Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Electronic supplementary information 1 Crystallographic data

Organic Chemistry Frontiers. 2018

Tandem dihetero-Diels-Alder and Huisgen cycloaddition reactions. Synthesis, structure and hydrolysis of the novel cage phosphoranes based on 2-(1phenylethenyloxy)benzo-1,3,2-dioxaphosphole

Nadezhda R. Khasiyatullina^{a,b}, Tamara A. Baronova^b, Ekaterina V. Mironova^a, Robert R. Fayzullin^a, Igor A. Litvinov^a, Sergey V. Efimov^c, Rashid Z. Musin^a, Vladimir V. Klochkov^c, Vladimir F. Mironov^{*a,b}

^aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russian Federation. E-mail:

mironov@iopc.ru

^bA.M.Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation

^cInstitute of Physics, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation

Table of contents

Electronic supplementary information 1. Crystallographic data	
Table of contents.	S1
Single Crystal X-ray Analysis. General Remarks	S 8
X-Ray Data of Compound (7)	S11
X-Ray Data of Compound (8)	S12
X-Ray Data of Compound (9)	S13
X-Ray Data of Compound (13)	S14
X-Ray Data of Compound (20)	S15
X-Ray Data of Compound (23)	S16

Electronic supplementary information 2. Spectral data. (Figures of NMR Spectra of	S17
Compounds 6, 7)	
Figure S1. ¹ H NMR spectrum (400 MHz, CDCl ₃) of compound (6)	S18
Figure S2. ${}^{31}P-{}^{1}H$ NMR spectrum (162.0 MHz, CDCl ₃) of compound (6)	S19
Figure S3. 13 C-{ 1 H} NMR spectrum (176.5 MHz, CDCl ₃) of compound (6)	S20
Figure S4. ¹³ C NMR spectrum (100.6 MHz, CDCl ₃) of compound (6)	S21
Figure S5. 122-130 ppm region of ¹³ C NMR spectrum (100.6 MHz, CDCl ₃) of compound	S22
(6)	
Figure S6. 111-114 ppm region of ¹³ C NMR spectrum (100.6 MHz, CDCl ₃) of compound	S23
(6)	
Figure S7. 13 C-{ 1 H} and 13 C NMR spectra (100.6 MHz, CDCl ₃) of compound (6)	S24
Figure S8. 111-130 ppm region of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, CDCl ₃)	S25
of compound (6)	
Figure S9. 13 C-{ 1 H} and 13 C-{ 1 H}-dept NMR spectra (100.6 MHz, CDCl ₃) of compound	S26
(6)	
Figure S10. ¹ H NMR spectrum (700 MHz, CDCl ₃ , 25°C) of phosphorane (7)	S27

Figure S11. ³¹ P-{ ¹ H} NMR spectrum (283.4 MHz, CDCl ₃ , 25°C) of phosphorane (7)	S28
Figure S12. ¹⁹ F NMR spectrum (658.78 MHz, CDCl ₃ , 25°C) of phosphorane (7)	S29
Figure S13. ¹⁹ F-{ ³¹ P} NMR spectrum (658.78 MHz, CDCl ₃ , 25°C) of phosphorane (7)	S30
Figure S14. ¹⁹ F-{ ³¹ P} and ¹⁹ F NMR spectra (658.78 MHz, CDCl ₃ , 25°C) of phosphorane	S31
(7)	
Figure S15. ¹³ C-{ ¹ H} NMR spectrum (176.5 MHz, CDCl ₃ , 25°C) of phosphorane (7)	S32
Figure S16. Low-field fragments of ¹³ C-{ ¹ H} NMR spectra (176.5 MHz, CDCl ₃ , 25°C) of	S33
phosphorane (7)	
Figure S17. ${}^{13}C-{}^{1}H-{}^{31}P$ NMR spectrum (176.5 MHz, CDCl ₃ , 25°C) of phosphorane	S34
(7)	
Figure S18. ${}^{13}C-{}^{1}H{}-{}^{31}P{}$ and ${}^{13}C-{}^{1}H{}$ NMR spectra (176.5 MHz, CDCl ₃ , 25°C) of	S35
phosphorane (7)	
Figure S19. High-field region of ${}^{13}C-{}^{1}H-{}^{31}P$ and ${}^{13}C-{}^{1}H$ NMR spectra (176.5 MHz,	S36
CDCl ₃ , 25°C) of phosphorane (7)	
Figure S20. 109-113 ppm region of ${}^{13}C-{}^{1}H{}-{}^{31}P{}$ and ${}^{13}C-{}^{1}H{}$ NMR spectra (176.5	S37
MHz, CDCl ₃ , 25°C) of phosphorane (7)	
Figure S21. 117-125 ppm region of ${}^{13}C-{}^{1}H{}-{}^{31}P{}$ and ${}^{13}C-{}^{1}H{}$ NMR spectra (176.5	S38
MHz, CDCl ₃ , 25°C) of phosphorane (7)	
Electronic supplementary information 3. Spectral data (Figures of NMR and IR	S39
Spectra of Compound 7).	
Figure S22. ^{13}C -{ ^{31}P } NMR spectrum (176.5 MHz, CDCl ₃ , 25°C) of phosphorane (7)	S40
Figure S23. 128-130 and 123-125 ppm regions of ${}^{13}C-{}^{31}P$ NMR spectrum (176.5 MHz,	S41
CDCl ₃ , 25°C) of phosphorane (7)	
Figure S24. 118-123 ppm region of ${}^{13}C-{}^{31}P$ NMR spectrum (176.5 MHz, CDCl ₃ , 25°C)	S42
of phosphorane (7)	
Figure S25. 110-112 ppm region of ${}^{13}C$ -{ ${}^{31}P$ } NMR spectrum (176.5 MHz, CDCl ₃ , 25°C)	S43
of phosphorane (7)	
Figure S26. 118-125 ppm region of ${}^{13}C-{}^{31}P$ and ${}^{13}C-{}^{1}H$ NMR spectra (176.5	S44
MHz, CDCl ₃ , 25°C) of phosphorane (7)	
Figure S27. 79-81 ppm region of ${}^{13}C-{}^{31}P$ and ${}^{13}C-{}^{1}H-{}^{31}P$ NMR spectra (176.5	S45
MHz, CDCl ₃ , 25°C) of phosphorane (7)	
Figure S28. 13 C-{ 19 F} NMR spectrum (176.5 MHz, CDCl ₃ , 25°C) of phosphorane (7)	S46
Figure S29. 75-80 ppm region of ${}^{13}C-{}^{19}F$, ${}^{13}C-{}^{1}H$, ${}^{13}C-{}^{1}H$ and ${}^{13}C-{}^{31}P$	S47
NMR spectra (176.5 MHz, CDCl ₃) of phosphorane (7)	
Figure S30. 117-125 ppm region of ${}^{13}C-{}^{19}F$, ${}^{13}C-{}^{1}H$, ${}^{13}C-{}^{1}H$, ${}^{13}C-{}^{1}H$, and ${}^{13}C-{}^{31}P$	S48
NMR spectra (176.5 MHz) of phosphorane (7)	
Figure S31. 110-112 ppm region of ${}^{13}C-{}^{19}F$, ${}^{13}C-{}^{1}H$, ${}^{13}C-{}^{1}H$, ${}^{13}C-{}^{1}H$, and ${}^{13}C-{}^{31}P$	S49
NMR spectra (176.5 MHz) of phosphorane (7)	
Figure S32. ${}^{13}C-{}^{19}F-{}^{31}P$ NMR spectrum (176.5 MHz, CDCl ₃) of phosphorane (7)	S50
Figure S32. ${}^{13}C-{}^{19}F-{}^{31}P$ NMR spectrum (176.5 MHz, CDCl ₃) of phosphorane (7) Figure S33. 120-130 ppm region of ${}^{13}C-{}^{19}F-{}^{31}P$ NMR spectrum (176.5 MHz, CDCl ₃)	S50 S51

Figure S34. High-field fragments of ${}^{13}C-{}^{19}F{}-{}^{31}P{}$ (black) and ${}^{13}C-{}^{19}F{}$ (blue) NMR S52

spectra (176.5 MHz, CDCl₃) of phosphorane (7) Figure S35. Low-field fragment of ${}^{13}C-\{{}^{19}F\}-\{{}^{31}P\}$ (black) and ${}^{13}C-\{{}^{19}F\}$ (blue) NMR spectra (176.5 MHz, CDCl₃) of phosphorane (7) Figure S36. $C^{13}\{{}^{31}P\}\{{}^{19}F\}-F^{19}$ HMBC-HSQC heterocorrelation (700 MHz, CDCl₃) for S53

S54

 $\frac{\text{compound (7)}}{\text{Figure S37. } C^{13}{}^{31}P}{}^{19}F}-F^{19}\text{ HSQC heterocorrelation (700 MHz, CDCl_3) for compound}}$ S55 (7)

