Supporting Information for

Maoeriocalysins A–D, four novel *ent*-kaurane diterpenoids from *Isodon eriocalyx* and their structure determination utilizing quantum chemical calculation in conjunction with quantitative interproton distances analysis

Qian Yang,^{a,b,‡} Kun Hu,^{a,‡} Bing-Chao Yan,^a Miao Liu,^a Xiao-Nian Li,^a Han-Dong Sun,^a and Pema-Tenzin Puno^{a,*}

^a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China.

^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

[‡] These authors contributed equally to this work. Corresponding authors. E-mail: <u>punopematenzin@mail.kib.ac.cn</u>

CONTENT

1. The structures of several previously reported ent-kaurane diterpenoids from Isodon	species1
2. Key 2D NMR correlations of 2–4.	2
3. X-ray crystallographic analysis of 2	
4. Results of the calculated ¹³ C and ¹ H chemical shifts of possible candidates	5
4.1 Results of DFT calculated ¹³ C and ¹ H chemical shifts of 1	5
4.2 Results of DFT calculated ¹³ C and ¹ H chemical shifts of 3a and 3b	7
4.3 Results of DFT calculated ¹³ C and ¹ H chemical shifts of 4a–4e .	9
5. The DFT calculated key spin-spin coupling constants of 4	11
6. The quantitative analysis of key interproton distances of 1 and 4	12
7. Computational data of 1, 3 and 4.	19
7.1 Computational data — Maoeriocalysin A (1)	19
7.2 Computational data — Maoeriocalysin C (3)	25
7.3 Computational data — Maoeriocalysin D (4)	31
8. Results of the biological activity evaluation	53
8.1 Acetylcholinesterase/butyrylcholinesterase inhibitory activity	53
8.2 Neurite outgrowth-promoting activity	54
8.3 Test of platelet aggregation assays.	55
9. HRESIMS, NMR, UV, CD and OR spectra of compounds 1-4	58
9.1 HRESIMS, NMR, UV, CD and OR spectra of maoeriocalysin A (1)	58
9.2 HRESIMS, NMR, UV, CD and OR spectra of maoeriocalysin B (2)	76
9.3 HRESIMS, NMR, UV, CD and OR spectra of maoeriocalysin C (3)	89
9.4 HRESIMS, NMR, UV, CD and OR spectra of maoeriocalysin D (4)	108

1. The structures of several previously reported ent-kaurane diterpenoids from

Isodon species.

Table S1 Representative *ent*-kaurane diterpenoids previously reported from *Isodon* species that are interesting with aspect to their structures, bioactivities, and organic synthesis.

2. Key 2D NMR correlations of 2-4.

Figure S1 ¹H-¹H COSY (--), key HMBC (H \rightarrow C), and ROESY correlations of 2.

Figure S2 ¹H-¹H COSY (--), key HMBC (H \rightarrow C), and ROESY correlations of 3.

Figure S3 $^{1}H^{-1}H \text{ COSY } (---)$, key HMBC (H \rightarrow C), and ROESY correlations of 4.

3. X-ray crystallographic analysis of 2.

Crystal Data for maoeriocalysin B (2). Crystal data for 2_0m: C₂₀H₂₄O₅, M = 344.39, a = 6.1036(4) Å, b = 12.5506(7) Å, c = 21.9760(13) Å, $a = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 1683.45(18) Å³, T = 100(2) K, space group *P*212121, Z = 4, μ (CuK α) = 0.792 mm⁻¹, 18010 reflections measured, 3157 independent reflections ($R_{int} = 0.0539$). The final R_I values were 0.0353 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0939 ($I > 2\sigma(I)$). The final R_I values were 0.0356 (all data). The final $wR(F^2)$ values were 0.0942 (all data). The goodness of fit on F^2 was 1.072. Flack parameter = 0.07(5).

View of a molecule of maoeriocalysin B (2) with the atom-labelling scheme.

Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of maoeriocalysin B (2). Hydrogen-bonds are shown as dashed lines.

Identification code	cu_Maoeriocalysin B (2) _0m	
Empirical formula	$C_{20}H_{24}O_5$	
Formula weight	344.39	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 6.1036(4) Å	α= 90°.
	b = 12.5506(7) Å	β= 90°.
	c = 21.9760(13) Å	$\gamma = 90^{\circ}$.
Volume	1683.45(18) Å ³	
Ζ	4	
Density (calculated)	1.359 Mg/m ³	
Absorption coefficient	0.792 mm ⁻¹	
F(000)	736	
Crystal size	0.850 x 0.450 x 0.010 mm ³	
Theta range for data collection	4.023 to 70.204°.	
Index ranges	-7<=h<=7, -15<=k<=14, -26<=	=l<=26
Reflections collected	18010	
Independent reflections	3157 [R(int) = 0.0539]	
Completeness to theta = 67.679°	99.8 %	
Absorption correction	Semi-empirical from equivalen	ts
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3157 / 0 / 234	
Goodness-of-fit on F ²	1.072	
Final R indices [I>2sigma(I)]	R1 = 0.0353, wR2 = 0.0939	
R indices (all data)	R1 = 0.0356, wR2 = 0.0942	
Absolute structure parameter	0.07(5)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.280 and -0.184 e.Å ⁻³	

Note: Crystal data and structure refinement for cu_ maoeriocalysin B (2) _0m.

4. Results of the calculated ¹³C and ¹H chemical shifts of possible candidates.

4.1 Results of DFT calculated ¹³C and ¹H chemical shifts of 1.

 Table S1 Results of DFT calculated ¹³C shifts of 1.

