a stirred solution phenol $11(8.08 \mathrm{~g}, 40 \mathrm{mmol})$ in dry DMF (100 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(6.07 \mathrm{~g}, 44 \mathrm{mmol})$ and $\mathrm{BnBr}(5.2 \mathrm{~mL}, 44 \mathrm{mmol})$ at room temperature. The resulting mixture was then stirred at room temperature for 12 h . After it was completed, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(5 \mathrm{~mL})$ and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic extract was washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give acrude residuewhich was further purified bycolumn chromatography on silica gel with

EtOAc/petroleum ether (1:50) as eluents to afford the corresponding known benzyl ether $\mathbf{1 2}^{1}$ as yellow oil ($11.53 \mathrm{~g}, 99 \%$).

To a stirred solution of $\mathbf{1 2}(11.53 \mathrm{~g}, 39.5 \mathrm{mmol})$ in dry THF $(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise n - BuLi (2.5 M in n-hexane, 17.4 mL) under Ar. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h . Then $(n-\mathrm{Bu})_{3} \mathrm{SnCl}(11.8 \mathrm{~mL}, 43.4 \mathrm{mmol})$ was added and the mixture was allowed to react at $-78^{\circ} \mathrm{C}$ for another 1 h . After that, the cooling bath was removed and the mixture reacted at room temperature for 12 h . When the reaction was completed, it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(50 \mathrm{~mL})$ and extracted with EtOAc ($80 \mathrm{~mL} \times 3$).The combined organic extract was washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give a crude residue which was further purified by column chromatography on silica gel with $\mathrm{EtOAc} /$ petroleum $(1: 200)$ as eluents to afford the corresponding aryl stannane 9 as a colorless oil $(16.72 \mathrm{~g}, 84 \%) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.41-7.31(\mathrm{~m}$, $5 \mathrm{H}), 6.96(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.50-$ 1.37 (m, 6H), $1.31-1.19(\mathrm{~m}, 6 \mathrm{H}), 1.04-0.90(\mathrm{~m}, 6 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=157.2,153.7,137.4,132.0,128.3,128.3,127.7$, 127.7, 127.6, 123.1, 113.2, 110.1, 70.4, 55.6, 29.1, 29.1, 29.1, 27.4, 27.4, 27.4, 13.7, 13.7, 13.7, $9.8,9.8,9.8 \mathrm{ppm}$. HRMS(ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Sn}$: 505.2129, found : 505.2123.
2.2 Preparation and spectra data of bicyclic triflate $\mathbf{1 0}$
2.2.1 The known bicyclic ketone $\mathbf{1 3}$ was prepared according to ref. 2

To a stirred solution of (R)-carvone $(15.00 \mathrm{~g}, 100 \mathrm{mmol})$ in dry THF $(30 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ under Ar was added dropwise freshly prepared LDA (140 mmol in 70 mL dry THF). The resulting mixture was stirred at $-25^{\circ} \mathrm{C}$ for 2 h . Then it was added MeI ($21.8 \mathrm{~mL}, 350 \mathrm{mmol}$) and allowed to react at $-25^{\circ} \mathrm{C}$ for 1 h . After that, the cooling bath was removed and the mixture reacted at room temperature for 12 h . When the reaction was completed, it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(20 \mathrm{~mL})$ and extracted with EtOAc ($80 \mathrm{~mL} \times 3$).The combined organic extract was washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give a crude residue which was further purified by column chromatography on silica gel with EtOAc/petroleum (1:200) as eluents to afford compound $\mathbf{S} 1$ as yellow oil $(14.62 \mathrm{~g}$, $89 \%)$.

