Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Electronic Supplementary Information

This ESI for Org. Chem. Front DOI 10.1039/C8QO00938D, originally published on 22nd Oct 2018, was updated on 4th January 2019. The carbon NMR spectra for some compounds were updated for clarity and improvement.

Metal-Free Cross-Coupling of π-Conjugated Triazenes with Unactivated Arenes via Photoactivation

Enrique Barragan, Anurag Noonikara Poyil, Chou-Hsun Yang, Haobin Wang, and Alejandro Bugarin*

Department of Chemistry and Biochemistry, University of Texas-Arlington, Box 19065, Arlington, TX 76019

bugarin@uta.edu

Table of Contents

General Information	S-1
List of Known Biaryl Compounds	S-2
General Methods for the Preparation of Triazenes	S-3
General Methods for the Preparation of Biaryl Compounds	S-6
Computational Data Tables	S-9
¹ H and ¹³ C NMR Spectra	S-14
XYZ Coordinates.	S-53

General Information

All photochemical reactions were carried out in quartz tubes using a Rayonet photochemical reactor with 350 nm UV lamps. All commercially obtained reagents were used as received. Solvents were dried, degassed and obtained from a JC Meyer company solvent purification system. Heating was accomplished by either a heating mantle or silicone oil bath. Purification of reaction products was carried out by flash column chromatography using silica gel 60 (230-400 mesh). TLC visualization was accompanied with UV light. Concentration in vacuo refers to the removal of volatile solvent using a rotary evaporator attached to a dry diaphragm pump (10-15 mm Hg) followed by pumping to a constant weight with an oil pump (<300 mTorr).

¹H NMR spectra were recorded at 500 MHz and are reported relative to CDCl₃ (δ 7.26) or DMSO (δ 2.50). ¹H NMR coupling constants (J) are reported in Hertz (Hz) and multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), m (multiplet). Proton-decoupled ¹³C NMR spectra were recorded at 125 MHz and reported relative to CDCl₃ (δ 77.0) or DMSO (δ 39.52). IR experiments were recorded with neat samples on a Bruker Alpha instruments fitted with diamond ATR sample plate. High-resolution (HR) mass spectra were recorded at the Shimadzu Center Laboratory for Biological Mass Spectrometry at UTA.

Compound No.	Product	Ref.	Compound No.	Product	Ref.
4a	Ph	S1	4k	Ph	S6
4b	Ph	S2	41	Ph Ph	S7
4c	Ph t-Bu	S3	4m	Ph	S8
4d	Ph	S2	4n	Ph MeO	S9
4e	Ph Me Me	S4	40	Ph	S10
4f	Ph	S5	4p	Ph	S6
4g	Ph	S6	4q	Ph NO ₂	S1
4h	Ph	S6	4r	Ph N	S11
4i	Ph	S2	4s	N Ph	S12
	CF ₃		4t	Ph	S13
4j	NO ₂	S6	4u	Ph	S14

List of Known Biaryl Compounds

- S1) L. Bai and J.-X. Wang, Adv. Synth. Catal. 2008, 350, 315-320.
- S2) R. Bandari, T. Hoche, A. Prager, K. Dirnberger and M. R. Buchmeiser, Chem. Eur. J. 2010, 16, 4650-4658.
- S3) H. Li, C.-L. Sun, M. Yu, D.-G. Yu, B.-J. Li and Z.-J. Shi, Chem. Eur. J. 2011, 17, 3593-3597.
- S4) T. Hatakeyama and M. Nakamura, J. Am. Chem. Soc. 2007, 129, 9844-9845.
- S5) J. Jin, M. Cai and J.-X. Li, Synlett 2009, 15, 2534-2538.
- S6) E. M. Schulman, K. A. Christensen, D.M. Grant and C. Walling, J. Org. Chem. 1974, 39, 2686-2690.
- S7) F. Y. Kwong, K. S. Chan, C. H. Yeung and A. S. C. Chan, Chem. Commun., 2004, 0, 2336-2337.
- S8) L. Ackermann, A. R. Kapdi, S. Fenner, C. Kornhaaß and C. Schulzke, Chem. Eur. J. 2011, 17, 2965-2971.
- S9) P. D. Stevens, J. Fan, H. M. R. Gardimalla, M. Yen and Y. Gao, Org. Lett. 2005, 7, 2085-2088.
- S10) K. C. L. Lau, H. S. He, P. Chiu, and P. H. Toy, ACS Comb. Sci. 2004, 6, 955-960.
- S11) S. Sprouse, K. A. King, P. J. Spellane, and R. J. Watts, J. Am. Chem. Soc. 1984, 106, 6647-6653.
- S12) P. J. Steel and G. B. Caygill, J. Organomet. Chem. 1990, 395, 359-373.
- S13) M. Egi, K. Azechi and S. Akai, Org. Lett. 2009, 11, 5002-5005.
- S14) S. Lois, J.-C. Florès, J.-P. Lère-Porte, F. Serein-Spirau, J. J. E. Moreau, K. Miqueu, J.-M. Sotiropoulos,
- P. Baylère, M. Tillard, and C. Belin, Eur. J. Org. Chem. 2007, 2007, 4019-4031.

 $Bu = N \xrightarrow{N_{0}} t - Bu + N_{0} \xrightarrow{R} R \xrightarrow{KOt-Bu} THF N \xrightarrow{N} N$

Method A. To a flask containing 1,3-di*tert*-butylimidazolium tetrafluoroborate (1.1 mmol), potassium *tert*butoxide (1.3 mmol) and dry THF was added (10 mL) under Ar. The resulting suspension was stirred for 15 minutes, followed by dropwise addition of aromatic azide (1.1 mmol). The resulting mixture was left stirring at room temperature for 12 h. After this time, hexanes (10 mL) were added and the resulting solid precipitate filtered. The filtered solid was dissolved in DCM (20 mL) and the precipitated salts filtered. The resulting solution was then concentrated *in vacuo* and dried under high vacuum, affording the pure triazene.

Method B. Same procedure for method A but using NaH instead of potassium *tert*-butoxide. This method was used to prepare triazenes **3e** and **3g**.

(*E*)-2-((4-chlorophenyl)triaz-2-en-1-ylidene)-1,3-di-*tert*-butyl-2,3-dihydro-1*H*imidazole (3a): Prepared from 4-chloroazidobenzene (169 mg, 1.1 mmol) according to the general procedure A, obtained as a yellow solid (242 mg, 66%). IR (neat) v 3095, 1473, 1449, 1257, 699 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.48 (d, *J* = 8.6 Hz, 2H), 7.25 (d, *J* = 8.6 Hz, 2H), 6.92 (s, 2H), 1.63 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.95, 151.51, 128.97, 128.52, 121.71, 112.65, 59.35, 30.19; HRMS (ESI) *m/z* 334.1798, calcd for C₁₇H₂₅N₅Cl [M + H]⁺ 334.1793.

(*E*)-2-((4-methylphenyl)triaz-2-en-1-ylidene)-1,3-di-*tert*-butyl-2,3-dihydro-1*H*imidazole (3b): Prepared from 4-methylazidobenzene (149 mg, 1.1 mmol) according to the general procedure A, obtained as an orange solid (228 mg, 48%). IR (neat) v 3088, 1491, 1448, 1266, 694 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.44 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.85 (s, 2H), 2.31 (s, 3H), 1.63 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.97, 150.51, 133.57, 129.07, 120.58, 112.24, 58.99, 30.10, 20.93; HRMS (ESI) *m/z* 314.2335, calcd for C₁₈H₂₈N₅ [M + H]⁺ 314.2339.

(*E*)-2-((4-*tert*-butylphenyl)triaz-2-en-1-ylidene)-1,3-di-*tert*-butyl-2,3-dihydro-1*H*imidazole (3c): Prepared from 4-*tert*-butylazidobenzene (193 mg, 1.1 mmol) according to the general procedure A, obtained as a yellow solid (348 mg, 89%). IR (neat) v 3032, 1493, 1447, 1260, 687 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.49 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 6.86 (s, 2H), 1.64 (s, 18H), 1.31 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.98, 150.26, 146.84, 125.35, 120.22, 112.29, 59.05, 34.31, 31.46, 30.15; HRMS (ESI) *m*/*z* 356.2812, calcd for C₂₁H₃₄N₅ [M + H]⁺ 356.2809.