No.	Experimental ($\delta_{\rm C}$, ppm)	Calculated ($\delta_{\rm C}$, ppm)
1	204.8	196.4
2	127.1	123.6
3	179.8	180.8
4	72.1	69.9
5	53.9	53.0
6	73.9	71.9
7	97.6	95.4
8	51.8	52.1
9	38.6	40.1
10	51.0	50.7
11	16.3	18.4
12	32.6	35.0
13	35.0	37.0
14	25.7	26.8
15	74.8	72.1
16	156.3	154.6
17	109.8	108.8
18	29.8	29.6
19	29.8	29.7
20	67.0	66.0
15- <u>OCO</u> CH ₃	170.9	163.9
15-ОСО <u>СН</u> 3	21.7	22.7
R ²		0.9989
MAE		2.0
CMAE		1.4

No.	Experimental ($\delta_{\rm H}$, ppm)	Calculated ($\delta_{\rm H}$, ppm)
2	5.86	5.91
5	3.48	3.69
6	4.28	4.33
9	2.52	2.46
11a	2.07	2.17
11b	1.73	1.69
12a	2.23	2.09
12b	1.48	1.50
13	2.71	2.61
14a	2.03	1.90
14b	1.60	1.20
15	5.62	5.76
17a	5.11	5.44
17b	4.85	5.23
18	1.56	1.50
19	1.55	1.51
20a	4.12	4.00
20b	3.78	3.72
15-OCO <u>CH</u> 3	2.13	2.19
R ²		0.9917
MAE		0.13
СМАЕ		0.11

Table S2 Results of DFT calculated ¹H shifts of 1.

4.2 Results of DFT calculated ¹³C and ¹H chemical shifts of 3a and 3b.

Table S3 Results of DFT calculated ¹³C shifts of 3a and 3b.

Experimental		Calculated ($\delta_{\rm C}$, ppm)		
INO.	$(\delta_{\rm C}, \rm ppm)$	3 a	3b	
1	198.2	189.5	191.5	

2	124.8	122.0	122.4
3	162.2	158.9	159.9
4	36.0	36.6	37.2
5	48.4	47.2	51.1
6	70.6	70.5	71.9
7	98.0	96.0	95.7
8	52.8	54.2	56.0
9	130.2	129.9	127.9
10	43.4	43.3	39.2
11	128.5	126.6	131.5
12	38.5	40.5	40.5
13	37.6	39.7	38.2
14	33.7	35.4	32.7
15	80.4	80.1	80.7
16	152.2	149.9	150.4
17	108.7	107.6	106.7
18	31.1	31.4	29.5
19	20.1	21.3	22.3
20	58.9	59.0	60.8
15- <u>OCO</u> CH ₃	173.8	168.0	167.7
15-OCO <u>CH</u> 3	21.3	22.3	22.2
R ²		0.9995	0.9984
MAE		1.8	2.4
СМАЕ		1.0	1.7

Table S4 Results of DFT	calculated	¹ H shifts	of 3a	and 3b .

NI-	Experimental	Calculated ($\delta_{\rm H}$, ppm)		
INO.	$(\delta_{ m H}, { m ppm})$	3 a	3b	
2	5.81	5.85	5.82	
3	6.52	6.82	7.06	
5	2.15	2.14	1.78	

6	3.63	3.70	3.90
9	5.95	6.45	6.42
10	2.41	2.33	3.11
11	5.76	5.98	6.23
12a	2.51	2.48	2.48
12b	2.08	2.05	2.07
13	2.89	2.72	2.72
14a	2.03	2.22	2.49
14b	1.93	1.84	1.71
15	5.83	5.72	6.57
17a	5.13	5.45	5.37
17b	5.04	5.43	5.31
18	1.39	1.41	1.40
19	1.17	1.23	1.19
20a	3.93	3.84	4.06
20b	3.70	3.57	3.73
15-ОСО <u>СН</u> 3	2.09	2.07	2.07
R ²		0.9927	0.9828
MAE		0.14	0.26
CMAE		0.12	0.17

4.3 Results of DFT calculated ¹³C and ¹H chemical shifts of 4a–4e.

N-	Experimental	Calculated ($\delta_{\rm C}$, ppm)				
INO.	$(\delta_{\rm C}, \rm ppm)$	4 a	4b	4c	4d	4e
1	97.0	95.4	80.2	79.1	78.7	79.0
2	29.3	30.7	27.9	29.7	28.0	28.6
3	33.7	33.0	38.4	38.0	36.7	35.2
4	32.2	32.9	31.8	32.4	32.6	32.1
5	56.0	54.6	44.4	46.3	48.3	51.1
6	69.9	67.9	71.6	70.9	69.2	67.7
7	97.9	95.7	96.4	98.0	94.4	94.9

Table S5 Results of DFT calculated ¹³C shifts of 4a–4e.

8	51.4	53.7	56.4	53.7	56.0	53.7
9	128.9	128.6	132.4	131.1	132.0	131.4
10	68.7	66.6	64.0	60.8	57.8	57.2
11	127.4	126.4	120.7	122.8	121.1	121.8
12	38.2	40.6	39.3	37.7	39.4	39.8
13	38.6	40.2	40.0	41.4	40.0	39.3
14	32.3	34.0	33.6	34.1	33.5	32.7
15	80.7	80.5	80.1	77.9	79.9	80.7
16	153.2	150.3	152.5	155.4	152.4	149.9
17	109.9	108.6	109.6	112.5	109.4	108.0
18	28.3	28.3	33.7	31.3	31.1	30.4
19	29.8	30.3	21.4	21.8	23.5	25.1
20	67.3	66.0	62.9	65.8	56.1	60.9
6- <u>OCO</u> CH ₃	168.5	161.3	163.8	163.7	165.5	162.1
6-OCO <u>CH</u> 3	21.6	22.2	23.3	23.9	23.2	22.9
15- <u>ОСО</u> СН ₃	174.0	169.7	167.5	161.8	167.1	168.4
15-OCO <u>CH</u> 3	21.9	23.4	22.0	21.9	22.1	22.4
R ²		0.9992	0.9881	0.9871	0.9873	0.9908
MAE		1.7	3.9	4.0	4.1	3.6
CMAE		1.1	3.8	3.9	4.1	3.1

 Table S6 Results of DFT calculated ¹H shifts of 4a–4e.