To a stirred solution of $\mathbf{S 1}(6.30 \mathrm{~g}, 38.4 \mathrm{mmol})$ in dry THF $(30 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under Ar was added dropwise freshly prepared LDA (57 mmol in 60 mL dry THF). The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 h , then it was added 2-bromo-allylic bromide ($8 \mathrm{~mL}, 76.8 \mathrm{mmol}$) and allowed to react at $-20^{\circ} \mathrm{C}$ for 1 h . Then the cooling bath was removed and the mixture reacted at room temperature for 12 h . After the reaction was completed, it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(20 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(80 \mathrm{~mL} \times 3)$. The combined organic extract was washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give a crude residue which was further treated with TFA (30 mL). After stirring for 3 days, it was quenched with saturated $\mathrm{NaHCO}_{3 \mathrm{aq}}(40 \mathrm{~mL})$ and extracted with EtOAc $(40 \mathrm{~mL} \times 3)$. The combined organic extract was washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give a crude residue which was directly used in the subsequent hydrogenation reaction.

To a stirred solution of the obtained crude residue in 8 mL MeOH at autoclave,
$\mathrm{Pd} / \mathrm{C}(10 \%, 1.50 \mathrm{~g})$ was added. Then the autoclave was replaced with H_{2} (20 atm) three times. Then the mixture was stirred at room temperature for 4 days. And the reaction mixture was filtered by celatom and concentrated to give acrude residue, which was further purified bycolumn chromatography on silica gel with EtOAc/petroleum (1:100) as eluents to afford compound 13 ($3.20 \mathrm{~g}, 40 \%$ overall yields for 3 steps). The spectral data of compound $\mathbf{1 3}$ were in good agreement with that previously reported. ${ }^{2}$
2.2.2 Preparation and spectra data of bicyclic triflate $\mathbf{1 0}$

To a stirred solution of $\mathbf{1 3}(1.20 \mathrm{~g}, 5.8 \mathrm{mmol})$ in dry THF $(25 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar was added KHMDS ($1 \mathrm{M}, 14.4 \mathrm{~mL}, 14.4 \mathrm{mmol}$) dropwise. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h , then it was added the solution of $\mathrm{PhNTf}_{2}(5.18$ $\mathrm{g}, 14.4 \mathrm{mmol}$) in 20 mL dry THF. After it was complete, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(20 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(80 \mathrm{~mL} \times 3)$. The organic extract was washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude residue, which was further purified by chromatography on silical gel with EtOAc/petroleum (1:200) to afford compound 10 as a colorless oil $(1.77 \mathrm{~g}, 90 \%) .[\mathrm{a}]_{\mathrm{D}}^{27}=38,\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=2.23-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=12.9,1 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.60-$ $1.52(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$, $0.86(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.0,124.1,117.1,52.5,41.2$, 39.5, 34.7, 33.2, 33.1, 31.9, 21.4, 18.8, 18.3, 18.2, 17.5 ppm . HRMS(ESI) $: \mathrm{m} / \mathrm{z}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}: 341.1398$, found : 341.1393.
2.3 Preparation and spectra data of α, β-unsaturated aryl ketone $\mathbf{1 4}$

A dried vial (200 mL) with $9(1.08 \mathrm{~g}, 2 \mathrm{mmol}), 10(680 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($1.15 \mathrm{~g}, 1 \mathrm{mmol}$), $\mathrm{LiCl}(504 \mathrm{mg}, 12 \mathrm{mmol})$ and $\mathrm{CuCl}(980 \mathrm{mg}, 10 \mathrm{mmol})$ was added distilled DMSO (20 mL). Then it wasevacuated and refilled with carbon monoxide three times by using tee joint and balloon. The resulting mixture was heated to $80^{\circ} \mathrm{C}$. After stirring for 8 h , the mixture was then cooled to $23^{\circ} \mathrm{C}$ and filtered to remove the solid by celite and washed by EtOAc (200 mL). Then the organic phase was washed by water (100 mL) and saturated brine. The water layer was also washed by EtOAc ($30 \mathrm{~mL} \times 3$) and the combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by silica gel with EtOAc/petroleum $(1: 100)$ to afford the corresponding ketene $\mathbf{1 4}$ as a white solid ($588 \mathrm{mg}, 68 \%$). $\mathrm{Mp}: 85-88^{\circ} \mathrm{C}$. $[\mathrm{a}]_{\mathrm{D}}^{22}=67,\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.23(\mathrm{~m}, 6 \mathrm{H})$, 6.92-6.85 (m, 2H), $4.97(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.48(\mathrm{~m}$, $1 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 4 \mathrm{H}), 1.29-1.18(\mathrm{~m}, 4 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~m}, 2 \mathrm{H})$, $0.74(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=200.4,153.2,152.3$, $145.3,136.7,130.3,130.0,128.5,128.0,128.0,127.8,127.8,119.4,115.8,114.7$, $71.2,55.7,49.9,41.7,37.9,36.5,33.1,33.1,32.1,21.6,21.1,20.9,18.6,18.5 \mathrm{ppm}$. HRMS(ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{O}_{3}: 433.2743$, found : 433.2733.
2.4 Preparation and spectra data of cyclization precursor 8