(E)-2-((phenyl)triaz-2-en-1-ylidene)-1,3-di-tert-butyl-2,3-dihydro-1H-imidazole

(3d): Prepared from azidobenzene (131 mg, 1.1 mmol) according to the general procedure A, obtained as a yellow solid (287 mg, 87%). IR (neat) v 3179, 1475, 1449, 1263, 693 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.53 (dd, J = 8.6 Hz, J = 1.2 Hz, 2H), 7.31-7.28 (m, 2H), 7.09-7.06 (m, 1H), 6.85 (s, 2H), 1.64 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 154.05, 152.78, 128.44, 124.05, 120.70, 112.44, 59.17, 30.16; HRMS (ESI) *m/z* 300.2178, calcd for C₁₇H₂₆N₅ [M + H]⁺ 300.2183.

(*E*)-2-((2,4,6-trimethylphenyl)triaz-2-en-1-ylidene)-1,3-di-*tert*-butyl-2,3-dihydro-1*H*-imidazole (3e): Prepared from 2,4,6-trimethylazidobenzene (177 mg, 1.1 mmol) according to the general procedure B, obtained as a yellow solid (327 mg, 87%). IR (neat) v 3132, 1477, 1427, 1265, 674 cm⁻¹; ¹H NMR (DMSO-*d*₆, 500 MHz): δ 7.12 (s, 2H), 6.75 (s, 2H), 2.18 (s, 3H), 1.60 (s, 6H), 1.50 (s, 18H); ¹³C NMR (DMSO-*d*₆, 125

General Methods for the Preparation of Triazenes (3)

MHz): δ 154.01, 148.68, 131.45, 128.62, 120.47, 113.14, 58.23, 29.35, 20.43, 18.62; HRMS (ESI) *m*/*z* 342.2655, calcd for C₂₀H₃₂N₅ [M + H]⁺ 342.2658.

(*E*)-2-((3,4-dimethylphenyl)triaz-2-en-1-ylidene)-1,3-di-*tert*-butyl-2,3-dihydro-1*H*-imidazole (3f): Prepared from 3,4-dimethylazidobenzene (162 mg, 1.1 mmol) according to the general procedure A, obtained as a yellow solid (223 mg, 62%). IR (neat) v 3077, 1478, 1433, 1261, 650 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.34 (s, 1H), 7.28-7.27 (m, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.80 (s, 2H), 2.24 (s, 6H), 1.63 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.85, 150.59, 136.40, 132.35, 129.65, 122.19, 117.91, 112.25, 59.01, 30.10, 19.97, 19.27; HRMS (ESI) *m/z* 328.2499, calcd for C₁₉H₃₀N₅ [M + H]⁺ 328.2501.

(*E*)-2-((4-methoxyphenyl)triaz-2-en-1-ylidene)-1,3-di-*tert*-butyl-2,3-dihydro-1*H*imidazole (3g): Prepared from 4-methoxyazidobenzene (164 mg, 1.1 mmol) according to the general procedure B, obtained as a yellow solid (254 mg, 70%). IR (neat) v 3091, 1491, 1434, 1267, 698 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.47 (d, *J* = 9.2 Hz, 2H), 6.85 (d, *J* = 9.2 Hz, 2H), 6.78 (s, 2H), 3.79 (s, 3H), 1.63 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 156.87, 153.71, 146.29, 121.55, 113.80, 112.28, 59.04, 55.38, 30.28; HRMS (ESI) *m/z* 330.2285, calcd for C₁₈H₂₆N₅O [M + H]⁺ 330.2288.

(*E*)-2-((4-cyanophenyl)triaz-2-en-1-ylidene)-1,3-di-*tert*-butyl-2,3-dihydro-1*H*imidazole (3h): Prepared from 4-cyanoazidobenzene (159 mg, 1.1 mmol) according to the general procedure A, obtained as an orange solid (264 mg, 74%). IR (neat) v 3099, 1481, 1444, 1254, 670 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.51 (s, 4H), 6.94 (s, 2H), 1.61 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 156.73, 153.62, 132.75, 120.50, 120.27, 113.34, 105.47, 59.80, 30.19; HRMS (ESI) *m/z* 325.2132, calcd for C₁₈H₂₅N₆ [M + H]⁺ 325.2135.

(*E*)-2-((4-trifluorophenyl)triaz-2-en-1-ylidene)-1,3-di-*tert*-butyl-2,3-dihydro-1*H*imidazole (3i): Prepared from 4-(trifluoromethyl)azidobenzene (206 mg, 1.1 mmol) according to the general procedure A, obtained as a yellow solid (430 mg, 94%). IR (neat) v 3094, 1488, 1450, 1249, 678 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.56-7.50 (m, 4H), 6.88 (s, 2H), 1.63 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 155.84, 153.95, 124.84 (m), 125.66 (q, *J*_{CF} = 3.6 Hz), 125.05 (m), 120.26, 112.97, 59.56, 30.20; HRMS (ESI) *m/z* 368.2052, calcd for C₁₈H₂₅N₆F₃ [M + H]⁺ 368.2057.

(E)-2-((4-nitrophenyl)triaz-2-en-1-ylidene)-1,3-di-tert-butyl-2,3-dihydro-1H-

imidazole (**3j**): Prepared from 4-nitroazidobenzene (181 mg, 1.1 mmol) according to the general procedure A, obtained as a red solid (341 mg, 90%). IR (neat) v 3099, 1492, 1454, 1238, 697 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.15 (d, J = 9.2 Hz, 2H), 7.62 (d, J = 9.2 Hz, 2H), 7.09 (s, 2H), 1.63 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 158.94, 153.24, 143.23, 124.87, 119.80, 113.60, 60.02, 30.21; HRMS (ESI) *m/z* 345.2030, calcd for C₁₇H₂₅N₆O₂ [M + H]⁺ 345.2034.

(*E*)-2-((4-)triaz-2-en-1-ylidene)-1,3-di-*tert*-butyl-2,3-dihydro-1*H*-imidazole (3k): Prepared from methyl 4-azidobenzoate (195 mg, 1.1 mmol) according to the general procedure A, obtained as a red solid (271 mg, 69%). IR (neat) v 3164, 1711, 1480, 1451, 1271, 697 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.94 (d, *J* = 8.6 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 6.90 (s, 2H), 3.85 (s, 3H), 1.61 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.40, 157.05, 153.81, 130.33, 124.68, 119.98, 113.02, 59.56, 51.65, 30.15; HRMS (ESI) *m*/z 358.2240, calcd for C₁₉H₂₈N₅O₂ [M + H]⁺ 358.2238.

(E)-2-((2-phenylphenyl)triaz-2-en-1-ylidene)-1,3-di-tert-butyl-2,3-dihydro-1H-

imidazole (31): Prepared from 2-phenylazidobenzene (215 mg, 1.1 mmol) according to the general procedure A, obtained as a yellow solid (409 mg, 99%). IR (neat) v 3088, 1497, 1470, 1236 692 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.51 (d, *J* = 7.5 Hz, 2H), 7.38-7.35 (m, 2H), 7.32-7.29 (m, 2H), 7.27-7.20 (m, 2H), 7.16 (t, *J* = 7.5 Hz, 1H), 6.82 (s, 2H), 1.62 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 152.34, 149.53, 140.42, 136.57,

130.93, 130.42, 127.67, 127.53, 126.28, 125.42, 118.55, 116.29, 35.63, 30.01; HRMS (ESI) m/z 376.2491, calcd for C₂₃H₃₀N₅ [M + H]⁺ 376.2496.

(E)-2-((2-phenyloxyphenyl)triaz-2-en-1-ylidene)-1,3-di-tert-butyl-2,3-dihydro-1H-imidazole (3m): Prepared from 2-phenyloxyazidobenzene (232 mg, 1.1 mmol) according to the general procedure A, obtained as a brown solid (332 mg, 77%). IR (neat) v 3066, 1488, 1448, 1235, 688 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.42-7.40 (m, 1H), 7.21-7.18 (m, 2H), 7.06-7.01 (m, 2H), 6.98-6.91 (m, 4H), 6.81 (s, 2H), 1.56 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 159.04, 154.29, 149.28, 145.49, 129.01, 124.54, 123.99, 121.46, 120.96, 119.47, 117.86, 112.57, 59.22, 30.09; HRMS (ESI) m/z 392.2447, calcd for C₂₃H₃₀N₅O [M + H]⁺ 392.2445.