N-	Experimental	Calculated ($\delta_{\rm H}$, ppm)				
INO.	$(\delta_{\mathrm{H}}, \mathrm{ppm})$	4 a	4b	4c	4d	4 e
2a	2.07	2.06	2.16	2.18	2.02	2.03
2b	1.40	1.36	1.78	1.77	1.70	1.81
3a	1.51	1.65	1.45	1.46	1.46	1.33
3b	1.30	1.20	1.03	1.15	0.90	1.19
5	1.57	1.53	2.28	1.83	1.97	1.47
6	5.23	5.37	5.49	5.33	5.24	5.25
9	5.86	6.45	6.43	6.35	6.43	6.50
11	5.73	5.98	5.75	5.70	5.78	5.81
12a	2.47	2.42	2.47	2.33	2.48	2.38
12b	2.07	2.01	1.97	1.80	2.00	1.97

13	2.82	2.66	2.66	2.70	2.67	2.69
14a	1.97	1.95	2.61	2.29	2.53	1.95
14b	1.30	1.26	1.76	2.12	1.70	1.79
15	6.27	6.54	5.63	5.68	5.69	5.73
17a	5.14	5.47	5.51	5.80	5.29	5.45
17b	4.95	5.36	5.28	5.56	5.51	5.40
18	1.22	1.26	0.89	0.76	0.84	0.90
19	1.02	0.97	1.06	1.14	1.11	1.05
20a	3.94	3.86	4.28	4.21	4.06	4.01
20b	3.76	3.71	3.19	3.75	3.85	3.77
6-OCO <u>CH</u> 3	2.05	1.97	2.30	2.03	2.23	1.99
15-OCO <u>CH</u> 3	2.11	2.11	2.09	2.05	2.08	2.09
R ²		0.9956	0.9556	0.9632	0.9724	0.9784
MAE		0.13	0.31	0.27	0.24	0.19
СМАЕ		0.09	0.31	0.27	0.23	0.18

5. The DFT calculated key spin-spin coupling constants of 4.

	Experimental	Calculated (<i>J</i> , Hz)				
	(<i>J</i> , Hz)	4 a	4b	4c	4d	4e
H-5/H-6	1.0	1.2	10.4	6.8	8.4	0.8
H-20a/H-20b	8.8	8.8	11.5	11.9	11.5	11.5

Table S7 key spin-spin coupling constants of 4 ($J_{H5/H6}$ and $J_{H20a/H20b}$).

6. The quantitative analysis of key interproton distances of 1 and 4.

H-a/H-b	Experimental interproton distances (Å)	Calculated interproton distances (Å)
H-2/H ₃ -19	3.00	3.14
H-5/H-9	2.18	2.20
H-20a/H-11b	2.25	2.20
H-6/H-20b	2.53	2.51
H-15/H-14b	2.45	2.37
H-15/H-17b	3.22	3.19
H-17a/H-17b	1.86	1.88
H-17a/H-13	2.78	2.69
MAD		0.06
STD		0.43

 Table S8 Key interproton distances of 1 (experimental and calculated).

	Experimental interproton	C	alculated ir	terproton of	distances (A	Å)
н-а/н-о	distances (Å)	4a	4 b	4c	4d	4e
H-15/H-17b	3.13	3.07	2.94	2.68	2.93	3.15
H-15/H-14a	2.54	2.70	2.64	3.64	2.58	2.41
H-9/H-3a	2.63	2.86	8.19	6.98	8.02	7.55
H-9/H-6	2.57	2.44	4.39	3.27	4.18	3.97
H-9/H-11	2.43	2.51	2.44	2.35	2.37	2.44
H-6/H-3a	2.27	2.51	4.86	4.61	4.64	4.42
H-6/H-5	2.87	2.78	3.06	2.90	2.94	2.78
H-20b/H-5	2.46	2.36	2.43	2.69	3.14	3.13
H-17a/H-13	2.79	2.70	2.70	2.60	2.68	2.82
H-17a/H-17b	1.87	1.87	1.87	1.87	1.82	1.87
H3-19/H-3a	2.79	2.83	3.32	3.35	3.06	3.58
H3-19/H-6	2.34	2.33	3.01	2.90	2.52	3.11
MAD		0.12	1.06	0.95	1.06	0.94
STD		0.30	1.62	1.27	1.44	1.32

 Table S9 Key interproton distances of 4 (experimental and calculated).

Figure S4 2D ROESY f1 slice at f2 chemical shifts (800 MHz, CDCl₃) of H-20a of 1, with red intergrals as the intensity of each proton.

Figure S5 2D ROESY f1 slice at f2 chemical shifts (800 MHz, CDCl₃) of H-5 of 1, with red intergrals as the intensity of each proton.

Figure S6 2D ROESY f1 slice at f2 chemical shifts (800 MHz, $CDCl_3$) of H-6 of 1, with red intergrals as the intensity of each proton.

Figure S7 2D ROESY f1 slice at f2 chemical shifts (800 MHz, $CDCl_3$) of H₃-19 of 1, with red intergrals as the intensity of each proton.

Figure S8 2D ROESY f1 slice at f2 chemical shifts (800 MHz, CDCl₃) of H-15 of 1, with red intergrals as the intensity of each proton.

Figure S9 2D ROESY f1 slice at f2 chemical shifts (800 MHz, CDCl₃) of H-17a of 1, with red intergrals as the intensity of each proton.

Figure S10 2D ROESY f1 slice at f2 chemical shifts (800 MHz, CDCl₃) of H-6 of 4, with red intergrals as the intensity of each proton.

Figure S11 2D ROESY f1 slice at f2 chemical shifts (800 MHz, CDCl₃) of H-9 of 4, with red intergrals as the intensity of each proton.

Figure S12 2D ROESY f1 slice at f2 chemical shifts (800 MHz, CDCl₃) of H-15 of 4, with red intergrals as the intensity of each proton.

Figure S13 2D ROESY f1 slice at f2 chemical shifts (800 MHz, CDCl₃) of H-17a of 4, with red intergrals as the intensity of each proton.