To a stirred solution of $\mathbf{1 4}(588 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry toluene (7 mL) was added $\mathrm{TfOH}(0.37 \mathrm{~mL}, 4.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was then stirred at $0^{\circ} \mathrm{C}$ for 5 min . After the reaction was complete, the reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3 \mathrm{aq}}(10 \mathrm{~mL})$ and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The organic extract was washed with saturated brine, dried over dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude residue, which was further purified by chromatography on silica gel with EtOAc/petroleum (1:50) to afford the phenol $\mathbf{8}$ as a yellow solid $(460 \mathrm{mg}, 1.3 \mathrm{mmol}, 99 \%) \cdot[\mathrm{a}]_{\mathrm{D}}^{22}=125,\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=12.05(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 2 \mathrm{H})$, $1.83-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~s}$, 3H), $1.19-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=207.6,156.9,151.6,141.2,131.2,123.2,120.7,119.0,116.6,56.0,50.5$, $41.8,38.3,37.1,33.3,31.9,21.5,21.5,21.3,20.9,18.6,18.5 \mathrm{ppm}$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{3}: 343.2273$, found : 343.2262.
2.5 Preparation and spectra data of tetracyclic ketone 7a and 7a'

2.5.1 Preparation and spectra data of tetracyclic ketone 7a

To a stirred solution phenol of $\mathbf{8}(265 \mathrm{mg}, 0.77 \mathrm{mmol})$ in dry diethylene glycol (5 mL) was added hydrazine hydrate ($80 \%, 1.4 \mathrm{~mL}, 23 \mathrm{mmol}$). The resulting mixturewas
then heated to reflux. After the reaction was stirred for 12 h , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(5 \mathrm{~mL})$. The mixture would be washed by 2 N HCl , then extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The organic extract was washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude residue, which was further purified by chromatography on silical gel with EtOAc/petroleum ($1: 50$) to afford the ketone $7 \mathbf{a}$ as a white solid ($153 \mathrm{mg}, 58 \%$). Mp: $147-50{ }^{\circ} \mathrm{C} \cdot[\mathrm{a}]_{\mathrm{D}}^{23}=-69,\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.29(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $2.26-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.47-$ 1.40 (m, 3H), $1.25-1.18$ (m, 6H), 0.92 (s, 3H), 0.90 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=194.9,154.7,153.4,124.6,122.0,119.3$, $106.7,80.0,64.6,55.7,54.3,41.6,40.0,39.9,38.4,33.8,33.4,26.5,22.0,18.4,18.1$, 15.2 ppm . HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{3}: 343.2273$, found : 343.2263.