(E)-2-((2-methoxyphenyl)triaz-2-en-1-ylidene)-1,3-di-tert-butyl-2,3-dihydro-1Himidazole (3n): Prepared from 2-methoxyazidobenzene (164 mg, 1.1 mmol) according to the general procedure A, obtained as a yellow solid (185 mg, 51%). IR (neat) v 3097, 1480, 1433, 1256, 676 cm⁻¹; ¹H NMR (DMSO-d₆, 500 MHz): δ 7.20-7.18 (m, 3H), 6.99-6.95 (m, 2H), 6.81-6.78 (m, 1H), 3.78 (s, 3H), 1.55 (s, 18H); ¹³C NMR (DMSO-d₆, 125 MHz): δ 153.14, 152.74, 142.21, 124.46, 120.47, 116.75, 113.61, 112.39, 58.64, 55.49, 29.51; HRMS (ESI) m/z 330.2293, calcd for C18H28N5O $[M + H]^+ 330.2294.$

(E)-2-((3-methoxyphenyl)triaz-2-en-1-vlidene)-1.3-di-tert-butyl-2.3-dihydro-1Himidazole (30): Prepared from 3-methoxyazidobenzene (164 mg, 1.1 mmol) according to the general procedure A, obtained as a yellow solid (359 mg, 99%). IR (neat) v 3090, 1494, 1433, 1270, 675 cm⁻¹; ¹H NMR (DMSO-*d*₆, 500 MHz): δ 7.23 (s, 2H), 7.15 (t, *J* = 8.0 Hz, 1H), 6.89-6.88 (m, 2H), 6.59-6.57 (m, 1H), 3.71 (s, 3H), 1.56 (s, 18H); ¹³C NMR (DMSO-d₆, 125 MHz): δ 154.18, 153.35, 142.25, 124.76, 120.25, 117.61, 112.28, 111.57, 59.14, 55.69, 30.21; HRMS (ESI) m/z 330.2296, calcd for C₁₈H₂₈N₅O $[M + H]^+ 330.2294.$

(E)-2-((2-bromophenyl)triaz-2-en-1-ylidene)-1,3-di-tert-butyl-2,3-dihydro-1H-

imidazole (3p): Prepared from 4-bromoazidobenzene (218 mg, 1.1 mmol) according to the general procedure A, obtained as a yellow solid (370 mg, 89%). IR (neat) v 3092, 1496, 1435, 1260, 641 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.45 (d, J = 8.9 Hz, 2H), 7.39 (d, J = 8.9 Hz, 2H), 6.97 (s, 2H), 1.62 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.91, 151.99, 131.40, 122.10, 116.76, 112.66, 59.31, 30.15; HRMS (ESI) m/z 378.1291, calcd for $C_{17}H_{25}BrN_5 [M + H]^+ 378.1293$.

(E)-2-((3-nitrophenyl)triaz-2-en-1-ylidene)-1,3-di-tert-butyl-2,3-dihydro-1H-

imidazole (3q): Prepared from 3-nitroazidobenzene (181 mg, 1.1 mmol) according to the general procedure A, obtained as a yellow solid (367 mg, 97%). IR (neat) v 3096, 1496, 1435, 1256, 678 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.30 (t, J = 2.0 Hz, 1H), 7.86-7.82 (m, 2H), 7.41 (t, J = 8.0 Hz, 1H), 6.94 (s, 2H), 1.64 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): 8 154.44, 153.70, 148.91, 129.02, 127.76, 117.75, 113.21, 113.16, 59.69, 30.16; HRMS (ESI) m/z 345.2036, calcd for $C_{17}H_{25}N_6O_2$ [M + H]+ 345.2039.

General Method for the Preparation of Biaryl Compounds (4)

To a quartz tube containing triazene (0.2 mmol) was added aromatic solvent (2 mL). Then, the tube was capped and TFA (1.0 mmol) was added with a syringe. Next, the mixture was left to stir inside a photoreactor under UV irradiation (350 nm) for 2 h. After 2 h the resulting mixture was concentrated *in vacuo*. Purification by flash chromatography (SiO₂, EtOAc/hexanes mixtures) provided the pure biaryl compound.

Sunlight Reactions Variation: Conditions are identical as for the general method but using natural sunlight as radiation source instead of photoreactor. Reactions were exposed to natural sunlight for 9 h.

Ph

4-chlorodiphenyl (4a): Prepared from triazene **3a** (67 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (17 mg, 38%). ¹H NMR (CDCl₃, 500 MHz): δ 7.57-7.52 (m, 4H), 7.47-7.41 (m, 4H), 7.38-7.37 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 139.97, 139.64, 133.35, 128.89, 128.86, 128.37, 127.57, 126.97.

4-methyldiphenyl (**4b**): Prepared from triazene **3b** (73 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (16 mg, 40%). ¹H NMR (CDCl₃, 500 MHz): δ 7.60 (d, *J* = 7.5 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 141.13, 138.32, 136.99, 129.45, 128.69, 126.97, 126.95 (2C), 21.08.

4-*tert*-**butyldiphenyl** (**4c**): Prepared from triazene **3c** (71 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (25 mg, 48%). ¹H NMR (CDCl₃, 500 MHz): δ 7.61 (d, *J* = 7.5 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.44 (m, 2H), 7.34 (t, *J* = 7.5 Hz, 1H), 1.39 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 150.22, 141.03, 138.29, 128.67, 127.00, 126.95, 126.76, 125.68, 34.51, 31.35.

Biphenyl (4d): Prepared from triazene 3d (69 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (21 mg, 59%). ¹H NMR (CDCl₃, 500 MHz): δ 7.70 (d, *J* = 8.0 Hz, 4H), 7.54 (t, *J* = 8.0 Hz, 4H), 7.45 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 141.18, 128.72, 127.21, 127.12. Sunlight: (15 mg, 43%).

2,4,6-trimethyldiphenyl (**4e**): Prepared from triazene **3e** (68 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (9 mg, 20%). ¹H NMR (CDCl₃, 500 MHz): δ 7.42 (t, *J* = 7.5 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.15-7.13 (m, 2H), 6.95 (s, 2H), 2.34 (s, 3H), 2.00 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 141.05, 139.03, 136.53, 135.95, 129.27, 128.33, 128.01, 126.47, 21.00, 20.71.

3,4-dimethyldiphenyl (**4f**): Prepared from triazene **3f** (65 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (13 mg, 31%). ¹H NMR (CDCl₃, 500 MHz): δ 7.59 (d, *J* = 6.9 Hz, 2H), 7.45-7.42 (m, 2H), 7.39 (s, 1H), 7.36-7.32 (m, 2H), 7.22 (d, *J* = 7.5 Hz, 1H), 2.35 (s, 3H), 2.32 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 141.26, 138.84, 136.88, 135.69, 130.03, 128.64, 128.42, 126.98, 126.87, 124.49, 19.93, 19.43.

4-methoxydiphenyl (4g): Prepared from triazene **3g** (66 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (13 mg, 30%). ¹H NMR (CDCl₃, 500 MHz):7.58-7.53 (m, 4H), 7.43 (m, 2H), 7.32 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 8.6 Hz, 2H), 3.86 (s, 3H); δ ; ¹³C NMR (CDCl₃, 125 MHz): δ 159.11, 140.80, 133.74, 128.70, 128.14, 126.71, 126.64, 114.17, 55.32.

