# **Supplementary Information**

### One-pot Synthesis of 2-Naphthols from Nitrones and MBH Adducts via Decarboxylative N–O Bond Cleavage

Sang Hoon Han,<sup>a</sup> Ashok Kumar Pandey,<sup>a</sup> Heeyoung Lee,<sup>a</sup> Saegun Kim,<sup>a</sup> Dahye Kang,<sup>b</sup> Young Hoon Jung,<sup>a</sup> Hyung Sik Kim,<sup>a</sup> Sungwoo Hong<sup>c,b,\*</sup> and In Su Kim<sup>a,\*</sup>

<sup>a</sup> School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea <sup>b</sup> Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea

<sup>c</sup> Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea

\* Corresponding authors. E-mails: hongorg@kaist.ac.kr (S.Hong), insukim@skku.edu (I.S.Kim)

### List of the Contents

| General methods                                                     | S2      |
|---------------------------------------------------------------------|---------|
| Density Functional Theory (DFT) calculation data                    | \$3-\$7 |
| References                                                          | S8      |
| X-ray crystallographic data of compound 3pa (CCDC 1858383)          | S9–S15  |
| <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of all compounds | S16–S46 |

#### **General methods**

Commercially available reagents were used without additional purification, unless otherwise stated. Nitrone **1a** was purchased from Sigma-Aldrich. Nitrones **1b–1v** and Morita-Baylis-Hillman adducts (MBH adducts) **2a** and **2b** were prepared according to the reported literatures.<sup>[1,2]</sup> Sealed tubes  $(13 \times 100 \text{ mm}^2)$  were purchased from Fischer Scientific and dried in oven for overnight and cooled at room temperature prior to use. Thin layer chromatography was carried out using plates coated with Kieselgel 60 F<sub>254</sub> (Merck). For flash column chromatography, E. Merck Kieselgel 60 (230–400 mesh) was used. Nuclear magnetic resonance spectra (<sup>1</sup>H and <sup>13</sup>C NMR) were recorded on a Bruker Unity 400 and 500 spectrometers in CDCl<sub>3</sub> and CD<sub>3</sub>OD solution and chemical shifts are reported as parts per million (ppm). Resonance patterns are reported with the notations s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of triplets), br s (broad singlet) and m (multiplet). Coupling constants (*J*) are reported in hertz (Hz). IR spectra were recorded on a Varian 2000 Infrared spectrophotometer and are reported as cm<sup>-1</sup>. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-600 spectrometer.

#### **Density Functional Theory (DFT) calculation data**

All the calculations were performed with Gaussian 09 software.<sup>1</sup> Geometry optimization of all species was carried out with the B3LYP functional<sup>2</sup> using the 6-31G(d) basis set. Frequency analysis was conducted to ensure the stationary point as minimum or transition state. For the solvent effect of dichloroethane, the single-point calculation on the optimized geometry with SMD solvation model.<sup>3</sup> The single-point calculation was carried out by using B3LYP-D3<sup>4</sup> with a 6-311+G(d,p) basis set.