2.5.2 Spectra data of 7a'

7a'and 7a was obtained in 28% and 15% yields respectively as a $1: 1$ mixture when compound $\mathbf{8}$ was treated with TfOH or TFA in reflux toluene. 7a's spectra data was shown as below. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.25(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J$ $=9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 2.15-2.12(\mathrm{~m}$, $1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=12.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H})$, $0.92(\mathrm{dd}, J=13.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta=195.0,154.0,153.4,125.4,119.7,119.4,106.7,80.4,63.8,55.7,44.0,41.7,37.9$, 37.5, 33.7, 33.4, 31.8, 27.0, 26.8, 21.8, 18.9, 17.4.
2.6 Spectra data of $\mathbf{8 b}-\mathbf{8 d}$ and cyclization products $\mathbf{7 b} \mathbf{- 7 d}$
$\mathbf{8 b}-\mathbf{8 d}$ was prepared in similar routs as $\mathbf{8}$ and treated by the standard cyclization conditions to afford 7b-7d.
2.6.1 Spectra data of $\mathbf{8 b}$ and $\mathbf{7 b}$

8b

7b

Compound 8b, white solid, Mp: $106-109{ }^{\circ} \mathrm{C},[\mathrm{a}]_{\mathrm{D}}^{27}=165$, $\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=12.48(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-$ $7.42(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 2 \mathrm{H})$, $1.83-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}$, 3H), $1.20-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=208.0,162.6,141.3,136.1,133.3,131.1,121.1,118.9,118.3,50.4,41.8$, 38.3, 37.1, 33.3, 33.3, 32.0, 21.5, 21.2, 20.9, 18.6, 18.5 ppm . HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{2}: 313.2168$, found : 313.2162.

Compound 7b was obtained in 56% yield, white solid, $\mathrm{Mp}: 90-93{ }^{\circ} \mathrm{C}$, $[\mathrm{a}]_{\mathrm{D}}^{27}=-19$, $\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.84(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ $-7.40(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.23(\mathrm{~m}$, $1 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.24$ $(\mathrm{s}, 3 \mathrm{H}), 1.19-1.15(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=194.8,160.2,135.5,126.2,122.5,120.5,118.1,80.1$,
64.8, 54.3, 41.7, 40.0, 40.0, 38.4, 33.8, 33.4, 26.6, 22.0, 18.4, 18.1, 15.3 ppm. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}: 335.1987$, found : 335.1982.
2.6.2 Spectra data of $\mathbf{8 c}$ and $\mathbf{7 c}$

8c

7c

Compound 8c, oil, $[\mathrm{a}]_{\mathrm{D}}^{27}=101$, $\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $12.78(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 2 \mathrm{H})$, $1.45-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}$, $J=15.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=208.2,161.1$, $141.5,136.9,131.0,131.0,127.2,120.4,118.1,50.3,41.8,38.3,37.1,33.2,32.5$, 31.9, 21.5, 21.2, 20.9, 18.6, 18.5, 15.3 ppm.

Compound 7c was obtained in 40% yield, white solid, Mp: $126-130{ }^{\circ} \mathrm{C},[\mathrm{a}]_{\mathrm{D}}^{27}=-13$, $\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.69(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ $(\mathrm{dd}, J=7.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$, $1.95(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.48-$ $1.40(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=195.2,158.3,136.2,127.2,123.7,122.0,119.8$, 79.7, 64.6, 54.3, 41.7, 40.1, 38.4, 33.8, 33.4, 29.7, 26.8, 22.1, 18.5, 18.1, 15.7, 15.2 ppm. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}: 349.2143$, found : 349.2138.
2.6.3 Spectra data of $\mathbf{8 d}$ and $7 \mathbf{d}$

8d

7d

Compound 8d, oil, [a] $]_{\mathrm{D}}^{25}=117$, $\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $13.12(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=18.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.50(\mathrm{~m}$, $5 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{dd}, J=13.2,3.3 \mathrm{~Hz}, 2 \mathrm{H})$, $0.94(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=207.3$, 163.9, 144.6, $140.3,135.0,131.9,123.1,122.3,117.0,50.0,41.9,38.7,35.7,33.4,33.3,32.2,23.4$, 22.7, 21.6, 20.9, 18.8, 18.5 ppm . HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{2}$: 327.2324, found: 327.2319 .