Figure S38. Fragment of $C^{13}{}^{31}P{}^{19}F{}-F^{19}$ HSQC heterocorrelation (700 MHz, CDCl ₃)	S56
for compound (7)	
Figure S39. $C^{13}{}^{31}P{}^{19}F{}-F^{19}$ HMBC heterocorrelation (700 MHz, CDCl ₃) for	S57
compound (7)	
Figure S40. Fragment of $C^{13}{}^{31}P{}^{19}F{}-F^{19}$ HMBC heterocorrelation (700 MHz, CDCl ₃)	S58
for compound (7)	
Figure S41. ¹ H NMR spectrum (400 MHz, acetone-d ₆ , 25°C) of phosphorane (7)	S59
Figure S42. Aromatic protons region of ¹ H NMR spectrum (400 MHz, acetone-d ₆ , 25°C)	S60
of phosphorane (7)	
Figure S43. ¹³ C-{ ¹ H} NMR spectrum (100.6 MHz, acetone-d ₆ , 25°C) of phosphorane (7)	S61
Figure S44. 111-132 ppm region of ${}^{13}C-{}^{1}H$ NMR spectrum (100.6 MHz, acetone-d ₆ ,	S62
25°C) of phosphorane (7)	
Figure S45. ¹³ C NMR spectrum (100.6 MHz, acetone-d ₆ , 25°C) of phosphorane (7)	S63
Figure S46. 110-113 and 117-126 ppm regions of ¹³ C NMR spectrum (100.6 MHz,	S64
acetone- d_6 , 25°C) of phosphorane (7)	
Figure S47. 122-131 ppm region of ¹³ C NMR spectrum (100.6 MHz, acetone-d ₆ , 25°C) of	S65
phosphorane (7)	
Figure S48. $^{13}C-\{^{1}H\}$ and ^{13}C NMR spectra (100.6 MHz, acetone-d ₆ , 25°C) of	S66
phosphorane (7)	
Figure S49. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, acetone-d ₆ , 25°C)	S67
of phosphorane (7)	
Figure S50. 117-128 ppm regions of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz,	S68
acetone- d_6 , 25°C) of phosphorane (7)	
Figure S51. IR spectrum of phosphorane (7) in Nujol	S69
Figure S52. IR spectrum of phosphorane (7) in Nujol (region of 400-2000 cm ⁻¹)	S70
	•

Electronic supplementary information 4. Spectral data (Figures of NMR and IR	S71
Spectra of Compound 8).	
Figure S53. ¹ H NMR spectrum (400 MHz, CDCl ₃) of compound (8)	S72
Figure S54. Aromatic protons region of ¹ H NMR spectrum (400 MHz, CDCl ₃) of	S73
compound (8)	
Figure S55. ³¹ P NMR spectrum (162.0 MHz, CD_2Cl_2) of compound (8)	S74
Figure S56. ³¹ P-{ ¹ H} NMR spectrum (162.0 MHz, CD_2Cl_2) of compound (8)	S75
Figure S57. ¹⁹ F NMR spectrum (376.54 MHz, CD_2Cl_2) of compound (8)	S76
Figure S58. $^{13}C-{^{1}H}$ NMR spectrum (100.6 MHz, CD_2Cl_2) of compound (8)	S77
Figure S59. 118-127 ppm region of ${}^{13}C-{}^{1}H$ NMR spectrum (100.6 MHz, CD ₂ Cl ₂) of	S78
compound (8)	
Figure S60. ¹³ C NMR spectrum (100.6 MHz, CD_2Cl_2) of compound (8)	S79
Figure S61. 118-130 ppm region of ¹³ C NMR spectrum (100.6 MHz, CD ₂ Cl ₂) of	S80
compound (8)	
Figure S62. 110-113 ppm region of 13 C NMR spectrum (100.6 MHz, CD ₂ Cl ₂) of	S81
compound (8)	
Figure S63. High-field fragment of ¹³ C NMR spectrum (100.6 MHz, CD ₂ Cl ₂) of	S82
compound (8)	
Figure S64. 12-16 and 62-66 ppm regions of 13 C NMR spectrum (100.6 MHz, CD ₂ Cl ₂)	S83
of compound (8)	
Figure S65. ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, CD_2Cl_2) of compound (8)	S84
Figure S66. Low-field fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz,	S85
CD_2Cl_2) of compound (8)	
Figure S67. 118-131 ppm region of ${}^{13}C$ -{ ${}^{1}H$ } and ${}^{13}C$ NMR spectra (100.6 MHz,	S86

CD_2Cl_2) of compound (8)	
Figure S68. 110-113 ppm region of ${}^{13}C$ -{ ${}^{1}H$ } and ${}^{13}C$ NMR spectra (100.6 MHz,	S87
CD_2Cl_2) of compound (8)	
Figure S69. 117-128 ppm region of ${}^{13}C$ -{ ${}^{1}H$ } and ${}^{13}C$ NMR spectra (100.6 MHz,	S88
CD_2Cl_2) of compound (8)	
Figure S70. 101-102 and 76-82 ppm regions of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6	S89
MHz, CD_2Cl_2) of compound (8)	
Figure S71. 62-67, 42-47 and 11-17 ppm regions of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra	S90
$(100.6 \text{ MHz}, \text{CD}_2\text{Cl}_2) \text{ of compound } (8)$	
Figure S72. ¹³ C-{ ¹ H} and ¹³ C-{ ¹ H}-dept NMR spectra (100.6 MHz, CD_2Cl_2) of	S91
compound (8)	
Figure S73. Low-field fragment of ${}^{13}C-{}^{1}H$ and ${}^{13}C-{}^{1}H$ -dept NMR spectra (100.6	S92
MHz, CD_2Cl_2) of compound (8)	
Figure S74. Low-field region of 1H and 1H-{1H} NMR spectra (700 MHz, acetone-d ₆)	S93
of compound (8)	
Figure S75. High-field region of 1H and 1H-{1H} NMR spectra (700 MHz, acetone-d ₆)	S94
of compound (8)	
Figure S76. Aromatic field of 1H-1H COSY spectrum (700 MHz, acetone-d ₆) of	S95
compound (8)	
Figure S77. Aliphatic field of 1H-1H COSY spectrum (700 MHz, acetone-d ₆₎ of	S96
compound (8)	
Figure S78. Aliphatic field of 1H-13C HMQS spectrum (700 MHz, acetone-d ₆) of	S97
compound (8)	
Figure S79. Aromatic field of 1H-13C HMQC spectrum (700 MHz, acetone-d ₆) of	S98
compound (8)	
Figure S80. IR spectrum of phosphorane (8) in Nujol	S99
Figure S81. IR spectrum of phosphorane (8) in KBr pellet	S100

Electronic supplementary information 5. Spectral data (Figures of NMR and IR Spectra of Compound 9).	S101
Figure S82. ³¹ P-{ ¹ H} and ³¹ P NMR spectra (162.0 MHz, CH_2Cl_2 , 25°C) of phosphole (6) and chloral mixture	S102
Figure S83. ¹ H NMR spectrum (400 MHz, CDCl ₃ , 25°C) of phosphorane (9)	S103
Figure S84. Aromatic protons region of ¹ H NMR spectrum (400 MHz, CDCl ₃ , 25°C) of phosphorane (9)	S104
Figure S85. ³¹ P-{ ¹ H} and ³¹ P NMR spectra (162.0 MHz, CDCl ₃ , 25°C) of phosphorane (9)	S105
Figure S86. ¹³ C-{ ¹ H} NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of phosphorane (9)	S106
Figure S87. ¹³ C-{ ¹ H} and ¹³ C-{ ¹ H}-dept NMR spectra (100.6 MHz, $CDCl_3$, 25°C) of phosphorane (9)	S107
Figure S88. ¹³ C NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of phosphorane (9)	S108
Figure S89. 120-130 ppm region of ¹³ C NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of phosphorane (9)	S109
Figure S90. 110-112 ppm region of ¹³ C NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of phosphorane (9)	S110
Figure S91. ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, CDCl ₃ , 25°C) of phosphorane (9)	S111
Figure S92. 140-145 ppm region of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, CDCl ₃ , 25°C) of phosphorane (9)	S112
Figure S93. 78-83 and 96-100 ppm regions of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6	S113