 CF_3 according to the general procedure, obtained as a colorless solid (15 mg, 28%). ¹H
NMR (CDCl₃, 500 MHz): δ 7.70 (s, 4H), 7.62-7.60 (m, 2H), 7.50-7.47 (m, 2H), 7.43-
7.39 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 144.71, 139.75, 129.31 (m), 128.97,
128.16, 127.41, 127.27, 125.69 (q, J_{CF} = 3.6 Hz), 124.29 (m)Methyl 4-phenylbenzoate (4k): Prepared from triazene 3k (71 mg, 0.2 mmol)

Methyl 4-phenylbenzoate (**4k**): Prepared from triazene **3k** (71 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (13 mg, 26%). ¹H NMR (CDCl₃, 500 MHz): δ 8.11 (d, *J* = 8.6 Hz, 2H), 7.67-7.62 (m, 4H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.41-7.39 (m, 1H), 3.95 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.99, 145.61, 139.98, 130.08, 128.90, 128.86, 128.12, 127.26, 127.03, 52.12.

4-cyanodiphenyl (**4h**): Prepared from triazene **3h** (65 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (4 mg, 10%). ¹H NMR (CDCl₃, 500 MHz): δ 7.73 (d, *J* = 8.6 Hz, 2H), 7.69 (d, *J* = 8.6 Hz, 2H), 7.59 (d, *J* = 6.9 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ

4-(trifluoromethyl)diphenyl (4i): Prepared from triazene 3i (73 mg, 0.2 mmol)

145.67, 139.17, 132.59, 129.10, 128.65, 127.73, 127.22, 118.95, 110.89.

1,2-diphenylbenzene (**4l**): Prepared from triazene **3l** (87 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (18 mg, 34%). ¹H NMR (CDCl₃, 500 MHz): δ 7.46-7.44 (m, 4H), 7.25-7.21 (m, 6H), 7.17-7.16 (m, 4H); ¹³C NMR (CDCl₃, 125 MHz): δ 141.48, 140.54, 130.58, 129.87, 127.83, 127.45, 126.42.

2-phenoxydiphenylbenzene (4m): Prepared from triazene **3m** (78 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (33 mg, 57%). ¹H NMR (CDCl₃, 500 MHz): δ 7.55 (d, *J* = 6.8 Hz, 2H), 7.47 (dd *J* = 7.5 Hz, *J* = 1.72 Hz, 1H), 7.38-7.35 (m, 3H), 7.31-7.25 (m, 3H), 7.23-7.20 (m, 1H), 7.02-7.00 (m, 2H), 6.94 (dd, *J* = 8.6 Hz, *J* = 1.2 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 157.77, 153.56, 137.70, 133.66, 131.26, 129.57, 129.18, 128.65, 128.09, 127.17, 124.01, 122.60, 120.09, 118.15.

2'-phenoxy-1-1'-biphenyl-2,3,4,5,6- d_5 (**4m'**): Prepared from triazene **3m** (78 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (25 mg, 50%). ¹H NMR (CDCl₃, 500 MHz): δ 7.48 (dd J = 8.0 Hz, J = 1.7 Hz, 1H), 7.33-7.20 (m, 4

OMe

H), 7.05-7.02 (m, 2H), 6.96-6.94 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 157.78, 153.57, 137.51, 133.63, 131.25, 129.57, 128.76 (t, J_{CD} = 24.0 Hz), 128.64, 127.57 (t, J_{CD} = 24.0 Hz), 126.66 (t, J_{CD} = 24.0 Hz), 124.02, 122.59, 120.11, 118.14. **2-methoxydiphenylbenzene** (**4n**): Prepared from triazene **3n** (76 mg, 0.2 mmol)

2-methoxydiphenylbenzene (4n): Prepared from triazene **3n** (76 mg, 0.2 mmol) according to the general procedure, obtained as a yellow oil (8 mg, 18%). ¹H NMR (CDCl₃, 500 MHz): δ 7.55-7.53 (m, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.35-7.32 (m, 3H), 7.06-6.99 (m, 2H), 3.82 (s, 3H); ¹³C NMR CDCl₃, 125 MHz): δ 156.43, 138.50, 130.87, 130.68, 129.52, 128.58, 127.95, 126.90, 120.79, 111.18, 55.52.

3-methoxydiphenylbenzene (**4o**): Prepared from triazene **3o** (76 mg, 0.2 mmol) according to the general procedure, obtained as a yellow oil (18 mg, 41%). ¹H NMR (CDCl₃, 500 MHz): δ 7.61 (d, *J* = 7.5 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.39-7.36 (m, 2H), 7.21-7.19 (m, 1H), 7.15-7.14 (m, 1H), 6.93-6.91 (m, 1H), 3.88 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 159.91, 142.75, 141.08, 129.73, 128.71, 127.39, 127.18, 119.67, 112.87, 112.65, 55.28.

4-bromodiphenylbenzene (**4p**): Prepared from triazene **3p** (76 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (24 mg, 44%). ¹H NMR (CDCl₃, 500 MHz): δ 7.58-7.55 (m, 4H), 7.48-7.44 (m, 4H), 7.39-7.36 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 140.11, 139.97, 131.84, 128.88, 128.73, 127.62, 126.92, 121.52.

3-nitrodiphenylbenzene (**4q**): Prepared from triazene **3q** (80 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (6 mg, 13%). ¹H NMR (CDCl₃, 500 MHz): δ 8.47-8.46 (m, 1H), 8.22-8.20 (m, 1H), 7.92 (d, *J* = 7.5 Hz, 1H), 7.64-7.60 (m, 3H), 7.52-7.44 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 148.72, 142.87, 138.67, 133.04, 129.70, 129.16, 128.53, 127.15, 122.03, 121.96

2-phenylpyridine (**4r**): Prepared from triazene **3d** (69 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (13 mg, 35%). ¹H NMR (CDCl₃, 500 MHz): δ 8.72 (d, *J* = 4.6 Hz, 1H), 8.00 (d, *J* = 6.9 Hz, 2H), 7.81-7.74 (m, 2H), 7.51-7.42 (m, 3H), 7.28-7.26 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 157.22, 149.16, 137.29, 129.50, 129.18, 128.81, 127.01, 122.23, 120.89.

2-phenylquinoline (4s): Prepared from triazene **3d** (69 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (7 mg, 15%). ¹H NMR (CDCl₃, 500 MHz): δ 8.24 (d, *J* = 8.6 Hz, 1H), 8.18 (d, *J* = 6.9 Hz, 3H), 7.89 (d, *J* = 8.6 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 8.6 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 3H), 7.48 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 157.28, 148.86, 139.64, 136.97, 129.87, 129.47, 129.12, 128.87, 127.68, 127.47, 127.15, 126.43, 119.10.

2-phenylfuran (**4**t): Prepared from triazene **3d** (69 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (9 mg, 28%). ¹H NMR (CDCl₃, 500 MHz): δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 1.2 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 2H), 7.27-7.22 (m, 1H), 6.66 (d, *J* = 3.4 Hz, 1H), 6.48-6.47 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 154.12, 142.03, 130.86, 128.64, 127.30, 123.76, 111.61, 104.92.

2-phenylthiophene (**4u**): Prepared from triazene **3d** (69 mg, 0.2 mmol) according to the general procedure, obtained as a colorless solid (16 mg, 42%). ¹H NMR (CDCl₃, 500 MHz): δ 7.64-7.60 (m, 2H), 7.40-7.37 (m, 2H), 7.33-7.27 (m, 3H), 7.10-7.08 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 144.37, 134.20, 128.86, 128.74, 127.98, 127.44, 125.94, 123.06.

N-(2',5'-dimethyl-[1,1'-biphenyl]-4-yl)-2,3-difluorobenzamide (5): Prepared from triazene **3p** (180 mg, 0.5 mmol), obtained as a pale-yellow solid (54 mg, 32%). ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, *J* = 13.2 Hz, 1H), 7.94-7.91 (m, 1H), 7.70 (d, *J* = 8.6 Hz, 2H), 7.39-7.34 (m, 4H), 7.17 (d, *J* = 7.5 Hz, 1H), 7.09-7.06 (m, 2H), 2.36 (s, 3H), 2.25 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 160.28 (m), 150.64 (m), 148.81 (m), 140.95, 138.96, 136.01, 135.27, 132.21, 130.49, 130.32, 129.91, 128.03, 126.66 (d, *J*_{CF} = 3.6 Hz), 124.87 (m), 123.62 (d, *J*_{CF} = 9.6 Hz), 120.62 (m), 120.24, 20.92, 19.98.