Compound 7d was obtained in 73% yield, oil, $[a]_{\mathrm{D}}^{25}=-32$, $\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H}$ NMR(400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}$, $3 \mathrm{H}), 2.22(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.40(\mathrm{~m}$, $5 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 4 \mathrm{H}), 0.89(\mathrm{~s}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13}$ CNMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=196.6,161.3,141.0,134.1,123.9,120.8,116.0$, $79.1,66.2,54.2,41.7,40.3,39.9,38.1,33.8,33.4,26.5,23.1,22.0,18.5,18.2,15.5$ ppm. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{2}: 327.2324$, found :327.2319.
2.7 Preparation and spectra data of benzyl ether $\mathbf{1 8}$

To a stirred solution of $7 \mathbf{7 a}(153 \mathrm{mg}, 0.45 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar was added $\mathrm{BBr}_{3}(0.087 \mathrm{~mL}, 0.90 \mathrm{mmol})$ dropwise. The resulting mixture
was allowed to warm to room temperature. After the reaction was stirred for 12 h , the reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3 \mathrm{aq}}(10 \mathrm{~mL})$ and extracted with EtOAc (20 mLx3). The organic extract was washed with saturated brine, dried over dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude residue, which was further treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($124 \mathrm{mg}, 0.90 \mathrm{mmol}$) and $\mathrm{BnBr}(0.11 \mathrm{~mL}, 0.90 \mathrm{mmol})$. The resulting mixture was then stirred at room temperature for 12 h . After the reaction was complete, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(5 \mathrm{~mL})$ and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The organic extract was washed with saturated brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude residue, which was further purified by chromatography on silica gel with $\mathrm{EtOAc} /$ petroleum $(1: 50)$ to afford the corresponding compound $\mathbf{1 8}$ as a yellow solid ($169 \mathrm{mg}, 90 \%$). Mp: $123-$ $127{ }^{\circ} \mathrm{C},[\mathrm{a}]_{\mathrm{D}}^{24}=-69,\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.44-7.31(\mathrm{~m}$, $6 \mathrm{H}), 7.12(\mathrm{dd}, J=9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 2.26-2.21$ $(\mathrm{m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}$, $3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}$, 6H) ppm. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=194.8,154.9,152.7,136.8,128.5$, $128.5,128.0,128.0,127.7,125.2,122.1,119.4,108.2,80.0,70.6,64.6,54.3,41.7$, 40.1, 40.0, 38.5, 33.8, 33.4, 26.5, 22.0, 18.4, 18.1, 15.3 ppm . HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{3}: 419.2586$, found : 419.2571.
2.8 Preparation and spectra data of compound 19

To a stirred solution of $\mathbf{1 8}(169 \mathrm{mg}, 0.40 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar was added DIBAL-H ($1.5 \mathrm{M}, 0.6 \mathrm{~mL}, 0.80 \mathrm{mmol}$) dropwise. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 h . After the reaction was complete, the reaction mixture
was quenched with $\mathrm{CH}_{3} \mathrm{OH}(0.1 \mathrm{~mL})$ and the resulting mixture was added saturatedseignettesaltaq. When the organic phase was clear, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL×3).The organic extract was washed with saturated brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude residue, which was further purified by chromatography on silica gel with EtOAc/petroleum (1 : 10) to afford the corresponding alcohol as a colorless oil ($168 \mathrm{mg}, 99 \%$).