Figure S14 2D ROESY f1 slice at f2 chemical shifts (800 MHz, CDCl₃) of H-20b of 4, with red intergrals as the intensity of each proton.

7. Computational data of 1, 3 and 4.

7.1 Computational data — Maoeriocalysin A (1)

Figure S15 One candidate of compound 1.

Figure S16 Optimized geometries of 4 dominant conformers of 1 at the M06-2X/def2-SVP level in the gas phase.

Table S10 Important thermodynamic parameters (a.u.) of the optimized 1 at the M06-2X/def2-SVP level in the gas phase.

Conformers	$U(0)^a$	$U(T)^{b}$	$H(T)^{c}$	$G(T)^{d}$
1-1	-1379.708057	-1379.682096	-1379.681152	-1379.761499
1-2	-1379.710340	-1379.684835	-1379.683891	-1379.762255
1-3	-1379.705380	-1379.679292	-1379.678348	-1379.758569
1-4	-1379.705241	-1379.679146	-1379.678202	-1379.758373
			/_ / _ /	

 $^{a}U(0) = \text{electronic energy} (\varepsilon_{ele}) + \text{zero point energy (ZPE)}; {}^{b}U(T) = \varepsilon_{ele} + ZPE + \Delta U_{0 \to T};$ $^{c}H(T) = \varepsilon_{ele} + ZPE + \Delta H_{0 \to T}; {}^{d}G(T) = \varepsilon_{ele} + ZPE + \Delta G_{0 \to T}$

Table S11 Conformational analysis of the optimized 1 at the M06-2X/def2-SVP level in the gas phase.

Conformers	$\Delta G(kcal/mol)$	Population
1-1	0.00	67.34%
1-2	0.47	30.21%
1-3	2.31	1.35%

1-4	2.44	1.10%
(1,1) $(1,1)$ $(1,1$	$1 1 + 1 + 1$ MOC $\Delta X/1$	() () () () () () () () () () () () () (

^{*a*}relative G(T) in kcal/mol. ^{*b*}Conformational distribution calculated at the M06-2X/def2-SVP level in the gas phase. (T=298.15 K)

Table S12 Optimized Z-matrixes of 1-1 in the gas phase (Å) at the M06-2X/def2-SVP level.

C	-1.20746	-2.45493	-1.05574	Н	3.539143	-1.5086	-2.11132
C	-2.57015	-1.86119	-1.05667	Н	4.192961	-2.61045	-0.89305
C	-2.57252	-0.67303	-0.4211	Н	4.874	-0.5578	0.032574
С	-3.71757	0.311622	-0.24982	Н	2.930443	-1.68267	1.583027
С	-1.17493	-0.30487	0.013709	Н	3.33613	0.027284	1.879944
С	-0.86169	0.331442	1.362685	Н	2.252604	1.835597	0.791924
С	0.545792	-0.16512	1.749019	Н	4.727915	1.031891	-2.27454
С	1.582935	-0.21657	0.604658	Н	3.351601	2.293534	-2.15188
С	1.068871	-1.20419	-0.51942	Н	-4.34651	0.202663	-2.31487
С	-0.35691	-1.59851	-0.11662	Н	-5.2519	-0.8871	-1.22071
C	2.045019	-2.35402	-0.77006	Н	-5.56209	0.872374	-1.19361
C	3.453449	-1.81267	-1.05751	Н	-4.69813	-0.8549	1.318218
С	3.792657	-0.59544	-0.15526	Н	-5.15126	0.878125	1.257562
С	2.957177	-0.6852	1.129228	Н	-3.57726	0.392657	1.928582
С	2.029017	1.121292	-0.01599	Н	0.172129	-3.27693	1.173768
C	3.298416	0.716237	-0.74994	Н	-1.35674	-2.47178	1.611106
C	3.82102	1.381912	-1.77559	Н	-0.119	3.137403	-2.61103
C	-4.78723	0.103674	-1.3139	Н	-1.33727	2.762296	-1.37209
C	-4.32209	0.164246	1.152555	Н	-0.65949	4.422242	-1.46423
С	-0.32559	-2.29976	1.253966	0	0.944307	0.614669	2.818824
С	0.639401	2.96288	-0.61508	0	-0.95999	1.727919	1.266839
C	-0.43559	3.357976	-1.58384	0	0.386998	-1.50263	2.187887
Н	-3.40498	-2.33605	-1.57102	0	-3.23188	1.629182	-0.4314
Н	-0.80053	0.416747	-0.72953	0	1.089855	1.715407	-0.89201
Н	-1.51095	-0.04779	2.172315	0	1.057079	3.630935	0.287489
Н	0.989817	-0.62747	-1.45547	Н	-2.62777	1.862645	0.292757
Н	1.678261	-2.97229	-1.59996	Н	1.727832	0.220933	3.222467
Н	2.075443	-3.01365	0.110109	0	-0.83723	-3.43984	-1.64416
				Н	-0.44953	2.131188	1.985435