Computational Data Tables

 Table S1 PCM ground state energy difference between N1-H⁺ and N3-H⁺, calculated using DFT-B3LYP and RI-MP2 (Basis set: 6-31+G* and cc-pVTZ basis set, respectively)

	N1-H ⁺ N	N3-H ⁺
Compound	B3LYP (kcal/mol)	RI-MP2 (kcal/mol)
3 a	-4.5	-3.2
3b	-5.0	-3.7
3c	-14.9	-10.7
3d	-14.9	-10.3
3e	-14.2	-8.4
3f	-5.2	-3.9
3g	-14.6	-11.5
3h	-4.9	-3.4
3i	-5.0	-3.6
3ј	-5.0	-3.2
3k	-5.5	-3.7
31	-16.2	-11.4
3m	-7.9	-4.9
3n	-16.4	-9.9
30	-5.6	-4.0
3р	-4.4	-3.2
3q	-4.3	-3.8

Table S2 Electronic energy difference between the protonated and unprotonated triazenes at the PCM ground electronic state

Compound	N1-H ⁺ (kcal/mol)	N3-H ⁺ (kcal/mol)
3a	17.8	22.2
3 b	14.5	19.4
3c	14.2	29.2
3d	15.3	30.1
3e	13.3	27.5
3f	13.8	19.0
3g	14.3	28.9
3h	21.2	26.0
3i	19.6	24.7
3j	22.9	27.9
3k	18.1	23.7
31	14.0	30.3
3m	13.5	21.3
3n	11.2	27.7
30	14.3	19.9
<u>Зр</u>	17.9	22.3
<u>3q</u>	21.1	25.5

In summary: The title reaction has a positive reaction energy. However, it is acid dependent. Here was calulated for TFA.

Compound	N1-H ⁺ (nm)	N3-H ⁺ (nm)	Unprotonated (nm)
3 a	357	319	400
3b	358	316	395
3c	356	332	396
3d	349	318	396
3 e	358	348	391
3 f	357	321	395
3g	376	352	395
3h	354	324	420
3i	347	319	407
3j	376	339	477
3k	356	325	420
31	370	336	401
3m	393	399	403
3n	379	340	402
30	375	359	393
3p	354	323	400
3g	356	329	529

 Table S4 Electronic coupling between the ground and first bright excited state, calculated at the Frank-Condon geometry (absorption) for the 1-Z configuration of N3-H⁺

$$\xrightarrow{t-Bu \xrightarrow{N} N \xrightarrow{t-Bu}} H \xrightarrow{0} N \xrightarrow{N} H$$

Compound	Coupling (cm ⁻¹)
3 a	14
3b	37
3c	146
3d	514
3e	53
3f	2713
3g	5
3h	35
3i	9
3j	24
3k	5
31	9
3m	520
3n	6
30	2000
<u>3p</u>	7
3q	9

Table S3 Calculated absorption wavelength for the first bright state

Table S5 Energy of dissociation reaction between 1-E and 1-Z of N3-H⁺

Compound	1- <i>E</i> (kcal/mol)	1-Z (kcal/mol)
3 a	31.6	-20.5
3 b	26.8	-26.0
3c	16.2	-26.7
3d	19.8	-32.5
3 e	8.7	-38.4
3f	25.3	-26.9
3g	13.2	-32.7
3h	37.3	-17.7
3i	35.8	-17.4
3j	39.6	-25.0
3k	32.8	-26.3
31	15.4	-28.3
3m	23.5	-34.6
3n	14.5	-40.4
30	28.9	-39.8
<u>3p</u>	31.5	-31.6
3q	38.7	-28.5

Table S6 Difference of binding energy (BE) between path A and B. The difference is BE(pathA)- BE(pathB)

Aryldiazonium Salt	BE Difference(kcal/mol)
3a	4.4
3b	8.3
3c	-2.5
3d	2.7
3e	-2.0
3f	1.6
3g	2.2
3h	5.9
<u>3i</u>	5.2
3j	7.4
3k	4.2
31	0.2
3m	3.0
3n	2.4
30	2.4
3р	4.3
3q	6.8

 $\textbf{Table S7} \ Binding \ energy \ (BE) \ between \ path \ B \ and \ C. \ The \ difference \ is \ BE(pathB)-BE(pathC)$

Compound	Energy Difference(kcal/mol)
3 a	-61.0
3b	-60.2
3c	-48.5
3d	-55.2
3e	-42.5
3f	-51.3
3g	-56.8
3h	-63.6
3i	-62.3
3j	-66.3
3k	-58.6
31	-50.0
3m	-44.7
3n	-62.3
30	-52.9
3 p	-60.7
3a	-66.6

Table S8 Energy difference between final products of path A and B. The difference is E(pathA)-E(pathB)

OH			\sim	Ar	
R-11 +		VS	R	+	H ₂ O
Path	A			Path B	
Compound	Energy	/ Diff	erence (k	cal/mo	l)
3 a			6.0		
3b			6.1		
3c			5.9		
3d			5.6		
3 e			2.0		
3f			6.0		
3g			7.2		
3h			4.7		
3i			4.9		
3ј			4.3		
3k			4.6		
31			2.4		
3m			3.2		
3n			6.2		
30			5.4		
3p			5.9		
3q			5.7		
- 9					

Table S9 Relative free energies and enthalpies for species involved in the Ar-Ar-Cross-coupling of triazene 3d

Compound	ΔG (kcal/mol)	ΔH (kcal/mol)
3d- <i>E S0(min)</i>	0.0	0.0
3d-E (N1-H ⁺) S0(min)	16.8	0.0
3d- <i>E</i> (N3-H ⁺) <i>S0(min)</i>	31.7	-0.3
3d- <i>E S1</i>	71.9	0.0
3d-E (N1-H ⁺) S1	98.0	-0.1
3d-E (N3-H ⁺) S1	121.3	-0.3
3d-Z (N3-H ⁺) S1(min)	76.1	-3.3
3d-E (N1-H ⁺) <i>S1(min)</i>	65.5	-0.1
3d-E <i>S1(min)</i>	43.6	0.0
3d-Z (N3-H ⁺) S0	73.8	-3.3
3d-E (N1-H ⁺) S0	58.6	-0.1
3d-Е <i>S0</i>	38.3	0.0
6	36.3	-2.8
7 (H ₂ O)	18.9	-2.3
7 (C ₆ H ₆)	15.9	-3.3
10	34.3	-5.5
4d	-64.2	-1.2
4d'	-59.5	-0.9

min = minima

34.507 -

X : parts per Million : 13C

¹³C NMR (125 Hz, CDCl₃)

¹H NMR (500 Hz, CDCl₃)

S-49

¹H NMR (500 Hz, CDCl₃)

XYZ Coordinates

0.00000

Diaz	zonium salt N	0.00000	0.00000
Ν	0.00000	0.00000	1.11354
С	0.00089	0.00000	-1.37446
С	-1.16631	0.43312	-2.03514
Η	-2.03508	0.75509	-1.47178
С	-1.14307	0.42504	-3.42144
Н	-2.01933	0.75009	-3.97190
С	0.00462	-0.00034	-4.10573
Н	0.00570	-0.00014	-5.19134
С	1.15052	-0.42579	-3.41865
Н	2.02801	-0.75171	-3.96658
C	1 16981	-0 43315	-2 03229
Ĥ	2 03670	-0 75543	-1 46613
Arvl	cation + Ben	zene	1
C	0 00000	0 00000	0 00000
Č	0.00000	0.00000	1 39761
н	0.93808	0.00000	1 94740
C	-1 21225	0.00175	2 09069
н	-1 20841	0.00179	3 17672
C	2 42055	0.00105	1 201/1
с u	-2.42033	0.00403	1.39141
C II	-3.30180	0.00334	0.00567
	-2.41818	0.00585	-0.00307
П	-3.33331	0.00520	-0.55450
C	-1.21088	0.00151	-0./0438
Н	-1.21294	0.00102	-1./91/4
C	1.32734	-0.00037	-0.78859
H	2.12765	0.00820	-0.01272
С	1.55243	1.24560	-1.55312
Н	1.37694	2.18391	-1.03454
С	1.97918	1.22748	-2.85644
Н	2.14616	2.14836	-3.40492
С	2.18807	-0.01532	-3.49188
Η	2.51611	-0.02123	-4.52870
С	1.99059	-1.25093	-2.83921
Н	2.16617	-2.17775	-3.37487
С	1.56429	-1.25522	-1.53545
Η	1.39801	-2.18835	-1.00411
Aryl	cation + wate	er	
С	0.00000	0.00000	0.00000
С	0.00000	0.00000	1.38090
Н	0.92518	0.00000	1.94660
С	-1.11798	0.00035	-0.81392
Η	-1.04207	-0.00011	-1.89692
С	-2.35602	0.00240	-0.16489
Н	-3.26540	0.00333	-0.75695
С	-2.42002	0.00243	1.23173
Н	-3.38748	0.00363	1.72378
C	-1 25357	0.00064	2 00087
н	-1 30975	0.00090	3 08455
0	1 34767	0.00000	-0 63491
н	1 51852	0 78991	-1 19718
н	1 53873	-0.81215	-1 15797
Δm,1	cation	0.01213	1.13/7/
C		0.00000	0.00000
C	0.00000	0.00000	1 22640
U U	0.00000	0.00000	1.52040
П	0.0141/	0.00000	2.04132
U	-0./1//8	0.00009	-1.11344
н	-0.42026	0.0004/	-2.13/31