MHz, CDCl ₃ , 25°C) of phosphorane (9)	
Figure S94. 120-129 ppm region of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, CDCl ₃ ,	S114
25°C) of phosphorane (9)	
Figure S95. IR spectrum of phosphoran (9) in Nujol	S115
Figure S96. ¹ H NMR spectrum (400 MHz, CDCl ₃ , 25°C) of solvate phosphorane with	S116
pentane (9).	
Figure S97. IR spectrum of solvate of phosphoran (9) with pentane in KBr pellet	S117
Electronic supplementary information 6. Spectral data (Figures of NMR and IR Spectra of Compounds 11-14 and IR Spectrum of Compound 13).	S118
Figure S98. ³¹ P-{ ¹ H} NMR spectrum (162.0 MHz, acetone- d_6 , 25°C) of phosphonate (11)	S119
Figure S99 ¹⁹ F NMR spectrum (386 4 MHz acetone- d_6 25°C) of phosphonate (11)	S120
Figure S100 13 C-{ 1 H} NMR spectrum (100.6 MHz, acetone- d_{6} 25°C) of phosphonate	S121
(11)	5121
Figure S101. ¹³ C NMR spectrum (100.6 MHz, acetone- d_6 , 25°C) of phosphonate (11)	S122
Figure S102. 112-124 ppm region of ${}^{13}C-{}^{1}H$ NMR spectrum (100.6 MHz, acetone- d_6 ,	S123
25°C) of phosphonate (11)	
Figure S103. ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, acetone- d_6 , 25°C) of	S124
phosphonate (11)	
Figure S104. 112-145 ppm regions of ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz,	S125
acetone- d_6 , 25°C) of phosphonate (11)	
Figure S105. ¹³ C-{ ¹ H} and ¹³ C-{ ¹ H} dept NMR spectra (100.6 MHz, acetone- d_6 , 25°C) of phosphonate (11)	S126
Figure S106 ¹ H NMR spectrum (400 MHz acetone- d_{c} 25°C) of hydroxyketone (12)	S127
Figure S107. ¹⁹ F NMR spectrum (386.4 MHz, acetone d_c , 25°C) of hydroxyketone (12)	S127
Figure S107. F NMR spectrum (386.4 MHz, $CDC1 = 25^{\circ}C$) of hydroxyketone (12)	S120
Figure S108. F NMR spectrum (380.4 MHz, CDC13, 25 C) of hydroxyketone (12) Figure S100 13 C (¹ H) NMP groattrum (100.6 MHz, sostens d - 25%C) of hydroxyketone	S127 S130
(12) (12) $C-\{H\}$ NMR spectrum (100.0 MHz, acetone- a_6 , 25°C) of hydroxyketone	5150
Figure S110. ¹³ C NMR spectrum (100.6 MHz, acetone- d_6 , 25°C) of hydroxyketone (12)	S131
Figure S111. ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, acetone- d_6 , 25°C) of	S132
hydroxyketone (12)	
Figure S112. ¹ H NMR spectrum (600 MHz, DMSO- d_6 , 25°C) of phosphate (13)	S133
Figure S113. ³¹ P-{ ¹ H} NMR spectrum (243.5 MHz, DMSO- d_6 , 25°C) of phosphate (13)	S134
Figure S114. ¹³ C-{ ¹ H} NMR spectrum (150.9 MHz, DMSO- d_6 , 25°C) of phosphate (13)	S135
Figure S115. ¹³ C-{ ¹ H} and ¹³ C-{ ¹ H} dept NMR spectra (150.9 MHz, DMSO- d_6 , 25°C) of phosphate (13)	S136
Eigure S116 13 C NMP spectrum (150.0 MHz, DMSO, d., 25°C) of phosphete (13)	\$137
Figure S117 ¹³ C- ℓ^{1} H and ¹³ C NMR spectra (150.9 MHz, DMSO- d_{ℓ} , 25°C) of	S137
nhosnhate (13)	5150
Figure S118 Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (150.9 MHz DMSO- d_{4}	S139
25° C) of phosphate (13)	0107
Figure S119 IR spectrum of of phosphate (13)	S140
Figure S120 ¹⁹ F NMR spectrum (386.4 MHz CDCl ₂ 25°C) of unsaturated ketone (14)	S141
Figure S121 ¹ H NMR spectrum (400 MHz CDCl ₂ 25°C) of unsaturated ketone (14)	S142
Figure S122 13 C ₂ (¹ H) NMR spectrum (100.6 MHz, CDCl ₂ , 25°C) of unsaturated ketone	S143
(14)	JIJ
Figure S123. ¹³ C NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of unsaturated ketone (14)	S144
Figure S124. 116-125 region of ¹³ C-{ ¹ H} NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of	S145

unsaturated ketone (14)	
Figure S125. ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, CDCl ₃ , 25°C) of unsaturated	S146
ketone (14)	
Figure S126. Fragments of ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, CDCl ₃ , 25°C) of	S147
unsaturated ketone (14)	
Figure S127. 116-127 ppm regions of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz,	S148
$CDCl_3$, 25°C) of unsaturated ketone (14)	
Electronic supplementary information 7. Spectral data (Figures of NMR Spectra of	S149
Compounds 15, 16, 18 and IR Spectrum of Compound 15).	
Figure S128. ¹ H NMR spectrum (400 MHz, CDCl ₃ , 25°C) of hydroxy trifluoroketone	S150
(15)	
Figure S129. ¹⁹ F NMR spectrum (376.4 MHz, CDCl ₃ , 25°C) of hydroxy trifluoroketone	S151
(15)	
Figure S130. ¹⁹ F NMR spectrum (376.4 MHz, acetone- d_6 , 25°C) of hydroxy	S152
trifluoroketone (15)	
Figure S131. ¹ H NMR spectrum (700 MHz, acetone- d_6 , 25°C) of hydroxy trifluoroketone	S153
(15)	
Figure S132. Aromatic region of ¹ H NMR spectrum (700 MHz, acetone- d_6 , 25°C) of	S154
hydroxy trifluoroketone (15)	
Figure S133. ¹³ C-{ ¹ H} NMR spectrum (176.5 MHz, acetone- d_6 , 25°C) of hydroxy	S155
trifluoroketone (15)	
Figure S134. ¹³ C NMR spectrum (176.5 MHz, acetone- d_6 , 25°C) of hydroxy	S156
trifluoroketone (15)	
Figure S135. High-field regions of ¹³ C NMR spectrum (176.5 MHz, acetone- d_6 , 25°C) of	S157
hydroxy trifluoroketone (15)	
Figure S136. ¹³ C-{ ¹ H} and ¹³ C NMR spectra (176.5 MHz, acetone- d_6 , 25°C) of hydroxy	S158
trifluoroketone (15)	
Figure S137. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (176.5 MHz, acetone- d_6 ,	S159
25°C) of hydroxy trifluoroketone (15)	

Figure S138. Fragments of ${}^{13}C-\{{}^{1}H\}$ and ${}^{13}C$ NMR spectra (176.5 MHz, acetone- d_6 , S160 25°C) of hydroxy trifluoroketone (15) Figure S139. IR spectrum of trifluoroketone (15) in KBr pellet. S161

Figure S140. ³¹P-{¹H} NMR spectrum (162.50 MHz, acetone- d_6 , 25°C) of phosphonates S162 (16) and (18) mixture

Figure S141. ¹H NMR spectrum (700 MHz, acetone- d_6 , 25°C) of phosphonates (16) and S163 (18) mixture S164

Figure S142. Fragment of ¹H NMR spectrum (700 MHz, acetone- d_6 , 25°C) of phosphonates (16) and (18) mixture

Figure S143. ¹⁹F NMR spectrum (376.5 MHz, acetone- d_6 , 25°C) of phosphonates (16) S165 and (18) mixture Figure S144. ¹³C-{¹H} NMR spectrum (176.5 MHz, acetone- d_6 , 25°C) of phosphonates S166 (**16**) and (**18**) mixture Figure S145. Fragments of ${}^{13}C$ -{ ${}^{1}H$ } NMR spectra (176.5 MHz, , acetone- d_6 , 25°C) of S167

phosphonates (16) and (18) mixture Figure S146. Fragment of ¹³C NMR spectra (176.5 MHz, acetone- d_6 , 25°C) of S168

phosphonates (16) and (18) mixture Figure S147. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (176.5 MHz, acetone- d_6 , S169 25°C) of phosphonates (16) and (18) mixture S170

Figure S148. Fragments of ${}^{13}C-\{{}^{1}H\}$ and ${}^{13}C$ NMR spectra (176.5 MHz, acetone- d_6 ,

25°C) of phosphonates (16) and (18) mixture	
Figure S149. Fragments of ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, CDCl ₃ , 25°C) of	S171
phosphonates (16) and (18) mixture.	