С	-1.29094	-2.43589	-1.02919	Н	3.50783	-1.67371	-2.08123
С	-2.64955	-1.83489	-0.99265	Н	4.083171	-2.78874	-0.83596
С	-2.62358	-0.63213	-0.38588	Н	4.845477	-0.75154	0.067787
С	-3.76512	0.356099	-0.22288	Н	2.833607	-1.78577	1.600932
С	-1.20524	-0.26375	-0.00958	Н	3.313946	-0.09603	1.898703
С	-0.86495	0.400062	1.318578	Н	2.358064	1.736533	0.799158
С	0.519497	-0.13839	1.732177	Н	4.761075	0.788465	-2.29126
С	1.566974	-0.26184	0.602508	Н	3.446084	2.115665	-2.18869
С	1.019992	-1.23707	-0.51581	Н	-2.70054	1.892659	-1.33709
С	-0.41727	-1.5806	-0.11121	Н	-3.78859	0.900896	-2.34201
С	1.949636	-2.42821	-0.75611	Н	-4.46589	2.13305	-1.22831
С	3.386621	-1.95848	-1.0256	Н	-5.29847	-0.85028	-1.18876
С	3.765568	-0.74793	-0.13206	Н	-5.90381	0.403457	-0.06914
С	2.912074	-0.79219	1.145039	Н	-5.16173	-1.0818	0.580969
С	2.089173	1.046222	-0.01527	Н	0.05705	-3.24392	1.221537
С	3.330848	0.573712	-0.75072	Н	-1.45378	-2.38967	1.626811
С	3.8753	1.191806	-1.79462	Н	0.024252	4.547155	-1.77849
С	-3.67461	1.381448	-1.3607	Н	-0.28464	2.889475	-2.42873
С	-5.11632	-0.34435	-0.23153	Н	-1.15604	3.48759	-0.979
С	-0.41583	-2.2527	1.277004	0	0.94193	0.652082	2.785314
С	0.845971	2.982832	-0.58661	0	-0.90939	1.799525	1.174773
С	-0.20331	3.50506	-1.52649	0	0.306885	-1.45642	2.203097
Н	-3.51013	-2.3263	-1.44546	0	-3.67117	1.011812	1.026262
Н	-0.81993	0.423709	-0.78289	0	1.181759	1.707771	-0.87856
Н	-1.54813	0.078203	2.122606	0	1.321335	3.606941	0.319159
Н	0.963262	-0.66479	-1.45675	Н	-2.91076	1.613682	1.021589
Н	1.563455	-3.03116	-1.58818	Н	1.685053	0.219412	3.224195
Н	1.939534	-3.08767	0.124496	0	-0.94271	-3.42535	-1.62347
				Н	-0.41819	2.197556	1.910095

Table S13 Optimized Z-matrixes of 1-2 in the gas phase (Å) at the M06-2X/def2-SVP level.

Table S14 Optimized Z-matrixes of 1-3 in the gas phase (Å) at the M06-2X/def2-SVP level.

C	-1.32908	-2.38338	-1.06149	Н	3.490953	-1.70802	-2.06454
C	-2.67882	-1.76754	-1.02337	Н	4.026437	-2.85687	-0.8323
C	-2.63747	-0.56949	-0.40835	Н	4.831863	-0.8581	0.115117
C	-3.81774	0.365053	-0.25213	Н	2.774445	-1.85354	1.60994
С	-1.21678	-0.21528	-0.02162	Н	3.291048	-0.17851	1.932589
С	-0.85771	0.440136	1.310412	Н	2.38057	1.697143	0.833969
С	0.504979	-0.15028	1.732743	Н	4.841135	0.732836	-2.20067
C	1.559639	-0.28778	0.612894	Н	3.555996	2.089228	-2.10394
C	0.998177	-1.23509	-0.52018	Н	-4.33693	-0.44058	1.69779
C	-0.45003	-1.5484	-0.13083	Н	-3.40547	1.09792	1.755868
С	1.902282	-2.44488	-0.766	Н	-5.1249	1.102471	1.274116
С	3.3529	-2.00622	-1.01468	Н	-2.65104	2.200466	-0.32365
С	3.75518	-0.82009	-0.09822	Н	-4.36493	2.372347	-0.81492
С	2.883737	-0.85724	1.166235	Н	-3.19129	1.611829	-1.92797

C	2.118057	1.013366	0.011901	Н	-0.02467	-3.23588	1.187546
С	3.366852	0.5223	-0.70106	Н	-1.52134	-2.35524	1.586898
С	3.952642	1.147245	-1.71821	Н	0.335917	3.294139	-2.63576
С	-4.18388	0.537882	1.221842	Н	-0.98942	2.998741	-1.48897
С	-3.47798	1.725772	-0.86958	Н	-0.15751	4.58784	-1.47649
С	-0.47676	-2.23534	1.249474	0	0.940616	0.61586	2.799609
С	0.935362	2.978967	-0.6026	0	-0.84229	1.833435	1.177824
С	-0.0276	3.511633	-1.62348	0	0.251448	-1.46449	2.191603
Н	-3.55755	-2.23489	-1.46491	0	-4.96076	-0.18614	-0.87221
Н	-0.8202	0.468973	-0.79199	0	1.244976	1.691078	-0.87262
Н	-1.54212	0.128169	2.11991	0	1.384106	3.59268	0.322863
Н	0.962687	-0.65084	-1.4546	Н	-4.79399	-0.2301	-1.82142
Н	1.51143	-3.02889	-1.60918	Н	1.64476	0.139521	3.257138
Н	1.86847	-3.11464	0.106296	0	-0.98876	-3.37085	-1.66414
				Н	-0.32487	2.203836	1.908581

 Table S15 Optimized Z-matrixes of 1-4 in the gas phase (Å) at the M06-2X/def2-SVP level.