#### - Cartesian coordinates of optimized structures (Å)

#### 6**d**

Lowest three frequencies(cm<sup>-1</sup>): 43.4106, 48.7947, 59.4029

| C      | 1 30288/00  | 0.015/2200  | -0 23731300 |
|--------|-------------|-------------|-------------|
| C<br>C | 3 21574000  | 0.63240600  | 0.66446800  |
| C      | 1 073/8000  | 0.03249000  | 0.42784400  |
| C      | 1.97548000  | 1 1081/200  | 0.24205000  |
| C      | 2.02706200  | -1.19814200 | 0.24393900  |
| C      | 1 32680200  | 1 20881000  | 0.00812400  |
| С<br>и | 4.32080200  | -1.20881000 | 0.43248300  |
| п      | 3.33402700  | 0.48028300  | -0.42073300 |
| П      | 3.03999000  | -2.70313400 | 1.18800100  |
| C      | 0.07084800  | 0.69290600  | -0.85062700 |
| H      | 0.84857300  | 1.49119200  | -1.5/809800 |
| N      | 0.0162/200  | 1.24461400  | 0.35935100  |
| C      | -0.85472800 | 2.45456000  | 0.21852800  |
| C      | 0.09784000  | 3.62910600  | -0.07379000 |
| Н      | -0.46111100 | 4.57080800  | -0.03966300 |
| Н      | 0.89828800  | 3.67592100  | 0.67263800  |
| Н      | 0.55752200  | 3.55719600  | -1.06560900 |
| С      | -1.51079500 | 2.68409800  | 1.59203700  |
| Н      | -2.05103600 | 3.63747900  | 1.59256600  |
| Н      | -2.22015900 | 1.88734300  | 1.83102700  |
| Н      | -0.75158600 | 2.71650100  | 2.38151300  |
| 0      | -0.81081600 | 0.11826500  | 0.85251500  |
| С      | -1.94378000 | 2.37023500  | -0.86596300 |
| Н      | -2.60238900 | 1.51426000  | -0.69376100 |
| Н      | -2.55781500 | 3.27866000  | -0.84599700 |
| Н      | -1.51595400 | 2.29057800  | -1.87192300 |
| С      | 0.55846300  | -1.86898900 | 0.49002400  |
| Н      | 0.53059100  | -2.84389700 | -0.00907200 |
| Н      | 0.41768100  | -2.06209100 | 1.56071800  |
| С      | -0.62369700 | -1.01619300 | -0.00819300 |
| C      | -0.28678700 | -0.39332000 | -1.37077400 |
| H      | 0.19580400  | -1.09979800 | -2.05022900 |
|        | 0117200100  | 1.0/////000 |             |

| Н | -1.17323700 | 0.02397500  | -1.84926600 |
|---|-------------|-------------|-------------|
| С | -1.91978000 | -1.83085300 | -0.04339200 |
| 0 | -1.95163300 | -3.04386000 | -0.11826100 |
| 0 | -3.01409500 | -1.05723000 | -0.02966100 |
| С | -4.27511900 | -1.75329000 | -0.11700100 |
| Н | -4.40036300 | -2.42454100 | 0.73656300  |
| Н | -5.03747700 | -0.97394000 | -0.10185100 |
| Н | -4.33491800 | -2.32695700 | -1.04577700 |
| Н | 3.25909600  | 1.58607100  | -1.18647700 |
| Н | 5.23722500  | -1.69711300 | 0.77051300  |
|   |             |             |             |

### Int1

| Lowest | three frequencies( | cm <sup>-1</sup> ): 41.3531 | , 55.8873, 73.2557 |
|--------|--------------------|-----------------------------|--------------------|
| С      | -3.90986100        | -1.29484700                 | -0.22392600        |
| С      | -2.60299600        | -1.47443000                 | -0.67699300        |
| С      | -1.63963100        | -0.48377200                 | -0.45671600        |
| С      | -1.96979500        | 0.70266100                  | 0.22932400         |
| С      | -3.28541800        | 0.86389000                  | 0.68027200         |
| С      | -4.24743600        | -0.12300200                 | 0.45869700         |
| Н      | -4.65796300        | -2.06244000                 | -0.40082100        |
| Н      | -3.55677300        | 1.77425200                  | 1.20991300         |
| С      | -0.21259500        | -0.65359900                 | -0.92905600        |
| Η      | -0.08585900        | -1.49119300                 | -1.61226800        |
| Ν      | 0.65097100         | -0.92400700                 | 0.32038400         |
| С      | 1.88940500         | -1.84713600                 | 0.23797000         |
| С      | 1.36549800         | -3.24821400                 | -0.09821000        |
| Η      | 2.20342100         | -3.95016200                 | -0.04475700        |
| Η      | 0.60606800         | -3.57981100                 | 0.62009100         |
| Η      | 0.94763800         | -3.30857800                 | -1.10765900        |
| С      | 2.51467100         | -1.82993800                 | 1.63954900         |
| Η      | 3.34419600         | -2.54307100                 | 1.65782100         |
| Η      | 2.90279400         | -0.84112300                 | 1.89301700         |
| Η      | 1.79137800         | -2.13501900                 | 2.40572900         |
| 0      | 1.02933100         | 0.37401300                  | 0.81425000         |
| С      | 2.86701700         | -1.32014900                 | -0.80988900        |
| Η      | 3.11322800         | -0.27024400                 | -0.62330500        |
| Η      | 3.78485500         | -1.91373000                 | -0.74936000        |
| Η      | 2.47177800         | -1.42478500                 | -1.82562200        |
| С      | -0.92629300        | 1.78814100                  | 0.45204400         |
| Η      | -1.22990100        | 2.71266100                  | -0.04973200        |
| Η      | -0.85251800        | 2.03642400                  | 1.51747200         |
| С      | 0.46201100         | 1.41295400                  | -0.07085800        |
| С      | 0.35743700         | 0.67996500                  | -1.40489000        |
| Η      | -0.32978200        | 1.17010300                  | -2.09853700        |
| Η      | 1.33674600         | 0.58224200                  | -1.87219300        |
| С      | 1.51732600         | 2.59366400                  | -0.09355500        |
| 0      | 1.04215100         | 3.73453000                  | 0.09806600         |
| 0      | 2.69416000         | 2.24105500                  | -0.33938500        |
| Η      | -2.32852800        | -2.38088700                 | -1.21133500        |