Electronic supplementary information 8. Spectral data (Figures of NMR Spectra of Compounds 21-23).	S172
Figure S150. ¹ H NMR spectrum (500 MHz, CDCl ₃ , 25°C) of phosphonate (21)	S173
Figure S151. ³¹ P-{ ¹ H} and ³¹ P NMR spectra (202.5 MHz, CDCl ₃ , 25°C) of phosphonate (21)	S174
Figure S152. ¹³ C-{ ¹ H} NMR spectrum (100.6 MHz, DMSO- d_6 , 25°C) of phosphonate (21)	S17
Figure S153. Fragment of ¹³ C NMR spectrum (100.6 MHz, DMSO- d_6 , 25°C) of phosphonate (21)	S17
Figure S154. Fragments of ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, DMSO- d_6 , 25°C) of phosphonate (21)	S17
Figure S155. 117-125 ppm regions of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, DMSO- d_6 , 25°C) of phosphonate (21)	S17
Figure S156. Fragments of ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, DMSO- d_6 , 25°C) of phosphonate (21)	S17
Figure S157. Fragments of ¹³ C-{ ¹ H} and ¹³ C-{ ¹ H} dept NMR spectra (100.6 MHz, DMSO- d_6 , 25°C) of phosphonate (21).	S18
Figure S158. ¹ H NMR spectrum (400 MHz, CDCl ₃ , 25°C) of hydroxy trichloroketone (22)	S18
Figure S159. ¹³ C-{ ¹ H} NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of hydroxy trichloroketone (22)	S18
Figure S160. ¹³ C NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of hydroxy trichloroketone (22)	S18
Figure S161. 127-130 ppm region of ¹³ C NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of hydroxy trichloroketone (22)	S18
Figure S162. ¹³ C-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra (100.6 MHz, CDCl ₃ , 25°C) of hydroxy trichloroketone (22)	S18
Figure S163. ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, CDCl ₃ , 25°C) of hydroxy trichloroketone (22)	S18
Figure S164. Fragments of ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, CDCl ₃ , 25°C) of hydroxy trichloroketone (22)	S18
Figure S165. ¹ H NMR spectrum (400 MHz, CDCl ₃ , 25°C) of unsaturated trichloroketone (23)	S18
Figure S166. ¹³ C-{ ¹ H} NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of unsaturated trichloroketone (23)	S18
Figure S167. ¹³ C NMR spectrum (100.6 MHz, CDCl ₃ , 25°C) of unsaturated trichloroketone (23)	S19
Figure S168. ¹³ C-{ ¹ H} and ¹³ C NMR spectra (100.6 MHz, CDCl ₃ , 25°C) of unsaturated trichloroketone (23)	S19
Figure S169. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, CDCl ₃ , 25°C) of unsaturated trichloroketone (23)	S19

Single Crystal X-ray Analysis. The X-ray diffraction (XRD) data for the single crystals of 7, 9, 13, and 23 were collected on a three-circle diffractometer diffractometer with a CCD plate detector (ω -scan mode) using graphite-monochromated MoK α (0.71073 Å) radiation at 293(2) K. The XRD data for 8 and 20 were collected on a on a four-circle diffractometer diffractometer with a CCD plate detector (ω/ϕ -scan mode) using graphitemonochromated MoKa radiation at 293(2) and 150(2) K, respectively. The performance mode of the sealed X-ray tubes was 50 kV, 30 mA. Suitable crystals of appropriate dimensions were mounted on glass fibres or cactus needles in random orientations. Preliminary unit cell parameters were determined with three or four sets of 12 narrow frame scans. Data collection: images were indexed and integrated using the APEX2 (v2014.11-0) or APEX3 (v2015.9-0) data reduction package. Final cell constants were determined by global refinement of reflections from the complete data set. Data were corrected for systematic errors and absorption using SADABS-2014/5. XPREP-2014/2 and the ASSIGN SPACE GROUP routine of WinGX-2014.1 were used for analysis of systematic absences and space group determination. The structures were solved by the direct method using SHELXT-2018/2^{S1} and refined by the fullmatrix least-squares on F^2 using SHELXL-2018/3^{S2}. Calculations were mainly performed using the WinGX-2014.1 suite of programs.^{S3} Non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atom H^1 of **13** and the hydrogen atoms H^2 , H^3 , and H^4 of **20** were determined based on the difference electronic density maps and these atoms were refined isotropically. The positions of the hydrogen atoms of methyl groups were found using a rotating group refinement with idealized tetrahedral angles. The other hydrogen atoms were inserted at the calculated positions and refined as riding atoms. In the cases of 7, 8, and 13 the disorder was resolved using free variables and reasonable restraints on geometry and anisotropic displacement parameters. All the compounds studied have no unusual bond lengths and angles. The absolute structure of crystals 13 and 20 was determined on the basis of the Flack parameter.54

The unit cell of **9** contains highly disordered solvent molecules of pentane along 4-fold screw axes, which were treated as a diffuse contribution to the overall scattering without specific atom positions by PLATON/SQUEEZE-290617.⁸⁵ In the unit cell (Z = 16) there are 4 voids with volume of *ca*. 198 Å³ containing *ca*. 42 electrons per the void, hence the ratio of phosphorane **9** to pentane is 4 : 1. Squeezed solvent info is not included in the formula and related items such as molecular weight and calculated density. Interestingly, compound **23** crystallizes with the molecule bisected by mirror planes in the centrosymmetric space group *Pnma* of the orthorhombic crystal system, hence the asymmetric cell contains half of the molecule (Z' = 0.5). This structure was reported previously.⁸⁶

Crystallographic data for 7. $C_{20}H_{11}F_{12}O_5P$, colorless prism, formula weight 590.26, monoclinic, $P2_1/c$, a = 15.787(9) Å, b = 10.811(6) Å, c = 13.977(8) Å, $\beta = 112.816(7)^\circ$, V = 2199(2) Å³, Z = 4, Z' = 1, $d_{calc} = 1.783$ g·cm⁻³, $\mu(\lambda MoK_{\alpha}) = 0.260$ mm⁻¹, F(000) = 1176; 20876 reflections were collected, 4023 of which were unique, $R_{int} = 0.0363$, $R_{\sigma} = 0.0268$; completeness to θ of 25.242° is 99.7 %. Refinement of 398 parameters with 212 restraints converged to $R_1 = 0.0444$, $wR_2 = 0.1116$ for 3018 reflections with $I > 2\sigma(I)$ and $R_1 = 0.0611$, $wR_2 = 0.1226$ for all data with S = 1.028 and residual electron density, $\rho_{max/min} = 0.313$ and -0.273 e Å⁻³.

Crystallographic data for 8. $C_{24}H_{21}F_6O_9P$, colorless prism, formula weight 598.38, triclinic, *P*–1, *a* = 10.7892(6) Å, *b* = 11.1562(6) Å, *c* = 11.7122(6) Å, $\alpha = 101.788(3)^\circ$, $\beta = 99.647(3)^\circ$, $\gamma = 106.558(3)^\circ$, *V* = 1283.93(12) Å³, *Z* = 2, *Z'* = 1, *d_{calc}* = 1.548 g·cm⁻³, $\mu(\lambda MoK_{\alpha}) = 0.203 \text{ mm}^{-1}$, *F*(000) = 612; 38254 reflections were collected, 4510 of which were unique, $R_{int} = 0.0572$, $R_{\sigma} = 0.0422$; completeness to θ of 25.242° was 96.5 %. The refinement of 383 parameters with 55 restraints converged to $R_1 = 0.0442$, $wR_2 = 0.1057$ for 2940 reflections with $I > 2\sigma(I)$ and $R_1 = 0.0813$, $wR_2 = 0.1222$ for all data with *S* = 1.027 and residual electron density, $\rho_{max/min} = 0.216$ and -0.275 e Å⁻³.

Crystallographic data for 9. $C_{18}H_{13}Cl_6O_5P$, colorless prism, formula weight 552.95, tetragonal, $I4_1/a, a = 27.972(6)$ Å, c = 11.844(3) Å, V = 9268(5) Å³, Z = 16, Z' = 1, $d_{calc} = 1.585$ g·cm⁻³, $\mu(\lambda MoK_{\alpha}) = 0.838$ mm⁻¹, F(000) = 4448 (squeezed solvent info is not included in the formula and related items); 34206 reflections were collected, 4413 of which were unique, $R_{int} = 0.0349$, $R_{\sigma} = 0.0199$; completeness to θ of 25.242° was 99.9 %. The refinement of 271 parameters with no restraints converged to $R_1 = 0.0399$, $wR_2 = 0.0199$ 0.0929 for 3637 reflections with $I > 2\sigma(I)$ and $R_1 = 0.0500$, $wR_2 = 0.0990$ for all data with S = 1.048 and residual electron density, $\rho_{\text{max/min}} = 0.758$ and $-0.686 \text{ e} \text{ Å}^{-3}$.

Crystallographic data for 13. $C_{12}H_{20}NO_4P$, colorless plate, formula weight 273.26, monoclinic, $P2_1$, a = 7.266(3) Å, b = 11.409(5) Å, c = 8.573(4) Å, $\beta = 96.695(6)^\circ$, V = 705.8(5) Å³, Z = 2, Z' = 1, $d_{calc} = 1.286$ g·cm⁻³, $\mu(\lambda MoK_a) = 0.201$ mm⁻¹, F(000) = 292; 5170 reflections were collected, 2545 of which were unique, $R_{int} = 0.0317$, $R_{\sigma} = 0.0557$; completeness to θ of 25.242° was 100 %. The refinement of 228 parameters with 200 restraints converged to $R_1 = 0.0429$, $wR_2 = 0.0846$ for 2011 reflections with $I > 2\sigma(I)$ and $R_1 = 0.0589$, $wR_2 = 0.0915$ for all data with S = 1.038 and residual electron density, $\rho_{max/min} = 0.137$ and -0.172 e Å⁻³. Absolute structure parameter was 0.01(9).