С	-1.39121	-0.00009	1.67485
Н	-1.60818	-0.00073	2.74054
С	-2.39149	0.00023	0.70290
Η	-3.43205	0.00092	1.00897
С	-2.07635	-0.00003	-0.65576
Η	-2.83543	-0.00037	-1.43455
Pher	nol		
С	0.00000	0.00000	0.00000
0	0.00000	0.00000	1.36852
Η	0.91739	0.00000	1.68914
С	1.18033	0.00744	-0.75326
Н	2.14382	0.01344	-0.24753
С	1.11025	0.00595	-2.14819
Н	2.03132	0.01099	-2.72545
С	-0.12583	-0.00236	-2.79895
Η	-0.17507	-0.00404	-3.88403
С	-1.29919	-0.00938	-2.03762
Н	-2.26799	-0.01557	-2.53076
С	-1.24378	-0.00792	-0.64422
Н	-2.14935	-0.01299	-0.04440
Bipł	nenyl		
Č	0.00000	0.00000	0.00000
С	0.00000	0.00000	1.40639
Η	0.94513	0.00000	1.94234
С	-1.19597	-0.02935	2.12435
Н	-1.16977	-0.03692	3.21103
С	-2.42057	-0.05940	1.45250
Н	-3.35220	-0.08317	2.01151
C	-2 43676	-0.05928	0.05538
Ĥ	-3 38306	-0 07479	-0 47928
C	-1 24058	-0.02925	-0.662.00
н	-1 26927	-0.00566	-1 74795
C	1 27415	0.02999	-0 76582
C	2 37547	0.77793	-0.31232
н	2.28836	1 36130	0.60015
C	3 56989	0.80498	-1 03296
ч	1 40481	1 39653	-0.66610
C II	4.40461	0.08508	-0.00019
с u	3.09001 4.62007	0.08508	-2.22443
П	4.02097	0.10040	-2.78303
	2.00498	-0.00233	-2.08/81
Н	2.688/9	-1.23242	-3.60956
U U	1.41110	-0.68957	-1.96648
	0.58212	-1.29275	-2.32639
Aryı	0.00000		0.00000
	0.00000	0.00000	0.00000
П	0.00000	0.00000	1.08/25
U U	1.20533	0.00000	-0./0612
Н	2.15303	-0.00038	-0.1/32/
C	-1.21441	-0.008/2	-0.69181
Н	-2.15211	-0.01133	-0.14186
C	-1.22393	-0.01064	-2.08899
H	-2.16904	-0.01609	-2.62612
C	-0.01806	-0.00570	-2.79531
H	-0.02430	-0.00682	-3.88236
С	1.19598	-0.00142	-2.10377
Н	2.13426	0.00017	-2.65274
Н	2.09753	0.82125	2.42376
С	2.17280	1.66707	3.10228
С	1.77849	2.93784	2.74145
С	1.84035	4.05878	3.54132

Η	1.51348	5.03768	3.20006
С	2.68064	1.51088	4.40323
Η	3.00671	0.52927	4.73974
С	2.76742	2.61230	5.26018
Η	3.16132	2.48233	6.26454
С	2.35212	3.87896	4.83770
Н	2.42325	4.73042	5.51063
Arv	radical		
C	0.00000	0.00000	0.00000
Ĥ	0.00000	0.00000	1 08666
C	1 21474	0.00000	-0 69249
н	2 15569	0.00076	-0 14703
C	-1 21482	-0.00047	-0 69242
ч	-2 15561	-0.00047	-0.07242
C	-1.22717	-0.00158	-2.00787
с u	-1.22/17	-0.00138	-2.09787
П	-2.10494	-0.00200	-2.04/39
C	-0.00018	-0.00197	-2.72380
	1.22087	-0.00100	-2.09/90
Н	2.16447	-0.00163	-2.64801
Ben	zene	0.00000	2 4 (1 0 (
C	0.54966	0.00000	-2.46186
C	-0.60726	-0.35495	-1.76324
С	1.70658	0.35495	-1.76324
Н	-1.50724	-0.63107	-2.30683
Н	2.60656	0.63107	-2.30683
С	-0.60726	-0.35495	-0.36582
С	1.70658	0.35495	-0.36582
Н	-1.50724	-0.63107	0.17777
Η	2.60656	0.63107	0.17777
С	0.54966	0.00000	0.33281
Η	0.54966	0.00000	1.41988
Н	0.54966	0.00000	-3.54894
CF3	COO		
F	0.00072	-0.00256	0.00084
С	-0.00024	-0.00036	1.33707
F	1.25814	0.00084	1.78914
F	-0 61993	1 10557	1 77386
Ċ	-0 73830	-1 24483	1 85802
õ	-0 54943	-1 71699	3 00354
ŏ	-1 60545	-1.85015	1 18513
CE2	-1.00545	-1.05015	1.10515
C	0.00067	-0.00127	2 80787
F	-0.26969	1 22614	-2.89787
Г	-0.20909	0.84750	-2.36034
Г	-0.92087	-0.84730	-2.55754
Г С	0.00640	-0.3/310	-2.3/338
C	0.00640	-0.06375	-4.46/94
0	-0.1/655	1.02628	-5.04655
U CE2	0.20409	-1.21952	-4.90060
CF3	СООН		
F	0.03554	0.01874	0.00080
C	0.00002	-0.00204	1.34466
F	1.25162	-0.02080	1.80722
F	-0.62172	-1.12970	1.73294
С	-0.74745	1.23722	1.88415
0	-0.24976	2.03618	2.63497
0	-1.99058	1.26690	1.39595
Н	-2.43790	2.05827	1.75648
Wat	er		
0	-0.02087	0.00000	-1.22941
Η	-0.02087	0.76002	-0.62725