| Η | -5.26289000 | 0.02388900  | 0.81713100 |
|---|-------------|-------------|------------|
| Н | 0.04414500  | -1.32438900 | 1.04571700 |

#### Int1-TS

Lowest three frequencies(cm<sup>-1</sup>): -433.2132, 53.1145, 63.9309

| С | -3.91734200 | -1.18480100 | -0.30413700 |
|---|-------------|-------------|-------------|
| С | -2.60397200 | -1.39485200 | -0.72344000 |
| С | -1.61481700 | -0.44140900 | -0.45512300 |
| С | -1.93092800 | 0.73915900  | 0.24476300  |
| С | -3.25470800 | 0.93359100  | 0.66143300  |
| С | -4.23986200 | -0.01749400 | 0.39409500  |
| Н | -4.68295800 | -1.92506400 | -0.51945700 |
| Н | -3.51287700 | 1.84276300  | 1.20003200  |
| С | -0.17393500 | -0.65697000 | -0.87419200 |
| Н | -0.07096000 | -1.41368200 | -1.65513500 |
| Ν | 0.60434300  | -1.07429000 | 0.30869000  |
| С | 1.74998100  | -2.04079600 | 0.25727500  |
| С | 1.17110200  | -3.43634600 | -0.04746800 |
| Н | 1.97963700  | -4.17460200 | -0.01035500 |
| Н | 0.41459100  | -3.72353100 | 0.69186400  |
| Н | 0.72033600  | -3.47912300 | -1.04417900 |
| С | 2.38820100  | -2.03174100 | 1.65481200  |
| Н | 3.19218400  | -2.77336800 | 1.68909400  |
| Н | 2.80779800  | -1.05068400 | 1.89025900  |
| Н | 1.65426700  | -2.29354700 | 2.42686800  |
| 0 | 1.20171000  | 0.57714200  | 0.81878000  |
| С | 2.76730900  | -1.62237300 | -0.80718500 |
| Н | 3.14944400  | -0.61736900 | -0.61262800 |
| Н | 3.60700800  | -2.32430700 | -0.78235700 |
| Н | 2.34225300  | -1.65430000 | -1.81565700 |
| С | -0.86931500 | 1.80118100  | 0.51087300  |
| Н | -1.16871700 | 2.73665100  | 0.02582800  |
| Н | -0.80499000 | 2.01929100  | 1.58320400  |
| С | 0.51973100  | 1.39676400  | 0.00263200  |
| С | 0.44330500  | 0.70407900  | -1.34187500 |
| Н | -0.21280300 | 1.18780100  | -2.07022900 |
| Н | 1.43574200  | 0.56744300  | -1.76849900 |
| С | 1.63990400  | 2.78995000  | -0.13399600 |
| 0 | 2.68997600  | 2.47954300  | -0.67972000 |
| 0 | 1.11676300  | 3.79315000  | 0.33745400  |
| Н | -2.34222200 | -2.29962000 | -1.26735300 |
| Н | -5.26024900 | 0.15361400  | 0.72713500  |
| Н | 0.00659400  | -1.28467200 | 1.10782100  |