C	-1.32017	-2.37273	-1.08189	Н	3.493705	-1.69414	-2.06344
С	-2.66543	-1.74691	-1.06545	Н	4.031747	-2.84689	-0.83594
С	-2.63432	-0.56736	-0.41464	Н	4.833515	-0.85128	0.120295
С	-3.81696	0.362989	-0.25285	Н	2.776753	-1.85347	1.611219
С	-1.21678	-0.21867	-0.01461	Н	3.292897	-0.17886	1.93769
С	-0.85826	0.433776	1.317029	Н	2.372234	1.702559	0.841772
C	0.504122	-0.15637	1.737517	Н	4.846175	0.750111	-2.1853
С	1.559889	-0.28698	0.617949	Н	3.558416	2.103793	-2.08724
С	1.000745	-1.23126	-0.51885	Н	-4.17164	-0.23225	1.821969
С	-0.4481	-1.54892	-0.13401	Н	-3.2719	1.306656	1.64407
С	1.906872	-2.43892	-0.76756	Н	-5.01874	1.248008	1.288109
С	3.356574	-1.9968	-1.01476	Н	-2.69447	2.182187	-0.57856
С	3.756954	-0.81357	-0.09368	Н	-4.43831	2.292196	-0.97147
С	2.884889	-0.85597	1.169965	Н	-3.33979	1.426911	-2.08136
С	2.115168	1.017012	0.019345	Н	-0.02189	-3.24283	1.176268
С	3.367625	0.530741	-0.69126	Н	-1.52009	-2.36562	1.57703
С	3.955558	1.161081	-1.70382	Н	0.442086	3.402259	-2.6397
C	-4.07536	0.687903	1.22369	Н	-0.93699	2.909296	-1.6401
C	-3.54659	1.652621	-1.02568	Н	-0.2433	4.555666	-1.43552
C	-0.47492	-2.2429	1.241631	0	0.935853	0.60416	2.80904
C	0.92082	2.975335	-0.60153	0	-0.84831	1.826556	1.179521
C	-0.01608	3.506847	-1.6473	0	0.250838	-1.47498	2.18792
Н	-3.52818	-2.18105	-1.56804	0	-4.97049	-0.21573	-0.82693
Н	-0.82161	0.469525	-0.7823	0	1.242615	1.689935	-0.86896
Н	-1.54164	0.122303	2.127692	0	1.351553	3.590188	0.331747
Н	0.965535	-0.64391	-1.45122	Н	-5.21674	-0.98307	-0.29643
Н	1.517265	-3.02121	-1.61247	Н	1.669049	0.148081	3.240659
Н	1.874183	-3.11095	0.103077	0	-0.97677	-3.3605	-1.68251
				Н	-0.32807	2.203041	1.905142

Figure S18 Calculated ECD of 1.

Computational Data of (5*R*, 6*S*, 7*S*, 8*S*, 9*S*, 10*S*, 13*R*, 15*R*)-1

Experimental ECD spectrum of 1 (black); Calculated ECD spectrum of (5R, 6S, 7S, 8S, 9S, 10S, 13R, 15R)-1 (shift = 16 nm, red) and (5S, 6R, 7R, 8R, 9R, 10R, 13S, 15S)-1 (shift = 16 nm, blue dash) at the CAM-B3LYP-SCRF/def2-SVP level of theory in MeOH with PCM.

Time-dependent density-functional theory (TDDFT) ECD theoretical calculations were run at the CAM-B3LYP-SCRF/def2-SVP level in MeOH with polarizable continuum model (PCM).

Num ^a	<i>exited</i> state ^b	CI Coefficient	$\Delta E \ (eV)^c$	$\lambda (nm)^d$	f ^e	R _{vel} ^f	R _{len} ^g
1	107->109	0.39779	4.0582	305.52	0.0007	-11.7803	-11.7232
	108->109	0.49356					
2	105->109	0.63949	5.7945	213.97	0.2835	43.4372	44.8415
3	105->109	0.25119	5.8847	210.69	0.0346	-37.6763	-32.1322
	106->109	0.54848					
4	102->111	0.42	6.1472	201.69	0.0014	-0.6511	-1.337
	103->111	0.43768					
	104->111	-0.2411					
5	102->109	0.37695	6.2175	199.41	0.0070	-17.363	-16.9366
	104->109	0.43508					
	106->109	-0.27785					

Table S16 Key transitions, oscillator strengths, and rotatory strengths in the ECD spectra of conformer 1-1 at the CAM-B3LYP-SCRF/def2-SVP level in MeOH with PCM.

6	103->109	-0.24086	6.6186	187.33	0.0088	1.0015	0.7645
	107->109	0.44083					
	108->109	-0.36215					
7	100->109	-0.23858	6.7818	182.82	0.0153	2.8671	2.7657
	103->109	0.32934					
	104->109	0.30353					
	107->109	0.32357					
8	107->110	0.52289	6.9448	178.53	0.3565	61.0097	64.1963
	108->110	-0.42863					
9	99->109	0.33037	7.0494	175.88	0.0360	-11.8326	-14.1221
	101->109	0.43243					
10	107->113	0.2637	7.246	171.11	0.0080	-31.0808	-29.7497
	108->113	0.3238					
11	100->110	0.23502	7.3298	169.15	0.0388	-86.449	-81.2921
	103->110	0.35631					
	104->110	0.40879					
12	98->109	-0.29938	7.3547	168.58	0.0027	8.4457	8.0612
	100->109	0.26964					
	101->109	0.35256					
13	92->109	-0.26329	7.4814	165.72	0.0073	23.2508	23.0823
	99->109	0.45216					
14	101->109	-0.23875	7.613	162.86	0.0051	-1.3524	-2.261
	102->109	0.35183					
	103->109	0.32616					
15	107->111	0.52865	7.6197	162.71	0.0392	-12.4088	-13.2702
	108->111	-0.32695					
16	100->109	0.48128	7.7279	160.44	0.0103	-3.9772	-4.0993
	104->109	0.2478					
17	106->110	0.43365	7.7877	159.21	0.0081	-5.438	-6.1302
	107->110	-0.2532					
	108->110	-0.37064					
18	93->109	-0.23072	7.8549	157.84	0.0140	-3.1077	-2.4499
	97->109	0.32787					
	98->109	0.27192					
	103->109	0.27721					
19	106->110	0.35134	7.9263	156.42	0.0186	-4.1536	-4.8105
20	92->109	-0.22464	7.9648	155.67	0.0020	3.4787	7.2029
	96->109	0.27079					
21	95->109	0.28137	8.0853	153.34	0.0093	-4.8658	-4.0914
22	106->111	0.37906	8.1121	152.84	0.0062	-0.6491	-0.2449
	108->111	-0.33168					
23	103->111	0.33211	8.1981	151.24	0.0452	28.4493	20.759
	104->111	0.35589					
24	96->110	-0.30716	8.2258	150.73	0.0124	54.2749	50.0021
	101->110	0.34001					
25	96->109	0.24658	8.2937	149.49	0.0014	4.4303	6.6671
	97->109	0.32695					
	106->112	0.23636					