To a stirred solution of the obtained alcohol ($168 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dry THF (4 mL) at $0{ }^{\circ} \mathrm{C}$ under Ar was added $\mathrm{NaH}(60 \%, 48 \mathrm{mg}, 1.20 \mathrm{mmol})$ in one portion. Carbon disulfide ($0.24 \mathrm{~mL}, 4 \mathrm{mmol}$) was injected into the mixture by a syringe, then it was allowed to warm to room temperature and stir for another 0.5 h . Then the mixture was injected the iodomethane $(0.25 \mathrm{~mL}, 4 \mathrm{mmol})$. After the reaction was complete, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(5 \mathrm{~mL})$ and extracted with EtOAc (10 mL×3). The organic extract was washed with saturated brine, dried over dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude residue, which was further to treat with $n-\mathrm{Bu}_{3} \mathrm{SnH}(0.22 \mathrm{~mL}, 0.8 \mathrm{mmol})$ and $\operatorname{AIBN}(33 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry toluene $(3 \mathrm{~mL})$. This resulting mixture was allowed to react at $80{ }^{\circ} \mathrm{C}$ for 8 h . After the reaction was complete, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}$ (5 mL) and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The organic extract was washed with saturated brine, dried over dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude residue, which was further purified by chromatography on silical gel with EtOAc/petroleum (1:50) to afford 19 as a white solid (152 mg, 95\%). Mp: 124-128 ${ }^{\circ} \mathrm{C} .[\mathrm{a}]_{\mathrm{D}}^{25}=-32$, $\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.44-7.31(\mathrm{~m}, 5 \mathrm{H})$, $6.73-6.64(\mathrm{~m}, 3 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=18.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=18.1 \mathrm{~Hz}$, 1H), 2.14-2.09 (m, 1H), 1.83 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.39$ $(\mathrm{m}, 3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 1 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H})$,
0.72 (s, 3H) ppm. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=152.2,148.8,137.4,128.5$, $127.8,127.8,127.6,127.6,123.4,117.4,114.4,113.3,75.3,70.5,55.3,49.5,41.9$, 40.7, 40.0, 38.3, 33.7, 33.2, 27.2, 23.0, 21.9, 18.4, 18.2, 14.2 ppm. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Na}: 427.2613$, found : 427.2608.
2.9 Preparation and spectra data of 8-epi-chromazonarol 2

To a stirred solution of freshly prepared liquid $\mathrm{NH}_{3}(5 \mathrm{~mL})$ in a two-necked bottle which was frozen by liquid nitrogen using a Dewar condenser at $-78{ }^{\circ} \mathrm{C}$ was added cut $\mathrm{Na}(60 \%, 146 \mathrm{mg}, 3.8 \mathrm{mmol})$ in one portion. Then the mixture had a blue color and it was allowed to add the solution of $\mathbf{1 9}(154 \mathrm{mg}, 0.38 \mathrm{mmol})$ in dry THF (3 mL). After the mixture stirred for 10 min , the reaction was carefully quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$. After evaporation of ammonia, the residue was taken in water (1 mL) and extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 3)$. The organic extract was washed with saturated brine, dried over dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude residue, which was further purified by chromatography on silica gel with $\mathrm{EtOAc} /$ petroleum (1:10) to afford 2 as a white solid (114 mg, $95 \%)$. Mp: 131-134 ${ }^{\circ} \mathrm{C} .[\mathrm{a}]_{\mathrm{D}}^{25}=-30,(\mathrm{c}=1.0$, $\left.\mathrm{CCl}_{4}\right) .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.61-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.53(\mathrm{~m}, 2 \mathrm{H})$, $4.45(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=18.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.09(\mathrm{~m}$, $1 \mathrm{H}), 1.82(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.39$ (m, 2H), 1.29 - 1.26 (m, 2H), $1.15(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{dd}, J=13.0,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=148.7,148.6$, $123.6,117.6,114.7,113.8,75.3,55.3,49.6,41.9,40.7,40.1,38.3,33.7,33.2,27.1$, 22.9, 21.9, 18.5, 18.3, 14.2 ppm . HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{2}$:
315.2324, found : 315.2311.
2.10 Preparation and spectra data of ester $\mathbf{2 0}$