Crystallographic data for 20. C₆H₇O₅P, colorless prism, formula weight 190.09, orthorhombic, $P2_12_12_1$, a = 4.6005(4) Å, b = 10.1220(8) Å, c = 16.4334(14) Å, V = 765.24(11) Å³, Z = 4, Z' = 1, $d_{calc} = 1.650$ g·cm⁻³, $\mu(\lambda MoK_{\alpha}) = 0.338$ mm⁻¹, F(000) = 392; 5805 reflections were collected, 2368 of which were unique, $R_{int} = 0.0346$, $R_{\sigma} = 0.0486$; completeness to θ of 25.242° was 99.2 %. The refinement of 121 parameters with no restraints converged to $R_1 = 0.0387$, $wR_2 = 0.0831$ for 2159 reflections with $I > 2\sigma(I)$ and $R_1 = 0.0440$, $wR_2 = 0.0859$ for all data with S = 1.045 and residual electron density, $\rho_{max/min} = 0.325$ and -0.408 e Å⁻³. Absolute structure parameter was -0.08(8).

Crystallographic data for 23. $C_{10}H_7Cl_3O$, colorless prism, formula weight 249.51, orthorhombic, *Pnma*, a = 10.636(8) Å, b = 7.223(6) Å, c = 14.840(11) Å, V = 1140.1(15) Å³, Z = 4, Z' = 0.5, $d_{calc} = 1.454$ g·cm⁻³, $\mu(\lambda MoK_a) = 0.767$ mm⁻¹, F(000) = 504; 7560 reflections were collected, 1120 of which were unique, $R_{int} = 0.0665$, $R_{\sigma} = 0.0445$; completeness to θ of 25.242° was 100 %. The refinement of 82 parameters with no restraints converged to $R_1 = 0.0825$, $wR_2 = 0.2255$ for 702 reflections with $I > 2\sigma(I)$ and $R_1 = 0.1163$, $wR_2 = 0.2555$ for all data with S = 1.082 and residual electron density, $\rho_{max/min} = 0.845$ and -0.557 e Å⁻³. This structure was reported previously ^{S6}.

It can be assumed that the carbon of the trichloromethyl group $C^{21}Cl_3$ in molecule **9** is located on the plane $P^1O^2O^3C^7$ [deviation of atom C^{21} from the above plane is -0.150(2) Å]. In molecules **7** and **8** the atoms C^{23} , F^1 , F^2 , $F^{12}(in molecule$ **7** $) and <math>C^{21}$, C^{27} , F^1 , F^2 , F^6 (in molecule **8**) are lying in this plane, and their deviations from the above one are: 0.038(3), 0.105(2), -0.231(2), -0.158(2), -0.150(2), 0.174(2), -0.120(2), -0.111(2) and -0.182(2) Å, respectively.

The five-membered heterocycle of the benzodioxaphosphole fragment is planar within 0.018(2) Å (7), 0.025(2) Å (8), 0.042(2) Å (9) and occupies the axial-equatorial position in the trigonal bipyramid (the atom O¹ is apical, the atom O³ is equatorial). The atoms O² and C⁷ are deviated from this plane in different directions by the following distances: 1.441(2) and 1.286(2) Å (7), -1.372(2) and 1.410(2) Å (8), -1.442(2) and 1.297(2) Å (9). The atom O⁸ is accordingly lying in dioxaphosphole heterocycle plane [its deviation from the plane O¹P¹O³C⁸C¹³ is 0.171(2) Å (7), 0.145(2) Å (8), 0.000(2) Å (9)]. It could be considered that in molecule 9 the planar benzodioxaphosphole fragment is a part of a longer eleven-atom plane O¹P¹O³O⁸C⁵C⁸⁻¹³ plane [within 0.065(2) Å], and atom C¹⁵ is deviated from this plane on 0.506(2) Å. The phenyl substituent C¹⁵⁻²⁰ plane at C⁵ atom is considerably turned with respect to this eleventh atomic fragment [dihedral angle between planes O¹P¹O³O⁸C⁵C⁸⁻¹³/

Substituents at the atoms of this cycle (O^1 , O^2 , C^4 , C^{24} , O^3 , C^{18} , C^{27}) in molecule (8) are deviated from the above plane fragment on distances of 0.496(2), 1.473(2), 1.422(2), 1.229(2), -1.155(2), -0.913(2) and -1.993(3) Å and occupy *eq* (equatorial), *ax* (axial), *ax*, *bi* (bisectional), *bi*, *bi*, *ax* positions, respectively. Substituents at the atoms of the five-membered cycle (O^1 , O^2 , C^4 , O^3 , C^{15} , C^{21}) in molecule 9 are deviated from the plane $P^1C^7O^6C^5$ on 0.614(2), 0.1.494(2), 1.355(2), -1.064(1), -0.912(2) and -1.348(2) Å, and located in *eq*, *ax*, *ax*, *bi*, *bi*, *ax* positions, respectively.

The corresponding deviations of C¹⁶, C²³, O², O³, C⁴ and C²² substituents from the P¹O⁸C⁵O⁶C⁷ cycle are [in parentheses here and below their spatial arrangement is presented] 1.18(2) [*bi*], 1.400(3) [*ax*], -2.276(2) [*ax*], -0.391(2) [*eq*], -1.375(3) [*ax*], and -0.796(3) Å [*bi*], respectively.

The substituents at atoms of the six-membered ring of the molecule 7 (O¹, O³, O⁶, C⁷, C¹⁴, C¹⁵ and C¹⁶¹ atoms) are deviated from planar fragment P¹O²C⁴C⁵ on the following distances: 0.690(2) [*eq*], -1.381(2) [*bi*], 1.423(2) [*ax*], 1.504(2) [*bi*], 0.556(4) [*eq*], -1.803(3) [*ax*] and -0.37(3) Å [*eq*], respectively. The substituents at atoms of the six-membered ring of the molecule **8** (O¹, O³, O⁶, C⁷, C¹⁴, C¹⁷ and C¹⁸ atoms) are deviated from the plane fragment mentioned above on the following distances: 0.856(2) [*eq*], -1.174(2) [*bi*], 1.328(2) [*ax*], 1.555(2) [*bi*], -2.103(3) [*ax*], -0.174(3) Å [*eq*] and -0.533(2) [*eq*], respectively. The substituents O¹, O³, O⁶, C⁷, C¹⁴ and C¹⁵ of the same cycle in molecule **9** are deviated from planar fragment P¹O²C⁴C⁵ on the following distances: 0.822(2) [*eq*], -1.245(1) [*bi*], 1.351(1) [*ax*], 1.503(2) [*bi*], 0.221(2) [*eq*] and -0.420(2) Å [*eq*], respectively.

The crystal of the compound **20** is stabilized by a 2D system of classical intermolecular H-bonds. Parameters of the H-bonds are $O^2-H^2 0.75(4)$ Å, $O^2\cdots O^2$ 2.781(2) Å, $H^2\cdots O^2$ 2.08(4) Å, angle $O^2-H^2\cdots O^2$ 158(3)°, symmetry transformation used to generate equivalent atoms is x + 0.5, 1.5 - y, 1 - z; O^3-H^3 ; 0.82(4) Å, $O^3\cdots O^5$ 2.549(3) Å, $H^3\cdots O^5$ 1.73(4) Å, angle $O^3-H^3\cdots O^5$ 178(4)°, symmetry transformation is x - 1, y, z; $O^4-H^4 0.80(3)$ Å, $O^4\cdots O^5$ 2.586(2) Å, $H^4\cdots O^5$ 1.79(3) Å, angle $O^4-H^4\cdots O^5$ 169(4)°, symmetry transformation is x - 0.5, 0.5 - y, 1 - z.

The crystallographic data for the investigated crystal samples have been deposited in the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 1852085 (7), 1852086 (8), 1852087 (9), 1852088 (13), and 1852089 (20).These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif, or by emailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

- (S1) Sheldrick, G. M. Acta Crystallogr. Sect. A. 2015, 71, 3-8.
- (S2) Sheldrick, G. M. Acta Crystallogr. Sect. C. 2015, 71, 3-8.
- (S3) Farrugia, L. J. J. Appl. Cryst. 2012, 45, 849-854.
- (S4) Flack, H. D.; Bernardinelli, G. J. Appl. Cryst. 2000, 33, 1143-1148.
- (S5) Spek A. L. Acta Crystallogr. Sect. C. 2015, 71, 9-18.
- (S6) Zhang, X.-G.; Zhong, P.; Hu, M.-L.; Wang, D.-Y.; Lin, D. Acta Crystallogr. Sect. E. 2004, 60, 01465-01466.

Table S1. Crystal data and structure refinement for 7.