#### Int2

Lowest three frequencies(cm<sup>-1</sup>): 15.0726, 24.3776, 32.5054

| С | 1.77619800  | -3.68694400 | 0.11975500  |
|---|-------------|-------------|-------------|
| С | 2.00176700  | -2.38230900 | -0.32178300 |
| С | 0.97201200  | -1.43411100 | -0.31195500 |
| С | -0.30589200 | -1.80097700 | 0.14843700  |
| С | -0.52669500 | -3.11475500 | 0.57957400  |
| С | 0.50600800  | -4.05379300 | 0.57093300  |
| Н | 2.58373000  | -4.41423900 | 0.10397700  |
| Н | -1.51738100 | -3.40303100 | 0.92452100  |
| С | 1.20290000  | -0.00866200 | -0.78657900 |
| Н | 2.09017000  | -0.00026800 | -1.43327300 |
| Ν | 1.37314700  | 0.88279400  | 0.38924200  |
| С | 2.38942500  | 1.96986000  | 0.32690300  |
| С | 3.82390300  | 1.42635800  | 0.15120700  |
| Н | 4.55719300  | 2.24220300  | 0.16093900  |
| Н | 4.07883000  | 0.73568300  | 0.96506000  |
| Н | 3.94431600  | 0.89131100  | -0.79793500 |
| С | 2.29060800  | 2.70514400  | 1.67438800  |
| Н | 3.01219300  | 3.52859500  | 1.72473700  |
| Н | 1.28489600  | 3.11518700  | 1.81966900  |
| Н | 2.50255000  | 2.02427500  | 2.50924100  |
| 0 | -2.20279800 | 1.16462900  | -0.96547500 |
| С | 2.06130000  | 2.94943000  | -0.81028700 |
| Н | 1.04034900  | 3.33536300  | -0.71297200 |
| Н | 2.75187700  | 3.80029300  | -0.78247300 |
| Н | 2.16154300  | 2.48217700  | -1.79635500 |
| С | -1.41931200 | -0.77630600 | 0.19018100  |
| Н | -2.39901800 | -1.24846700 | 0.04940700  |
| Н | -1.45831700 | -0.29586100 | 1.17915100  |
| С | -1.29353700 | 0.36194800  | -0.81737100 |
| С | -0.01367800 | 0.43850200  | -1.62159800 |
| Н | -0.12602100 | -0.23436700 | -2.48590300 |
| Н | 0.09610400  | 1.45367100  | -2.00758600 |
| С | -4.62966700 | 0.99229000  | 0.42530000  |
| 0 | -4.23963300 | 1.70299200  | 1.26756200  |
| 0 | -5.07647700 | 0.27681600  | -0.38463600 |
| Н | 2.98605900  | -2.09422600 | -0.68420400 |
| Н | 0.31735600  | -5.06965800 | 0.90833600  |
| Н | 1.62076300  | 0.30226100  | 1.18874700  |

#### Int3

Lowest three frequencies(cm<sup>-1</sup>):

| С | 2.90836000 | -2.13654100 | 0.33364500  |
|---|------------|-------------|-------------|
| С | 1.61247000 | -1.76115300 | 0.69220900  |
| С | 1.11459400 | -0.49665500 | 0.35764700  |
| С | 1.93054000 | 0.40790400  | -0.34680000 |
| С | 3.23238900 | 0.02703000  | -0.69420800 |
| С | 3.72093100 | -1.23762400 | -0.36131800 |
| Н | 3.28332400 | -3.12063000 | 0.60253900  |

| Н | 3.86833300  | 0.72904300  | -1.22921800 |
|---|-------------|-------------|-------------|
| С | -0.29341600 | -0.07056700 | 0.74020100  |
| Н | -0.63637000 | -0.71335800 | 1.56144300  |
| Ν | -1.18395300 | -0.17344500 | -0.44510900 |
| С | -2.56965700 | -0.68521300 | -0.25959200 |
| С | -2.59902300 | -2.14209400 | 0.25150800  |
| Н | -3.62909800 | -2.51369100 | 0.31704600  |
| Н | -2.04611400 | -2.80285000 | -0.42823300 |
| Н | -2.15582500 | -2.23545600 | 1.24965300  |
| С | -3.22094500 | -0.62763200 | -1.65227600 |
| Н | -4.25409400 | -0.99191600 | -1.61646600 |
| Н | -3.22809100 | 0.39928700  | -2.03460000 |
| Н | -2.67120200 | -1.25194700 | -2.36881700 |
| 0 | -0.05349200 | 3.48384200  | 0.09497800  |
| С | -3.35429400 | 0.21897400  | 0.70278200  |
| Н | -3.33317700 | 1.26173000  | 0.36650600  |
| Н | -4.40098500 | -0.10344800 | 0.74811800  |
| Н | -2.95592300 | 0.17610300  | 1.72262900  |
| С | 1.38918900  | 1.76753300  | -0.73258600 |
| Н | 2.19180400  | 2.50942300  | -0.81474100 |
| Н | 0.92259000  | 1.72048900  | -1.72799700 |
| С | 0.31490100  | 2.32544200  | 0.19875500  |
| С | -0.25022600 | 1.38534300  | 1.24515500  |
| Н | 0.40408000  | 1.44386300  | 2.12889100  |
| Н | -1.23513200 | 1.74985800  | 1.54422000  |
| Н | 0.97960400  | -2.45351600 | 1.24309100  |
| Н | 4.73427400  | -1.51696700 | -0.63801400 |
| Н | -0.73727100 | -0.79112700 | -1.12084600 |