To a stirred solution phenol of $\mathbf{2}(16 \mathrm{mg}, 0.05 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added DMAP ($1 \mathrm{mg}, 0.005 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.02 \mathrm{~mL}, 0.15 \mathrm{mmol})$ and $4-$ bromobenzoyl chloride ($84 \mathrm{mg}, 0.2 \mathrm{mmol}$). The resulting mixture was then stirred at room temperature for 15 min . After the reaction was complete, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(5 \mathrm{~mL})$ and extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The organic extract was washed with saturated brine, dried over dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude residue, which was further purified by chromatography on silical gel with EtOAc/petroleum $(1: 50)$ to afford 25 as a white solid $(22 \mathrm{mg}, 90 \%$ yield $) .[a]_{\mathrm{D}}^{25}=-44,\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=8.05-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{dd}, J=18.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 1 \mathrm{H})$, $1.82(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.15$ $-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=164.8,152.6,143.5,131.9,131.6,128.8,128.6,123.5,121.0$, $119.6,117.7,75.8,55.3,49.4,41.9,40.7,40.0,38.4,33.7,33.2,27.3,22.9,21.9,18.4$, 18.3, 14.3 ppm . HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{BrO}_{3}: 497.1691$, found : 497.1686.
2.11 Spectra data of Intermediate 17

Compound 17 was obtained in 21% yield when the oxa-Michael cyclization
reaction was quenched in $1 \mathrm{~h} . \mathbf{1 7}$'s spectra data was shown as below. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.24(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.90$ $(\mathrm{m}, 1 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 1 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $1 \mathrm{H}), 1.20(\mathrm{dd}, J=13.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.01-0.95(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$, $0.86(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=194.1,153.4,153.2,124.0,121.9$, $118.9,107.5,82.8,65.0,55.7,55.6,41.9,40.9,39.8,37.3,33.6,33.4,21.7,21.2,19.4$, 18.4, 15.6 ppm .
2.12 Comparison of the spectra data of synthetic (-)-8-epi-chromazonarol and those of natural product

2.12.1 Comparisons of their ${ }^{13} \mathrm{C}$ NMR spectra data (ppm)

number	Synthetic 8-epi-chromazonarol	Natural 8-epi-chromazonarol	Δ
1	40.1	39.9	0.2
2	18.3	18.1	0.2
3	40.7	40.5	0.2
4	33.2	33.0	0.2
5	55.3	55.1	0.2
6	18.5	18.3	0.2
7	41.9	41.8	0.1
8	75.3	75.2	0.1
9	49.6	49.4	0.2
10	38.3	38.1	0.2
11	33.7	33.5	0.2
12	21.9	21.7	0.2
13	14.2	14.1	0.1
14	22.9	22.7	0.2
15	27.1	27.0	0.1
1^{\prime}	123.6	123.3	0.3
2^{\prime}	148.7	148.5	0.2
3^{\prime}	117.6	117.3	0.3
4^{\prime}	113.8	113.8	0
5^{\prime}	148.6	148.2	0.4
6^{\prime}	114.7	114.8	-0.1

2.12.2 Comparisons of their partial ${ }^{1} \mathrm{H}$ NMR spectra data (the isolation literature only reported partial of ${ }^{1} \mathrm{H}$ NMR spectra data of natural 8 -epi-chromazonarol)