CCDC number Empirical formula Formula weight Temperature Radiation, wavelength Crystal system Space group Unit cell dimensions Volume Z and Z'Calculated Density Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Observed Data $[I > 2\sigma(I)]$ Completeness to theta = 25.242° Absorption correction Max. and min. transmission Data / restraints / parameters Goodness-of-fit on F^2 Final *R* indices $[I > 2\sigma(I)]$ *R* indices (all data) Extinction coefficient Largest diff. peak and hole

Identification code

bar56 1852085 $C_{20}H_{11}F_{12}O_5P$ 590.26 293(2) K MoKα, 0.71073 Å Monoclinic $P2_1/c$ (No. 14) a = 15.787(9) Å $\alpha = 90^{\circ}$ b = 10.811(6) Å $\beta = 112.816(7)^{\circ}$ c = 13.977(8) Å $\gamma = 90^{\circ}$ 2199(2) Å³ 4 and 1 1.783 g cm^{-3} 0.260 mm^{-1} 1176 $0.407 \times 0.319 \times 0.168 \text{ mm}^3$ 2.347 to 25.400° $-18 \le h \le 19, -13 \le k \le 12, -16 \le l \le 16$ 20876 4023 [R(int) = 0.0363]3018 99.7 % Numerical 0.9794 and 0.9085 4023 / 212 / 398 1.028 R1 = 0.0444, wR2 = 0.1116R1 = 0.0611, wR2 = 0.1226n/a 0.313 and -0.273 e Å⁻³ C8 C13 03 C7 08 06 C5

Table S2. Crystal data and structure refinement for 8.

Identification code CCDC number Empirical formula Formula weight Temperature Radiation, wavelength Crystal system Space group Unit cell dimensions Volume Z and Z'Calculated Density Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Observed Data $[I > 2\sigma(I)]$ Completeness to theta = 25.242° Absorption correction Max. and min. transmission Data / restraints / parameters Goodness-of-fit on F^2 Final *R* indices $[I > 2\sigma(I)]$ *R* indices (all data) Extinction coefficient Largest diff. peak and hole

khas17 1 1852086 $C_{24}H_{21}F_6O_9P$ 598.38 293(2) K MoKα, 0.71073 Å Triclinic P-1 (No. 2) a = 10.7892(6) Å $\alpha = 101.788(3)^{\circ}$ b = 11.1562(6) Å $\beta = 99.647(3)^{\circ}$ c = 11.7122(6) Å $\gamma = 106.558(3)^{\circ}$ 1283.93(12) Å³ 2 and 1 1.548 g cm^{-3} 0.203 mm^{-1} 612 $0.422 \times 0.203 \times 0.134 \text{ mm}^3$ 2.977 to 25.283° $-12 \le h \le 12, -13 \le k \le 13, -14 \le l \le 13$ 38254 4510 [*R*(int) = 0.0572] 2940 96.5 % Semi-empirical from equivalents 0.7372 and 0.6818 4510 / 55 / 383 1.027 R1 = 0.0442, wR2 = 0.1057R1 = 0.0813, wR2 = 0.1222n/a 0.216 and -0.275 e Å⁻³

Table S3. Crystal data and structure refinement for 9.

Identification code	khas61_sq	
CCDC number	1852087	
Empirical formula	$C_{18}H_{13}C_{16}O_5P$ [+ solvent]*	
Formula weight	552.95	
Temperature	293(2) K	
Radiation, wavelength	MoKα, 0.71073 Å	
Crystal system	Tetragonal	
Space group	<i>I</i> 4 ₁ / <i>a</i> (No. 88)	
Unit cell dimensions	a = 27.972(6) Å	$\alpha = 90^{\circ}$
	b = 27.972(6) Å	$\beta = 90^{\circ}$
	c = 11.844(3) Å	$\gamma = 90^{\circ}$
Volume	9268(5) Å ³	
Z and Z'	16 and 1	
Calculated density	1.585 g cm^{-3}	
Absorption coefficient	0.838 mm^{-1}	
F(000)	4448	
Crystal size	$0.599 \times 0.494 \times 0.461 \text{ mm}^3$	
Theta range for data collection	1.867 to 25.699°	
Index ranges	$-34 \le h \le 34, -34 \le k \le 34, -14$	$\leq l \leq 14$
Reflections collected	34206	
Independent reflections	4413 [R(int) = 0.0349]	
Observed Data $[I > 2\sigma(I)]$	3637	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Numerical	
Max. and min. transmission	1.0000 and 0.9103	
Data / restraints / parameters	4413 / 0 / 271	
Goodness-of-fit on F^2	1.048	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0399, wR2 = 0.0929	
R indices (all data)	R1 = 0.0500, wR2 = 0.0990	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.758 and $-0.686 \ e \ \text{\AA}^{-3}$	

*Squeezed solvent (pentane) info is not included in the formula and related items such as molecular weight and calculated density.

Table S4. Crystal data and structure refinement for 13.

Identification code khas63 CCDC number 1852088 Empirical formula $C_{12}H_{20}NO_4P$ Formula weight 273.26 Temperature 293(2) K Radiation, wavelength MoKα, 0.71073 Å Crystal system Monoclinic Space group P2₁ (No. 4) Unit cell dimensions a = 7.266(3) Å $\alpha = 90^{\circ}$ b = 11.409(5) Å $\beta = 96.695(6)^{\circ}$ c = 8.573(4) Å $\gamma = 90^{\circ}$ 705.8(5) Å³ Volume Z and Z'2 and 1 1.286 g cm^{-3} Calculated density Absorption coefficient 0.201 mm^{-1} F(000) 292 Crystal size $0.487 \times 0.234 \times 0.046 \text{ mm}^3$ Theta range for data collection 2.392 to 25.282° Index ranges $-8 \le h \le 8, -13 \le k \le 13, -10 \le l \le 10$ Reflections collected 5170 Independent reflections 2545 [R(int) = 0.0317]Observed Data $[I > 2\sigma(I)]$ 2011 Completeness to theta = 25.242° 100.0 % Absorption correction Numerical Max. and min. transmission 1.0000 and 0.9182 Data / restraints / parameters 2545 / 200 / 228 Goodness-of-fit on F^2 1.038 Final *R* indices $[I > 2\sigma(I)]$ R1 = 0.0429, wR2 = 0.0846*R* indices (all data) R1 = 0.0589, wR2 = 0.0915Absolute structure parameter 0.01(9) Extinction coefficient n/a 0.137 and -0.172 e Å⁻³ Largest diff. peak and hole C7a C3a 01 03 P2 02 H

Table S5. Crystal data and structure refinement for **20**.

code	miron2018_8							
CCDC number	1852089							
Empirical formula	$C_6H_7O_5P$							
Formula weight	190.09							
Temperature	150(2) K							
Radiation, wavelength	MoKα, 0.71073 Å							
Crystal system	Orthorhombic							
Space group	$P2_12_12_1$ (No. 19)							
Unit cell dimensions	$a = 4.6005(4) \text{ Å}$ $\alpha = 90$							
	$b = 10.1220(8)$ Å $\beta = 90^{\circ}$							
	$c = 16.4334(14) \text{ Å}$ $\gamma = 90^{\circ}$							
Volume	765.24(11) Å ³							
Z and Z'	4 and 1							
Calculated density	1.650 g cm^{-3}							
Absorption coefficient	0.338 mm^{-1}							
F(000)	392							
Crystal size	$0.541 \times 0.457 \times 0.391 \text{ mm}^3$							
Theta range for data collection	3.193 to 31.430°							
Index ranges	$-6 \le h \le 5, -14 \le k \le 14, -24 \le l \le 23$							
Reflections collected	5805							
Independent reflections	2368 [R(int) = 0.0346]							
Observed Data $[I > 2\sigma(I)]$	2159							
Completeness to theta = 25.242°	99.2 %							
Absorption correction	Semi-empirical from equivalents							
Max. and min. transmission	0.7464 and 0.6153							
Data / restraints / parameters	2368 / 0 / 121							
Goodness-of-fit on F^2	1.056							
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0387, wR2 = 0.0831							
<i>R</i> indices (all data)	R1 = 0.0440, wR2 = 0.0859							
Absolute structure parameter	-0.08(8)							
Extinction coefficient	n/a							
Largest diff. peak and hole	0.325 and $-0.408 \ e \ \text{\AA}^{-3}$							

Table S6. Crystal data and structure refinement for 23.