26	97->109	0.30872	8.322	148.98	0.0010	-4.8784	-6.201
	106->112	-0.24362					
27	105->112	-0.31056	8.4101	147.42	0.0666	-39.362	-37.86
	105->113	0.42144					
28	107->112	0.27157	8.4275	147.12	0.0246	-39.4801	-38.931
	107->116	0.25458					
	107->117	0.22551					
	108->116	-0.22476					
29	102->110	0.26975	8.4692	146.39	0.0602	29.0587	24.1438
	103->110	0.33573					
	106->111	-0.3146					
30	106->111	0.28992	8.4845	146.13	0.0268	39.5558	33.2678
	108->111	0.27684					

^{*a*}Number of the excited states. ^{*b*}only excited states with contribution over 10% were listed. ^{*c*}Excitation energy. ^{*d*}Wavelength. ^{*e*}Oscillator strength. ^{*f*}Rotatory strength in velocity form (10-40 cgs.). ^{*g*}Rotatory strength in length form (10-40 cgs.).

7.2 Computational data — Maoeriocalysin C (3)

Figure S19 Two possible candidates of compound 3.

Figure S20 Optimized geometries of 1 dominant conformers of **3a** at the M06-2X/def2-SVP level in the gas phase.

3a-1

Table S17 Important thermodynamic parameters (a.u.) of the optimized **3a** at the M06-2X/def2-SVP level in the gas phase.

Conformers	<i>U(0)</i> ^a	$U(T)^{b}$	$H(T)^{c}$	$G(T)^{d}$
3a- 1	-1304.561099	-1304.536059	-1304.535115	-1304.613508

 $^{a}U(0) = \text{electronic energy} (\varepsilon_{ele}) + \text{zero point energy} (ZPE); {}^{b}U(T) = \varepsilon_{ele} + ZPE + \Delta U_{0 \to T};$ $^{c}H(T) = \varepsilon_{ele} + ZPE + \Delta H_{0 \to T}; {}^{d}G(T) = \varepsilon_{ele} + ZPE + \Delta G_{0 \to T}$

Table S18 Conformational analysis of the optimized **3a** at the M06-2X/def2-SVP level in the gas phase.

Conformers	$\Delta G(kcal/mol)$	Population
3a -1	0.00	100.00%

^{*a*}relative G(T) in kcal/mol. ^{*b*}Conformational distribution calculated at the M06-2X/def2-SVP level in the gas phase. (T=298.15 K)

Figure S21 Regression analysis of experimental versus calculated NMR chemical shifts of 3a.

Table S19 Optimized Z-matrixes of 3a-1 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	2.069	-1.75823	3.2235	Н	1.90674	-2.44401	5.29793
С	1.36376	-1.93437	4.51054	Н	-0.32214	-1.56217	5.6699
С	0.12922	-1.44772	4.6843	Н	-0.32835	-2.09709	1.98167
С	-0.705	-0.74546	3.61873	Н	-0.67898	0.85085	1.2783
С	-0.10968	-1.03658	2.18853	Н	1.04687	2.09262	-0.53914
С	-0.72506	-0.21266	1.02643	Н	1.68385	0.16567	2.40905
С	0.00447	-0.44168	-0.34475	Н	-0.0406	4.11355	-1.33357
С	-0.42267	0.6058	-1.44212	Н	-1.4857	3.7108	-3.35704
С	0.13117	2.01713	-1.12098	Н	-2.51537	3.5261	-1.93418
С	1.41995	-0.874	2.1778	Н	-2.99702	1.60265	-3.38066
С	-0.45677	3.13889	-1.57244	Н	-2.4163	-0.23767	-1.8644
С	-1.66665	3.08817	-2.47304	Н	-2.47935	1.19106	-0.8118
С	-2.01535	1.64484	-2.89809	Н	-0.34814	-0.85408	-3.10168
С	-1.9534	0.73648	-1.65891	Н	0.02237	0.79402	-5.64683
С	-0.02916	0.17722	-2.8957	Н	-1.47326	1.8928	-5.63294
С	-0.92252	1.04772	-3.77013	Н	-2.49605	-1.25836	4.78505
С	-0.78582	1.2546	-5.08706	Н	-2.86023	-0.70499	3.16525
С	-2.14363	-1.29245	3.74635	Н	-2.20671	-2.33539	3.41532
С	-0.72846	0.75463	3.96912	Н	0.26194	1.2126	3.87706
С	1.97326	-1.21633	0.80374	Н	-1.06411	0.91582	5.00131
С	2.12763	-0.73349	-3.04801	Н	-1.41785	1.31005	3.32473
С	3.55426	-0.40736	-3.36289	Н	1.79584	-2.26479	0.53499
0	-0.3279	-1.77141	-0.76081	Н	3.05894	-1.06908	0.78197
0	1.34816	0.36786	-3.2136	Н	3.92069	0.35417	-2.66998
0	1.73074	-1.83523	-2.68589	Н	3.63631	-0.06047	-4.39596
0	3.17447	-2.27398	3.07872	Н	4.16523	-1.30729	-3.2486
0	-2.10123	-0.59066	0.90061	Н	0.36451	-2.00884	-1.41688
0	1.42441	-0.35438	-0.18699	Н	-2.09029	-1.43588	0.40418

Figure S22 Optimized geometries of 1 dominant conformers of **3b** at the M06-2X/def2-SVP level in the gas phase.

3b-1

Table S20 Important thermodynamic parameters (a.u.) of the optimized **3b** at the M06-2X/def2-SVP level in the gas phase.

Conformers	<i>U(0)</i> ^a	$U(T)^{b}$	$H(T)^{c}$	$G(T)^{d}$				
3b- 1	-1304.549806	-1304.524639	-1304.523695	-1304.602479				
${}^{a}U(0) = \text{electronic energy}(\varepsilon_{ele}) + \text{zero point energy}(ZPE), {}^{b}U(T) = \varepsilon_{ele} + ZPE + \Delta U_{0 \to T},$								
$^{c}H(T) = \varepsilon_{ele} + ZPE + \varDelta H_{0 \to T}; \ ^{d}G(T) = \varepsilon_{ele} + ZPE + \varDelta G_{0 \to T}$								

Table S21 Conformational analysis of the optimized 3b at the M06-2X/def2-SVP level in the gas phase.