number	Synthetic 8-epi-chromazonarol	Natural 8-epi-chromazonarol	Δ
11	$0.72(\mathrm{~s}, 3 \mathrm{H})$	$0.72(\mathrm{~s}, 3 \mathrm{H})$	0
12	$0.82(\mathrm{~s}, 3 \mathrm{H})$	$0.82(\mathrm{~s}, 3 \mathrm{H})$	0
13	$0.90(\mathrm{~s}, 3 \mathrm{H})$	$0.90(\mathrm{~s}, 3 \mathrm{H})$	0
14	$2.70\left(\mathrm{~d}, 1 \mathrm{H}_{\alpha}, \mathrm{J}=18 \mathrm{~Hz}\right) ; 2.87\left(\mathrm{dd}, 1 \mathrm{H}_{\mathfrak{\beta}}\right.$,	$2.72(\mathrm{~d}, 1 \mathrm{Ha}, \mathrm{J}=17 \mathrm{~Hz}) ;$	$-0.02 ;$
	$\mathrm{J}=6 \mathrm{~Hz}, 18 \mathrm{~Hz})$	$2.89(\mathrm{~d}, \mathrm{~d}, 1 \mathrm{HB}, \mathrm{J}=17.7 \mathrm{~Hz})$	-0.01
15	$1.15(\mathrm{~s}, 3 \mathrm{H})$	$1.16(\mathrm{~s}, 3 \mathrm{H})$	-0.01
3^{\prime}	$6.61-6.59(\mathrm{~m}, 1 \mathrm{H})$	$6.57(\mathrm{~m}, 1 \mathrm{H})$	-0.03
4^{\prime}	$6.55(\mathrm{~m}, 1 \mathrm{H})$	$6.57(\mathrm{~m}, 1 \mathrm{H})$	-0.02
$5^{\prime}(-$	$4.45(\mathrm{br}, \mathrm{s}, 1 \mathrm{H})$	$4.75(\mathrm{br}, \mathrm{s}, 1 \mathrm{H})$	-0.3
$\left.\mathrm{OH}^{\prime}\right)$			
6^{\prime}	$6.53(\mathrm{~m}, 1 \mathrm{H})$	$6.57(\mathrm{~m}, 1 \mathrm{H})$	-0.04

2.12.3 Comparisons of their physical data and MS data

data	Synthetic 8-epi-chromazonarol	Natural 8-epi-chromazonarol
Mp	$131-134^{\circ} \mathrm{C}$	$132-134^{\circ} \mathrm{C}$
$[\mathrm{a}]_{\mathrm{D}}$	$[\mathrm{a}]_{\mathrm{D}}^{20}=-30,\left(\mathrm{c}=1.0, \mathrm{CCl}_{4}\right)$	$-2,\left(\mathrm{c}=1.0, \mathrm{CCl}_{4}\right)$
MS	$315.2311\left(\mathrm{M}+\mathrm{H}^{+}\right)$	314.2250

3. References

1. J. Oshita, Y. Noguchi, A. Watanabe, G. Sennari, S. Sato, T. Hirose, D. Oikawa, Y.

Inahashi, M. Iwatsuki, A. Ishiyama, S. Õmura, Toshiaki Sunazuka, Tetrahedron Lett. 2016, 57, 357.
2. J. P. Gesson, J. C. Jacquesy and B. Renoux, Tetrahedron, 1989, 45, 5853.

4. NMR spectra of all synthetic new compounds.

$9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

0才•02—

$\mathbf{1 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$14\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	1		1														1				
210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \text { f1 } \end{gathered}$	$\begin{array}{r} 100 \\ (\mathrm{ppm}) \end{array}$	90	80	70	60	50	40	30	20	10	0

110	190	170	150	130	110 $\mathrm{f} 1(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10	0

$7 \mathrm{a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$7 \mathrm{a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

7a' (400MHz, CDCl_{3})

7a' $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

7a' ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SP-1080621-3 $\stackrel{\infty}{\infty}$

8b ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7b $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

7b (75MHz, CDCl_{3})

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10		0
					f1 (ppm)											

sp－0619－1－600－H

$8 \mathrm{c}\left(600 \mathrm{M}, \mathrm{CDCl}_{3}\right)$

8c (151M, CDCl_{3})

,	,	1	1	1	1	1	1		1	1	1	1	1	,										
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												(pp												

$7 \mathrm{c}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$7 \mathrm{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0
					f1 (ppm)										

$7 \mathrm{~d}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

			1	1	1		,		1	,	T	1	T		,	,	T	,	,	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										(ppm)										

$18\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

,	1			1	1	1	1	1	T			T	T	1		T	T			1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										(ppm)										

 ～～～N走
$19\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

8-epichromazonarol (2) $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8-epichromazonarol (2) ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

150	140	130	120	110	100	90	80 $\mathrm{f} 1(\mathrm{ppm})$

$20\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