## $CO_2$

Lowest three frequencies(cm<sup>-1</sup>): 623.9334, 623.9334, 1373.9776

| С | 0.00000000 | 0.00000000 | 0.00000000  |
|---|------------|------------|-------------|
| 0 | 0.00000000 | 0.00000000 | 1.16895400  |
| 0 | 0.00000000 | 0.00000000 | -1.16895400 |

### References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford CT, **2013**.
- [2] (a) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200. (b) Lee, C. T.;
  Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- [3] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- [4] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.

## X-ray crystallographic data of compound 3pa (CCDC 1858383)

A colorless block-like specimen of  $C_{11}H_9FO_2$ , approximate dimensions 0.140 mm x 0.180 mm x 0.200 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.



| Empirical formula                        | C11 H9 F O2                                    |                         |
|------------------------------------------|------------------------------------------------|-------------------------|
| Formula weight                           | 192.18                                         |                         |
| Temperature                              | 296(2) K                                       |                         |
| Wavelength                               | 0.71073 Å                                      |                         |
| Crystal system                           | Orthorhombic                                   |                         |
| Space group                              | P 2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> |                         |
| Unit cell dimensions                     | a = 4.9693(3)  Å                               | $\alpha = 90^{\circ}$ . |
|                                          | b = 5.8579(3) Å                                | $\beta = 90^{\circ}$ .  |
|                                          | c = 31.3863(17) Å                              | $\gamma = 90^{\circ}$ . |
| Volume                                   | 913.64(9) Å <sup>3</sup>                       |                         |
| Z                                        | 4                                              |                         |
| Density (calculated)                     | 1.397 Mg/m <sup>3</sup>                        |                         |
| Absorption coefficient                   | 0.109 mm <sup>-1</sup>                         |                         |
| F(000)                                   | 400                                            |                         |
| Crystal size                             | 0.190 x 0.180 x 0.050 r                        | mm <sup>3</sup>         |
| Theta range for data collection          | 2.596 to 28.759°.                              |                         |
| Index ranges                             | -6<=h<=6, -7<=k<=7,                            | -42<=l<=42              |
| Reflections collected                    | 29989                                          |                         |
| Independent reflections                  | 2375 [R(int) = 0.0540]                         |                         |
| Completeness to theta = $25.242^{\circ}$ | 99.7 %                                         |                         |
| Absorption correction                    | Multi-scan                                     |                         |
| Refinement method                        | Full-matrix least-squar                        | es on F <sup>2</sup>    |
| Data / restraints / parameters           | 2375 / 0 / 129                                 |                         |
| Goodness-of-fit on F <sup>2</sup>        | 1.064                                          |                         |
| Final R indices [I>2sigma(I)]            | R1 = 0.0506, wR2 = 0.                          | 0992                    |
| R indices (all data)                     | R1 = 0.0690, wR2 = 0.                          | 1060                    |
| Absolute structure parameter             | -0.5(3)                                        |                         |
| Largest diff. peak and hole              | 0.142 and -0.145 e.Å <sup>-3</sup>             |                         |