Н	-0.02087	-0.76002	-0.62725
Guai	nidine byproc	luct	
Ν	-1.64194	-0.79980	-0.26061
Ν	-3.23690	0.86341	-1.13826
Ν	-3.87692	-0.51290	0.49142
C	-2.79051	-0.18851	-0.32367
Č	-4 56848	1 15753	-0.80778
н	-5 13039	1 93423	-1 29595
C	-4.95136	0 32297	0 17648
с ц	5 00010	0.322)7	0.17040
II C	-3.90010	0.23702	0.07940
C	-2.42011	1.55162	-2.1/904
C	-3.8/30/	-1.39131	1.52087
C	-3.2/4/8	2.64397	-2.851/5
Н	-3.59906	3.40/95	-2.13/4/
Н	-2.66615	3.13844	-3.61506
Н	-4.15741	2.22742	-3.34825
С	-1.20637	2.23376	-1.52391
Н	-0.56199	1.52647	-0.99655
Η	-0.60404	2.73670	-2.28808
Н	-1.53890	2.98483	-0.79894
С	-2.00706	0.53964	-3.26718
Η	-1.42382	-0.29227	-2.86556
Н	-2.89536	0.12066	-3.75216
Н	-1.40147	1.04011	-4.03032
С	-2.79970	-1.28143	2.58201
Н	-2.78203	-2.07725	3.33574
Н	-1.81426	-1.20943	2.11843
Н	-3 02397	-0.33508	3 08817
C	-3 59917	-2 94660	0.84038
н	-2 63908	-2 92397	0.32212
н	-3 58017	-3 74262	1 59337
н	-/ 38020	-3.17788	0.11630
$\hat{\Gamma}$	5 24807	-5.17760	2 20670
с u	-5.24607	-1.04709	2.20079
п	-0.03113	-1.6/391	1.49/39
п	-5.22917	-2.44560	2.955/1
Н	-5.48//4	-0./1214	2./241/
H	-0.98825	-0.41346	-0.93288
3d-E	(NI-H+) S0r	nın	0.00000
N	0.00000	0.00000	0.00000
С	0.00000	0.00000	1.36153
Ν	1.28568	0.00000	1.79760
С	2.11078	-0.03492	0.68846
Η	3.18350	-0.05816	0.76256
С	1.32256	-0.03677	-0.41494
Н	1.60672	-0.05415	-1.45186
Ν	-1.07311	0.13782	2.22769
Ν	-1.90412	-0.84029	2.20063
Ν	-2.92652	-0.66544	2.98720
Н	-2.97389	0.20980	3.51522
С	-3.94180	-1.63452	3.15536
Č	-5.03436	-1.28854	3.95825
Ĥ	-5.08215	-0.30701	4 42306
C	-6.06011	-2 21230	4 15246
й	-6 90752	-1 94339	4 77582
C	_5 00020	_3 /7026	3 55021
с ц	6 70050	-5.47050 1 10775	2 70224
С	-0.19930	-4.10//3	5.70524 2.75265
	-4.90028	-3.00401	2.13203
п	-4.84340	-4./829/	2.28390
U	-3.863/5	-2.89520	2.5514/
н	-3.00356	-3.13825	1.94414

С	1.75504	0.04151	3.24353
С	-1.18809	0.11887	-0.94799
С	3.28994	-0.00283	3.26185
Н	3.61445	0.03468	4.30521
Н	3.73409	0.85563	2.74798
Н	3.68141	-0.92823	2.82677
С	-1.91617	-1.23293	-1.02034
Η	-2.35160	-1.51120	-0.05940
Η	-2.72115	-1.16326	-1.75903
Η	-1.22973	-2.02508	-1.33724
С	1.27497	1.35844	3.87559
Η	0.18606	1.43416	3.87702
Η	1.62488	1.40139	4.91182
Н	1.68941	2.21870	3.33946
С	-0.65667	0.47928	-2.34528
Н	-1.51869	0.62869	-3.00074
Н	-0.05287	-0.32253	-2.78096
Н	-0.07656	1.40760	-2.33826
С	1.20633	-1.18805	3.98653
Н	0.11789	-1.17139	4.06503
Н	1.61664	-1.19559	5.00097
Н	1.51182	-2.11341	3.48739
С	-2.11041	1.25425	-0.47184
Н	-2.59277	1.04058	0.48233
Н	-2.89747	1.39345	-1.21874
Н	-1.55641	2.19444	-0.38187
3d-E	(N1-H+) S1r	nin	
Ν	-0.25177	0.10194	0.28160
С	0.07708	-0.39246	1.57908
Ν	1.31449	0.21893	1.92631
С	1.65782	1.07287	0.94572
Н	2.53855	1.69175	0.97422
С	0.71239	0.99087	-0.06515
Η	0.72482	1.50848	-1.00833
Ν	-0.44399	-1.20235	2.43076
Ν	-1.68355	-1.80751	2.30290
Ν	-2.64015	-1.01402	2.79694
Н	-2.37847	-0.13061	3.22987
С	-3.96430	-1.44438	2.92444
С	-4.89309	-0.56109	3.50363
Н	-4.57293	0.42417	3.83548
С	-6.21955	-0.95863	3.65627
Н	-6.93191	-0.27430	4.10856
С	-6.63234	-2.22802	3.23365
Н	-7.66660	-2.53554	3.35604
С	-5.70183	-3.09777	2.65354
Н	-6.01359	-4.08573	2.32553
С	-4.36886	-2.71844	2.49202
Н	-3.64/28	-3.39/15	2.05175
C	2.10160	-0.01160	3.20/93
C	-1.30502	-0.38805	-0./2041
С	3.368/5	0.85616	3.15522
H	3.94109	0.66367	4.06692
H	5.14069	1.92775	5.15513
П С	4.01392	0.60429	2.30010
U U	-1.23308	-1.92299	-0./8201
Н	-1.34422	-2.38834	0.10001
П U	-1.93893	-2.233/8	-1.332/3
п С	-0.23479	-2.2082/	-1.00301 1/1672
U	1.43043	0.41007	H.H10/3

н	0 39186	-0 23791	4 56261
11	0.57100	-0.23791	4.30201
Н	1.87621	0.37365	5.31358
Н	0 90137	1 45125	4 30069
C	0.05209	0 16467	2 11201
C	-0.93398	0.1040/	-2.11381
Н	-1.68393	-0.24528	-2.81710
Н	0.03940	-0 14936	-2 45229
11	1.02207	1 25552	2.15229
н	-1.03307	1.25555	-2.1/098
С	2.50540	-1.49526	3.28338
н	1 63531	-2 14915	3 34649
11	1.05551	-2.14/13	1100(1
Н	3.11578	-1.64023	4.18061
Н	3.10741	-1.77938	2.41307
C	2 68275	0 15648	0.31800
C	-2.08275	0.13046	-0.51609
Н	-3.01217	-0.20765	0.65303
Н	-3 41695	-0 16509	-1.06381
11	2 (7425	1 25100	0.20152
п	-2.0/423	1.23199	-0.30132
N2			
Ν	0.00000	0.00000	-0.00005
NT	0.00000	0.00000	1 10529
IN	0.00000	0.00000	1.10528
3d-E	(N3-H+) S0r	nin	
N		0.00000	0.00000
11	0.00000	0.00000	0.00000
Н	0.00000	0.00000	1.01903
С	1.18843	0.00000	-0.70392
N	1 75/22	1 10/22	1 25952
11	1.75452	-1.10433	-1.23833
Ν	1.98084	1.07418	-0.96885
С	2 91275	-071371	-1 88681
т П	2 5 5 7 4 9	1 40027	2 40612
п	5.55/48	-1.40027	-2.40015
С	3.05248	0.62947	-1.70858
Н	3 83653	1 28052	-2.05215
NT	1 15057	0.2(722	0.(7059
IN	-1.1393/	0.36/23	-0.6/958
Ν	-2.21501	0.51343	-0.03500
С	-2 27485	0 29866	1 38570
c	2.27403	1.40(40	1.50570
C	-2.45000	1.40648	2.22436
Н	-2.47477	2.40425	1.79663
C	-2 59844	1 20957	3 59773
C	-2.39844	1.20957	3.39773
Н	-2.72562	2.06858	4.25022
С	-2.60074	-0.08206	4.13041
ц	2 72000	0 22022	5 10860
11	-2.72909	-0.22933	5.19800
С	-2.45438	-1.18428	3.28473
Н	-2.47360	-2.19130	3.69146
C	2 28068	1.00155	1 01075
C	-2.28908	-1.00155	1.91075
Н	-2.19854	-1.85411	1.24378
С	1.23067	-2.53742	-1.19915
C	1 74077	2 52287	0 57714
Č	1./49//	2.33367	-0.37714
С	2.25302	-3.45704	-1.88284
Н	1.87341	-4.48011	-1.81871
ц	2 27901	2 22024	2 0/295
п	2.3/891	-3.22024	-2.94363
Н	3.22798	-3.43246	-1.38572
С	3 05385	3 30891	-0.82189
тт тт	2 80604	1 22761	0.49779
н	2.89694	4.33/04	-0.48//8
Н	3.32049	3.35059	-1.88193
Н	3 88980	2 89298	-0.25053
0	0.10205	2.09290	1.05000
U	-0.10395	-2.60800	-1.95802
Η	-0.88333	-2.00508	-1.48959
н	-0 44157	-3 64800	_1 07113
11	-0.77137	-3.0+077	-1.2/113
Н	0.02027	-2.27676	-2.99404
С	0.63309	3.10322	-1.46667
н	-0.31670	2 58462	-1 31000
11	-0.510/0	2.30402	-1.51770
Н	0.49048	4.15889	-1.21452
Η	0.90895	3.03742	-2.52402
С	1 08634	-2 95311	0 27388
\sim	1.0000-	///11	5.2,500