khas64 Identification code Empirical formula C₁₀H₇Cl₃O Formula weight 249.51 Temperature 293(2) K Radiation, wavelength Mo*Kα*, 0.71073 Å Crystal system Orthorhombic Space group *Pnma* (No. 62) Unit cell dimensions a = 10.636(8) Å $\alpha = 90^{\circ}$ b = 7.223(6) Å $\beta = 90^{\circ}$ c = 14.840(11) Å $\gamma = 90^{\circ}$ 1140.1(15) Å³ Volume Z and Z'4 and 0.5 1.454 g cm^{-3} Calculated density 0.767 mm^{-1} Absorption coefficient *F*(000) 504 Crystal size $0.454 \times 0.148 \times 0.108 \text{ mm}^{-1}$ 2.356 to 25.249° Theta range for data collection Index ranges $-12 \le h \le 12, -8 \le k \le 8, -17 \le l \le 17$ Reflections collected 7560 Independent reflections 1120 [R(int) = 0.0665]Observed Data $[I > 2\sigma(I)]$ 702 Completeness to theta = 25.242° 100.0 % Absorption correction Numerical 0.9702 and 0.6877 Max. and min. transmission Data / restraints / parameters 1120 / 0 / 82 Goodness-of-fit on F^2 1.082 Final *R* indices $[I > 2\sigma(I)]$ R1 = 0.0825, wR2 = 0.2255*R* indices (all data) R1 = 0.1163, wR2 = 0.2555Extinction coefficient n/a 0.845 and $-0.557 \ e \ \text{\AA}^{-3}$ Largest diff. peak and hole

Electronic supplementary Information 2 Spectral data

Organic Chemistry Frontiers. 2018

Tandem dihetero-Diels-Alder and Huisgen cycloaddition reactions. Synthesis, structure and hydrolysis of the novel cage phosphoranes based on 2-(1-phenylethenyloxy)benzo-1,3,2-dioxaphosphole

Nadezhda R. Khasiyatullina^{a,b}, Tamara A. Baronova^{a,b}, Ekaterina V. Mironova^a, Robert R. Fayzullin^a, Igor A. Litvinov^a, Sergey V. Efimov^c, Rashid Z. Musin^a, Vladimir V. Klochkov^c, Vladimir F. Mironov^{*a,b}

^aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russian Federation. E-mail: mironov@iopc.ru ^bA.M.Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation ^cInstitute of Physics, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation

Figures of NMR Spectra of Compounds 6, 7.

S22

Figure S7. $^{13}C-{^{1}H}$ and ^{13}C NMR spectra (100.6 MHz, CDCl₃) of compound (6).

Figure S8. 111-130 ppm region of ${}^{13}C$ -{ ${}^{1}H$ } and ${}^{13}C$ NMR spectra (100.6 MHz, CDCl₃) of compound (6).

Figure S9. Fragment of ${}^{13}C-\{{}^{1}H\}$ and ${}^{13}C-\{{}^{1}H\}$ -dept NMR spectra (100.6 MHz, CDCl₃) of compound (6).

S27

Figure S14. 19 F-{ 31 P} and 19 F NMR spectra (658.78 MHz, CDCl₃, 25°C) of phosphorane (7).

Figure S16. Low-field fragments of ${}^{13}C-\{{}^{1}H\}$ NMR spectra (176.5 MHz, CDCl₃, 25°C) of phosphorane (7).

Figure S20. 109-113 ppm region of ${}^{13}C-\{{}^{1}H\}-\{{}^{31}P\}$ and ${}^{13}C-\{{}^{1}H\}$ NMR spectra (176.5 MHz, CDCl₃, 25°C) of phosphorane (7).

Electronic supplementary information 3 Spectral data

Organic Chemistry Frontiers. 2018

Tandem dihetero-Diels-Alder and Huisgen cycloaddition reactions. Synthesis, structure and hydrolysis of the novel cage phosphoranes based on 2-(1-phenylethenyloxy)benzo-1,3,2-dioxaphosphole

Nadezhda R. Khasiyatullina^{a,b}, Tamara A. Baronova^{a,b}, Ekaterina V. Mironova^a, Robert R. Fayzullin^a, Igor A. Litvinov^a, Sergey V. Efimov^c, Rashid Z. Musin^a, Vladimir V. Klochkov^c, Vladimir F. Mironov^{*a,b}

^aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russian Federation. E-mail: mironov@iopc.ru ^bA.M.Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation ^cInstitute of Physics, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation

Figures of NMR and IR Spectra of Compound 7.

Figure S26. 118-125 ppm region of ${}^{13}C-{}^{31}P$ (red) and ${}^{13}C-{}^{1}H$ NMR spectra (176.5 MHz, CDCl₃, 25°C) of phosphorane (7).

Figure S27. 79-81 ppm region of ${}^{13}C-{}^{31}P$ and ${}^{13}C-{}^{1}H-{}^{31}P$ NMR spectra (176.5 MHz, CDCl₃, 25°C) of phosphorane (7).

S51

Figure S34. High-field fragments of ${}^{13}C-{}^{19}F{}-{}^{31}P{}$ (black) and ${}^{13}C-{}^{19}F{}$ (blue) NMR spectra (176.5 MHz, CDCl₃) of phosphorane (7).

Figure S35. Low-field fragment of ${}^{13}C-\{{}^{19}F\}-\{{}^{31}P\}$ (black) and ${}^{13}C-\{{}^{19}F\}$ (blue) NMR spectra (176.5 MHz, CDCl₃) of phosphorane (7).

S64

S65

Figure S49. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, acetone-d₆, 25°C) of phosphorane (7).

Figure S51. IR spectrum of phosphorane (7) in nujol.

Figure S52. IR spectrum of phosphorane (7) in nujol (region of 400-2000 cm^{-1}).

Electronic supplementary information 4 Spectral data

Organic Chemistry Frontiers. 2018

Tandem dihetero-Diels-Alder and Huisgen cycloaddition reactions. Synthesis, structure and hydrolysis of the novel cage phosphoranes based on 2-(1-phenylethenyloxy)benzo-1,3,2-dioxaphosphole

Nadezhda R. Khasiyatullina^{a,b}, Tamara A. Baronova^{a,b}, Ekaterina V. Mironova^a, Robert R. Fayzullin^a, Igor A. Litvinov^a, Sergey V. Efimov^c, Rashid Z. Musin^a, Vladimir V. Klochkov^c, Vladimir F. Mironov^{*a,b}

^aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russian Federation. E-mail: mironov@iopc.ru ^bA.M.Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation ^cInstitute of Physics, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation

Figures of NMR and IR Spectra of Compound 8.

S72

Figure S54. Aromatic protons region of ¹H NMR spectrum (400 MHz, CDCl₃) of compound (8).

Figure S60. 13 C NMR spectrum (100.6 MHz, CD₂Cl₂) of compound (8).

Figure 501. 118-150 ppin region of C twick spectrum (100.0 whitz, CD_2CI_2) of compound (6).

Figure S62. 110-113 ppm region of 13 C NMR spectrum (100.6 MHz, CD₂Cl₂) of compound (8).

Figure S65. ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, CD_2Cl_2) of compound (8).

Figure S67. 118-131 ppm region of ${}^{13}C$ -{ ${}^{1}H$ } and ${}^{13}C$ NMR spectra (100.6 MHz, CD_2Cl_2) of compound (8).

Figure S68. 110-113 ppm region of ${}^{13}C$ -{ ${}^{1}H$ } and ${}^{13}C$ NMR spectra (100.6 MHz, CD_2Cl_2) of compound (8).

Figure S70. 101-102 and 76-82 ppm regions of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, CD_2Cl_2) of compound (8).

Figure S71. 62-67, 42-47 and 11-17 ppm regions of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, CD_2Cl_2) of compound (8).

Figure S72. ¹³C-{¹H} and ¹³C-{¹H}-dept NMR spectra (100.6 MHz, CD_2Cl_2) of compound (8).

Figure S74. Low-field region of ¹H and ¹H-{¹H} NMR spectra (700 MHz, acetone- d_6) of compound (8).

Figure S75. High-field region of ${}^{1}H$ and ${}^{1}H{}^{1}H{}$ NMR spectra (700 MHz, acetone-d₆) of compound (8).

S99

Figure S81. IR spectrum of phosphorane (8) in KBr pellet.

Electronic supplementary information 5 Spectral data

Organic Chemistry Frontiers. 2018

Tandem dihetero-Diels-Alder and Huisgen cycloaddition reactions. Synthesis, structure and hydrolysis of the novel cage phosphoranes based on 2-(1-phenylethenyloxy)benzo-1,3,2-dioxaphosphole

Nadezhda R. Khasiyatullina^{a,b}, Tamara A. Baronova^{a,b}, Ekaterina V. Mironova^a, Robert R. Fayzullin^a, Igor A. Litvinov^a, Sergey V. Efimov^c, Rashid Z. Musin^a, Vladimir V. Klochkov^c, Vladimir F. Mironov^{*a,b}

^aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russian Federation. E-mail: mironov@iopc.ru ^bA.M.Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation ^cInstitute of Physics, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation

Figures of NMR and IR Spectra of Compound 9.

Figure S82. ³¹P-{¹H} and ³¹P NMR spectra (162.0 MHz, CH₂Cl₂, 25°C) of phosphole (6) and chloral mixture. (a) 3 hours after mixing the reagents, (b) 2 days after mixing the reagents, (c) 10 days after mixing the reagents (d).17 days after mixing the reagents.