### Table S1. Crystal data and structure refinement for 3pa.

|       | Х        | у        | Z       | U(eq) |  |
|-------|----------|----------|---------|-------|--|
| C(1)  | 2684(6)  | 4479(4)  | 1454(1) | 48(1) |  |
| C(2)  | 966(6)   | 4193(4)  | 1780(1) | 50(1) |  |
| C(3)  | -734(5)  | 2270(4)  | 1779(1) | 45(1) |  |
| C(4)  | -682(5)  | 753(4)   | 1447(1) | 41(1) |  |
| C(5)  | 1106(5)  | 1100(4)  | 1102(1) | 36(1) |  |
| C(6)  | 1219(5)  | -435(4)  | 752(1)  | 40(1) |  |
| C(7)  | 3000(5)  | -74(4)   | 427(1)  | 40(1) |  |
| C(8)  | 4777(5)  | 1784(5)  | 432(1)  | 49(1) |  |
| C(9)  | 4706(5)  | 3297(5)  | 762(1)  | 50(1) |  |
| C(10) | 2871(5)  | 3005(4)  | 1100(1) | 41(1) |  |
| C(11) | -4045(7) | 136(5)   | 2155(1) | 60(1) |  |
| F(1)  | 4397(4)  | 6295(3)  | 1458(1) | 72(1) |  |
| O(1)  | -2340(4) | 2084(4)  | 2131(1) | 58(1) |  |
| O(2)  | 3180(4)  | -1498(3) | 78(1)   | 53(1) |  |

Table S2. Atomic coordinates (Å x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 3pa. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| C(1)-C(2)       | 1.344(4) |
|-----------------|----------|
| C(1)-F(1)       | 1.362(3) |
| C(1)-C(10)      | 1.409(4) |
| C(2)-C(3)       | 1.408(4) |
| C(2)-H(2)       | 0.9300   |
| C(3)-O(1)       | 1.367(3) |
| C(3)-C(4)       | 1.371(3) |
| C(4)-C(5)       | 1.416(3) |
| C(4)-H(4)       | 0.9300   |
| C(5)-C(10)      | 1.419(3) |
| C(5)-C(6)       | 1.419(3) |
| C(6)-C(7)       | 1.367(3) |
| C(6)-H(6)       | 0.9300   |
| C(7)-O(2)       | 1.380(3) |
| C(7)-C(8)       | 1.401(3) |
| C(8)-C(9)       | 1.364(4) |
| C(8)-H(8)       | 0.9300   |
| C(9)-C(10)      | 1.410(4) |
| C(9)-H(9)       | 0.9300   |
| C(11)-O(1)      | 1.423(3) |
| C(11)-H(11A)    | 0.9600   |
| C(11)-H(11B)    | 0.9600   |
| C(11)-H(11C)    | 0.9600   |
| O(2)-H(2A)      | 0.8200   |
| C(2)-C(1)-F(1)  | 119.1(2) |
| C(2)-C(1)-C(10) | 124.4(2) |
| F(1)-C(1)-C(10) | 116.4(2) |
| C(1)-C(2)-C(3)  | 118.7(2) |
| C(1)-C(2)-H(2)  | 120.7    |
| C(3)-C(2)-H(2)  | 120.7    |
| O(1)-C(3)-C(4)  | 125.0(2) |
| O(1)-C(3)-C(2)  | 114.4(2) |
| C(4)-C(3)-C(2)  | 120.6(2) |

Table S3. Bond lengths [Å] and angles [°] for 3pa.

| C(3)-C(4)-C(5)      | 120.1(2)   |
|---------------------|------------|
| C(3)-C(4)-H(4)      | 120.0      |
| C(5)-C(4)-H(4)      | 120.0      |
| C(4)-C(5)-C(10)     | 120.2(2)   |
| C(4)-C(5)-C(6)      | 121.6(2)   |
| C(10)-C(5)-C(6)     | 118.2(2)   |
| C(7)-C(6)-C(5)      | 120.2(2)   |
| C(7)-C(6)-H(6)      | 119.9      |
| C(5)-C(6)-H(6)      | 119.9      |
| C(6)-C(7)-O(2)      | 122.7(2)   |
| C(6)-C(7)-C(8)      | 121.4(2)   |
| O(2)-C(7)-C(8)      | 115.9(2)   |
| C(9)-C(8)-C(7)      | 119.7(2)   |
| C(9)-C(8)-H(8)      | 120.1      |
| C(7)-C(8)-H(8)      | 120.1      |
| C(8)-C(9)-C(10)     | 120.6(2)   |
| C(8)-C(9)-H(9)      | 119.7      |
| C(10)-C(9)-H(9)     | 119.7      |
| C(1)-C(10)-C(9)     | 124.1(2)   |
| C(1)-C(10)-C(5)     | 116.0(2)   |
| C(9)-C(10)-C(5)     | 119.8(2)   |
| O(1)-C(11)-H(11A)   | 109.5      |
| O(1)-C(11)-H(11B)   | 109.5      |
| H(11A)-C(11)-H(11B) | 109.5      |
| O(1)-C(11)-H(11C)   | 109.5      |
| H(11A)-C(11)-H(11C) | 109.5      |
| H(11B)-C(11)-H(11C) | 109.5      |
| C(3)-O(1)-C(11)     | 116.97(19) |
| C(7)-O(2)-H(2A)     | 109.5      |
|                     |            |