Н	0.31441	-2.38096	0.79132	
Н	0.80081	-4.00877	0.31065	
Н	2.03550	-2.83925	0.80811	
С	1.39536	2.62027	0.91741	
Н	0.39407	2.24729	1.13753	
Н	1.41819	3.67299	1.21352	
Н	2.12548	2.08246	1.53129	
3d-E	E(N3-H+) S1r	nin		
Ν	0.47000	0.11558	0.33889	
Н	0.81598	0 25036	1 28987	
C	1 40881	0.07805	-0.69052	
N	1 79732	-1.06171	-1 31494	
N	2 07293	1 12920	-1 24139	
C	2.07223	-0.72307	-2 27404	
н	3 20532	-1 44759	-2.27404	
\hat{C}	2 88640	0.62011	2.20030	
с u	2.88040	1 25261	-2.23433	
п N	5.52609	0.64246	-2.63120	
IN N	-0.70084	0.04340	0.04037	
N	-1.33283	1.19294	1.12508	
C	-2.07698	0.49377	1.99624	
C	-2.68422	1.23/65	3.06433	
Н	-2.51263	2.30891	3.10120	
С	-3.46903	0.60115	4.00668	
Н	-3.92104	1.17585	4.81023	
С	-3.68911	-0.78720	3.92835	
Н	-4.30919	-1.28288	4.66908	
С	-3.11341	-1.53127	2.88112	
Н	-3.30012	-2.59998	2.81764	
С	-2.32302	-0.91723	1.92496	
Η	-1.89843	-1.49285	1.11122	
С	1.29174	-2.47477	-1.03834	
С	1.96222	2.61997	-0.90941	
С	2.13292	-3.46643	-1.85614	
Н	1.78719	-4.47459	-1.61061	
Н	2.00236	-3.33201	-2.93481	
Н	3.19815	-3.40915	-1.60888	
С	3.24017	3.31560	-1.40741	
Ĥ	3 18812	4 36286	-1 09699	
Н	3 32526	3 30939	-2.49834	
н	4 14362	2 87744	-0.96911	
$\hat{\Gamma}$	-0.17646	-2 55594	-1 48570	
ч	-0.81077	-1.85100	-0.94477	
ц	-0.54423	-3 56945	-1.205/13	
и П	0.26646	-3.30943	-1.29343	
П	-0.20040	-2.55107	-2.33700	
	0.75578	2 70046	-1.04313	
п	-0.18019	2.70040	-1.51005	
H	0.66035	4.25/14	-1.43388	
Н	0.83915	3.05633	-2./2802	
C	1.461//	-2.///19	0.46079	
H	0.80595	-2.16490	1.08425	
Н	1.20408	-3.82675	0.63267	
H	2.49973	-2.62704	0.77822	
С	1.85815	2.81722	0.61281	
Н	0.88705	2.52787	1.01846	
Н	1.98522	3.88359	0.82319	
Н	2.65371	2.27764	1.13973	
3d-E S0min				
Ν	0.00000	0.00000	0.00000	
С	0.00000	0.00000	1.38500	
Ν	0.98286	0.00000	2.29711	

Ν	2.04702	0.76204	2.02082
Ν	3.00627	0.57011	2.84505
Ν	-1.31392	-0.11147	1.78603
С	-2.12304	-0.14950	0.65948
Н	-3.19479	-0.22117	0.71451
C	-1 32653	-0.07219	-0 42736
н	-1 60017	-0.06706	-1 46662
C	1.00017	1 46088	2 65920
C	5 22456	1.40088	2.03920
	5 20000	0.05607	2 61024
П	5.59999	0.03097	3.01024
C	6.45864	1.85334	3.03070
Н	7.41749	1.50457	3.40637
С	6.35508	3.11509	2.43759
Н	7.22919	3.75526	2.35282
С	5.11181	3.55335	1.97018
Н	5.01716	4.54176	1.52629
С	3.98456	2.74134	2.08128
Н	3.01533	3.09327	1.74396
С	-1.79268	-0.15783	3.21213
Ċ	1 17439	-0 09940	-0 94788
Č	-3 32732	-0.22850	3 21973
н	-3 66059	-0 26641	4 26068
и П	3 70010	1 1 2 8 2 8	2 71025
и П	-3.70010	-1.12838	2.71923
П	-3./82/8	0.03304	2.73710
C	1.83062	1.28161	-1.11448
H	2.21650	1.64274	-0.16095
Н	2.65807	1.20667	-1.82920
Н	1.10527	2.00409	-1.50641
С	-1.22988	-1.41910	3.89287
Н	-0.13881	-1.41023	3.89000
Н	-1.58065	-1.45688	4.92998
Н	-1.58168	-2.32194	3.38043
С	-1.34896	1.12256	3.94378
Н	-0.26154	1,19818	3.98028
Н	-1 73547	1 10176	4 96863
н	-1 75204	2 01081	3 44404
C	2 17116	-1.15720	-0.43714
с u	2.17110	-1.13720	-0.43714
п	2.05545	-0.80770	0.49363
п	2.95050	-1.29318	-1.19398
Н	1.66/58	-2.118/5	-0.28869
C	0.66213	-0.56563	-2.32470
Н	1.52987	-0.70447	-2.97569
Н	0.01500	0.17700	-2.80245
Н	0.12862	-1.52041	-2.26688
3d-E	S1min		
Ν	-0.01310	-0.21845	-0.23079
С	0.27713	-0.09116	1.13667
Ν	1.39174	-0.04316	1.86705
N	2 57854	-0 10572	1 29954
N	3 60213	-0.12699	2 24161
N	-0.95093	-0.00944	1 79673
C	1 06224	0.08370	0.85626
U U	-1.70224	-0.003/9	1 11540
П	-3.00333	-0.04129	1.11540
U T	-1.39933	-0.21044	-0.30/33
H	-1.88884	-0.29588	-1.32065
C	4.06857	1.06719	2.62713
С	5.18372	1.05110	3.53813
Н	5.57049	0.08227	3.84018
С	5.73454	2.22603	4.01370
Н	6.57323	2.18934	4.70455

5.22064	3.47128	3.60288
5.65941	4.39307	3.97392
4.13956	3.51607	2.70273
3.75133	4.47962	2.38057
3.56686	2.35311	2.21633
2.74163	2.40111	1.51661
-1.15566	0.13927	3.27856
0.92459	-0.36338	-1.40566
-2.66493	0.19932	3.57238
-2.79338	0.30852	4.65345
-3.18254	-0.71684	3.26717
-3.14711	1.05922	3.09359
1.81119	0.89086	-1.51557
2.44978	0.99907	-0.63773
2.45056	0.80324	-2.40158
1.18899	1.78689	-1.62908
-0.56055	-1.08078	4.00825
0.51671	-1.14920	3.84904
-0.75243	-0.98689	5.08320
-1.03100	-2.00632	3.65580
-0.51076	1.45292	3.76130
0.56879	1.44465	3.60622
-0.71037	1.57894	4.83139
-0.94127	2.30945	3.22899
1.74841	-1.65568	-1.25396
2.36580	-1.62875	-0.35456
2.40790	-1.76589	-2.12280
1.08393	-2.52726	-1.21528
0.10063	-0.47394	-2.70279
0.80518	-0.57710	-3.53355
-0.50353	0.42036	-2.89136
-0.54786	-1.35676	-2.71131
	5.22064 5.65941 4.13956 3.75133 3.56686 2.74163 -1.15566 0.92459 -2.66493 -2.79338 -3.18254 -3.18254 -3.14711 1.81119 2.44978 2.45056 1.18899 -0.56055 0.51671 -0.75243 -1.03100 -0.51076 0.56879 -0.71037 -0.94127 1.74841 2.36580 2.40790 1.08393 0.10063 0.80518 -0.50353 -0.54786	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$