Figure S84. Aromatic protons region of ¹H NMR spectrum (400 MHz, CDCl₃, 25°C) of phosphorane (9).

S105

S106

Figure S87. ¹³C-{¹H} and ¹³C-{¹H}-dept NMR spectra (100.6 MHz, CDCl₃, 25°C) of phosphorane (9).

Figure S90. 110-112 ppm region of 13 C NMR spectrum (100.6 MHz, CDCl₃, 25°C) of phosphorane (9).

S112

S113

Figure S94. 120-129 ppm region of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, CDCl₃, 25°C) of phosphorane (9).

Figure S95. IR spectrum of phosphorane (9) in Nujol.

S117

Electronic supplementary information 6 Spectral data

Organic Chemistry Frontiers. 2018

Tandem dihetero-Diels-Alder and Huisgen cycloaddition reactions. Synthesis, structure and hydrolysis of the novel cage phosphoranes based on 2-(1-phenylethenyloxy)benzo-1,3,2-dioxaphosphole

Nadezhda R. Khasiyatullina^{a,b}, Tamara A. Baronova^{a,b}, Ekaterina V. Mironova^a, Robert R. Fayzullin^a, Igor A. Litvinov^a, Sergey V. Efimov^c, Rashid Z. Musin^a, Vladimir V. Klochkov^c, Vladimir F. Mironov^{*a,b}

^aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russian Federation. E-mail: mironov@iopc.ru ^bA.M.Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation ^cInstitute of Physics, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation

Figures of NMR Spectra of Compounds 11-14 and IR Spectrum of Compound 13.

Figure S103. ¹³C-{¹H} and ¹³C NMR spectra (100.6 MHz, acetone- d_6 , 25°C) of phosphonate (11).

Figure S104. 112-145 ppm regions of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, acetone- d_6 , 25°C) of phosphonate (11).

Figure S105. ¹³C-{¹H} and ¹³C-{¹H} dept NMR spectra (100.6 MHz, acetone- d_6 , 25°C) of phosphonate (11).

Figure S106. ¹H NMR spectrum (400 MHz, acetone- d_6 , 25°C) of hydroxyketone (12).

Figure S108. ¹⁹F NMR spectrum (386.4 MHz, CDCl₃, 25°C) of hydroxyketone (**12**).

Figure S109. ¹³C-{¹H} NMR spectrum (100.6 MHz, acetone- d_6 , 25°C) of hydroxyketone (12).

S133

Figure S113. ³¹P-{¹H} NMR spectrum (243.5 MHz, DMSO- d_6 , 25°C) of phosphate (13).

Figure S115. ${}^{13}C-{}^{1}H$ and ${}^{13}C-{}^{1}H$ dept NMR spectra (150.9 MHz, DMSO- d_6 , 25°C) of phosphate (13).

Figure S117. ¹³C-{¹H} and ¹³C NMR spectra (150.9 MHz, DMSO- d_6 , 25°C) of phosphate (13).

Figure S118. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (150.9 MHz, DMSO- d_6 , 25°C) of phosphate (13).

Figure S119. IR spectrum of of phosphate (13).

Figure S120. ¹⁹F NMR spectrum (386.4 MHz, CDCl₃, 25°C) of unsaturated ketone (14).

S142

S143

Figure S123. 13 C NMR spectrum (100.6 MHz, CDCl₃, 25°C) of unsaturated ketone (14).

S145

Figure S125. ¹³C-{¹H} and ¹³C NMR spectra (100.6 MHz, CDCl₃, 25°C) of unsaturated ketone (14).

Figure S126. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, CDCl₃, 25°C) of unsaturated ketone (14).

Figure S127. 116-127 ppm regions of ${}^{13}C$ -{ ${}^{1}H$ } and ${}^{13}C$ NMR spectra (100.6 MHz, CDCl₃, 25°C) of unsaturated ketone (14).

Electronic supplementary information 7 Spectral data

Organic Chemistry Frontiers. 2018

Tandem dihetero-Diels-Alder and Huisgen cycloaddition reactions. Synthesis, structure and hydrolysis of the novel cage phosphoranes based on 2-(1-phenylethenyloxy)benzo-1,3,2-dioxaphosphole

Nadezhda R. Khasiyatullina^{a,b}, Tamara A. Baronova^{a,b}, Ekaterina V. Mironova^a, Robert R. Fayzullin^a, Igor A. Litvinov^a, Sergey V. Efimov^c, Rashid Z. Musin^a, Vladimir V. Klochkov^c, Vladimir F. Mironov^{*a,b}

^aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russian Federation. E-mail: mironov@iopc.ru ^bA.M.Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation ^cInstitute of Physics, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation

Figures of NMR Spectra of Compounds 15, 16, 18 and IR Spectrum of Compound 15.

Figure S129. ¹⁹F NMR spectrum (376.4 MHz, CDCl₃, 25°C) of hydroxy trifluoroketone (**15**).

S153

Figure S133. ¹³C-{¹H} NMR spectrum (176.5 MHz, acetone- d_6 , 25°C) of hydroxy trifluoroketone (15).

Figure S134. ¹³C NMR spectrum (176.5 MHz, acetone- d_6 , 25°C) of hydroxy trifluoroketone (15).

Figure S136. ¹³C-{¹H} and ¹³C NMR spectra (176.5 MHz, acetone- d_6 , 25°C) of hydroxy trifluoroketone (15).

Figure S137. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (176.5 MHz, acetone- d_6 , 25°C) of hydroxy trifluoroketone (15).

Figure S138. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (176.5 MHz, acetone- d_6 , 25°C) of hydroxy trifluoroketone (15).

Figure S140. ³¹P-{¹H} NMR spectrum (162.50 MHz, acetone- d_6 , 25°C) of phosphonates (16) and (18) mixture.

S163

S166

Figure S146. Fragment of ¹³C NMR spectra (176.5 MHz, acetone- d_6 , 25°C) of phosphonates (16) and (18) mixture.

Figure S147. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (176.5 MHz, acetone- d_6 , 25°C) of phosphonates (16) and (18) mixture.

Figure S148. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (176.5 MHz, acetone- d_6 , 25°C) of phosphonates (16) and (18) mixture.

Electronic supplementary information 8 Spectral data

Organic Chemistry Frontiers. 2018

Tandem dihetero-Diels-Alder and Huisgen cycloaddition reactions. Synthesis, structure and hydrolysis of the novel cage phosphoranes based on 2-(1-phenylethenyloxy)benzo-1,3,2-dioxaphosphole

Nadezhda R. Khasiyatullina^{a,b}, Tamara A. Baronova^{a,b}, Ekaterina V. Mironova^a, Robert R. Fayzullin^a, Igor A. Litvinov^a, Sergey V. Efimov^c, Rashid Z. Musin^a, Vladimir V. Klochkov^c, Vladimir F. Mironov^{*a,b}

^aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russian Federation. E-mail: mironov@iopc.ru ^bA.M.Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation ^cInstitute of Physics, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russian Federation

Figures of NMR Spectra of Compounds 21-23.

Figure S153. Fragment of ¹³C NMR spectrum (100.6 MHz, DMSO- d_6 , 25°C) of phosphonate (21).

Figure S154. Fragments of ¹³C-{¹H} and ¹³C NMR spectra (100.6 MHz, DMSO- d_6 , 25°C) of phosphonate (21).

Figure S156. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, DMSO- d_6 , 25°C) of phosphonate (21).

Figure S157. Fragments of ¹³C-{¹H} and ¹³C-{¹H} dept NMR spectra (100.6 MHz, DMSO- d_6 , 25°C) of phosphonate (21).

S183

Figure S161. 127-130 ppm region of ¹³C NMR spectrum (100.6 MHz, CDCl₃, 25°C) of hydroxy trichloroketone (**22**).

Figure S162. ¹³C-{¹H} and ¹³C-{¹H} NMR spectra (100.6 MHz, CDCl₃, 25°C) of hydroxy trichloroketone (22).

Figure S163. ¹³C-{¹H} and ¹³C NMR spectra (100.6 MHz, CDCl₃, 25°C) of hydroxy trichloroketone (**22**).

Figure S164. Fragments of ${}^{13}C-{}^{1}H$ and ${}^{13}C$ NMR spectra (100.6 MHz, CDCl₃, 25°C) of hydroxy trichloroketone (22).

Figure S165. ¹H NMR spectrum (400 MHz, CDCl₃, 25°C) of unsaturated trichloroketone (23).

Figure S166. ¹³C-{¹H} NMR spectrum (100.6 MHz, CDCl₃, 25°C) of unsaturated trichloroketone (23).

Figure S168. ¹³C-{¹H} and ¹³C NMR spectra (100.6 MHz, CDCl₃, 25°C) of unsaturated trichloroketone (**23**).

Figure S169. Fragments of ${}^{13}C$ -{ ${}^{1}H$ } and ${}^{13}C$ NMR spectra (100.6 MHz, CDCl₃, 25°C) of unsaturated trichloroketone (23).