Symmetry transformations used to generate equivalent atoms:

|              | $U^{11}$ | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | $U^{12}$ |
|--------------|----------|-----------------|-----------------|-----------------|-----------------|----------|
| C(1)         | 49(2)    | 33(1)           | 63(2)           | -2(1)           | -16(1)          | -7(1)    |
| C(2)         | 55(2)    | 40(1)           | 55(2)           | -12(1)          | -13(2)          | 4(1)     |
| C(3)         | 45(1)    | 47(1)           | 44(1)           | -5(1)           | -6(1)           | 5(1)     |
| C(4)         | 37(1)    | 42(1)           | 45(1)           | -5(1)           | -3(1)           | -4(1)    |
| C(5)         | 32(1)    | 36(1)           | 40(1)           | 1(1)            | -10(1)          | 1(1)     |
| C(6)         | 37(1)    | 41(1)           | 43(1)           | -2(1)           | -4(1)           | -5(1)    |
| C(7)         | 33(1)    | 50(1)           | 38(1)           | 0(1)            | -5(1)           | 4(1)     |
| C(8)         | 37(1)    | 63(2)           | 48(2)           | 10(1)           | 2(1)            | -6(1)    |
| C(9)         | 42(1)    | 47(1)           | 61(2)           | 10(1)           | -6(1)           | -10(1)   |
| C(10)        | 39(1)    | 35(1)           | 48(1)           | 3(1)            | -11(1)          | -2(1)    |
| C(11)        | 64(2)    | 65(2)           | 50(2)           | -2(1)           | 10(2)           | -1(2)    |
| F(1)         | 80(1)    | 44(1)           | 94(1)           | -9(1)           | -12(1)          | -24(1)   |
| <b>O</b> (1) | 62(1)    | 65(1)           | 48(1)           | -17(1)          | 8(1)            | -4(1)    |
| O(2)         | 42(1)    | 71(1)           | 47(1)           | -13(1)          | 4(1)            | -2(1)    |

Table S4. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 3pa. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [ h<sup>2</sup> a\*<sup>2</sup>U<sup>11</sup> + ... + 2 h k a\* b\* U<sup>12</sup> ]

|        | Х     | у     | Z    | U(eq) |  |
|--------|-------|-------|------|-------|--|
|        |       |       |      |       |  |
| H(2)   | 901   | 5245  | 2002 | 60    |  |
| H(4)   | -1823 | -506  | 1448 | 49    |  |
| H(6)   | 75    | -1692 | 744  | 48    |  |
| H(8)   | 6000  | 1984  | 211  | 59    |  |
| H(9)   | 5879  | 4534  | 764  | 60    |  |
| H(11A) | -5239 | 124   | 1914 | 89    |  |
| H(11B) | -5078 | 195   | 2413 | 89    |  |
| H(11C) | -2968 | -1224 | 2153 | 89    |  |
| H(2A)  | 1735  | -2146 | 42   | 80    |  |

Table S5. Hydrogen coordinates (Å x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup>x 10  $^3$ ) for 3pa.



# <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of all compounds













SpinWorks 4: SH.1658











S21



SpinWorks 4: SH.1660\_MeOD























SpinWorks 4: SH.1665





































































SpinWorks 4: SH.1742





SpinWorks 4: HY.126





S42

SpinWorks 4: SH.1726\_MeOD



SpinWorks 4: SH.1726\_MeOD





SpinWorks 4: SH.1728





SpinWorks 4: AP-383-2B



SpinWorks 4: SH.1679 = SH.1618-d