Conformers	$\Delta G(kcal/mol)$	Population
3b -1	0.00	100.00%

^{*a*}relative G(T) in kcal/mol. ^{*b*}Conformational distribution calculated at the M06-2X/def2-SVP level in the gas phase. (T=298.15 K)

Table S22 Optimized Z-matrixes of 3b-1 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	3.37498	0.09173	2.5708	Н	4.23661	-1.06125	4.22388
С	3.31287	-0.88162	3.68625	Н	2.15958	-2.13822	4.88472
С	2.15783	-1.46906	4.02494	Н	1.63639	-1.54678	1.34007
С	0.83118	-1.26162	3.30684	Н	-1.0109	-0.1823	1.67626
С	1.10565	-0.7286	1.85681	Н	0.33351	2.49293	-2.0786
С	-0.17211	-0.42685	1.02003	Н	1.6553	1.29566	2.42295
С	0.01381	0.78186	0.03459	Н	-1.41527	3.77929	-3.18251

С	-1.01632	0.90056	-1.15107	Н	-3.70563	3.14747	-2.05893
С	-0.7074	2.18984	-1.98	Н	-3.47012	2.41485	-3.64906
С	2.08158	0.45547	1.86233	Н	-4.30546	0.76609	-1.8457
С	-1.66629	2.89204	-2.60786	Н	-2.76434	0.11539	-0.06568
С	-3.10001	2.42373	-2.61715	Н	-2.6756	1.88459	-0.04499
С	-3.25057	1.02288	-1.98583	Н	-1.28634	-1.2634	-1.64972
C	-2.48041	0.99564	-0.65624	Н	-2.39483	-1.37299	-4.42977
С	-1.15093	-0.29898	-2.1411	Н	-3.95825	-0.3809	-4.30152
С	-2.50667	-0.03052	-2.79805	Н	0.64899	-3.34185	2.63394
С	-2.98015	-0.62692	-3.90105	Н	-0.0128	-3.05633	4.24738
С	0.10048	-2.61826	3.24812	Н	-0.90695	-2.51569	2.83143
С	-0.00442	-0.29665	4.17175	Н	-1.0241	-0.17984	3.79297
С	2.38887	0.91554	0.43365	Н	-0.09517	-0.66867	5.20028
С	0.92891	-1.17866	-2.81208	Н	0.44642	0.69933	4.23122
С	1.97437	-1.09823	-3.8811	Н	3.2601	0.39098	0.02471
0	-0.09535	1.96935	0.84866	Н	2.64761	1.98135	0.43295
0	-0.11301	-0.36248	-3.12075	Н	2.80705	-1.75915	-3.62401
0	1.01641	-1.88233	-1.8126	Н	1.55393	-1.42253	-4.83625
0	4.45401	0.61781	2.30588	Н	2.35153	-0.07499	-3.9531
0	-0.52666	-1.65232	0.37861	Н	-0.21751	2.72256	0.24724
0	1.33395	0.71596	-0.51085	Н	0.20165	-1.88491	-0.2437

Table S23 The DP4+ probabilities of 3a and 3b.

Functional	Solvent	Basis Set	Type of Data
mPW1PW91	PCM	6-31G(d,p)	Unscaled Shifts

	Isomer 1 (3a)	Isomer 2 (3b)
sDP4+ (H data)	100.00%	0.00%
sDP4+ (C data)	100.00%	0.00%
sDP4+ (all data)	100.00%	0.00%
uDP4+ (H data)	100.00%	0.00%
uDP4+ (C data)	98.34%	1.66%
uDP4+ (all data)	100.00%	0.00%
DP4+ (H data)	100.00%	0.00%
DP4+ (C data)	100.00%	0.00%
DP4+ (all data)	100.00%	0.00%

Computational Data of (5*S*, 6*S*, 7*R*, 8*S*, 10*R*, 13*R*, 15*R*) -3 (3a)

Experimental ECD spectrum of **3a** (black); Calculated ECD spectrum of (5*S*, 6*S*, 7*R*, 8*S*, 10*R*, 13*R*, 15*R*) -**3a** (shift = 23 nm, red) and (5*R*, 6*R*, 7*S*, 8*R*, 10*S*, 13*S*, 15*S*) -**3a** (shift = 23 nm, blue dash) at the CAM-B3LYP-SCRF/def2-SVP level of theory in MeOH with PCM.

Table S24 Key transitions, oscillator strengths, and rotatory strengths in the ECD spectra of conformer **3a**-1 at the CAM-B3LYP-SCRF/def2-SVP level in MeOH with PCM.

Num ^a	exited state ^b	CI Coefficient	∆E (eV) ^c	$\lambda (nm)^d$	f ^e	R _{vel} f	R _{len} g
1	100 ->105	0.28399	4.0245	308.07	0.0001	1.8928	4.6924
	101 ->105	0.26652					
	103 ->105	0.41468					
	104 ->105	0.35995					
2	101 ->105	0.6131	5.8657	211.37	0.2088	50.5148	52.8094
	104 ->105	-0.22915					
3	100 ->105	0.53699	6.1258	202.4	0.1065	-92.1469	-88.6653
	104 ->105	-0.34028					
4	95 ->106	0.28041	6.1691	200.98	0.0007	-6.4893	-7.8097
	98 ->106	0.49115					
5	99 ->105	0.46191	6.6424	186.65	0.0067	-4.1883	-3.8073
	103 ->105	-0.26212					
6	103 ->107	-0.38049	6.7532	183.59	0.0873	194.0213	192.0839
	104 ->107	0.49325					
7	99 ->105	0.26631	6.7941	182.49	0.0122	8.1607	8.1901

	103 ->105	0.43852					
	104 ->105	-0.37925					
8	103 ->108	-0.40377	6.8908	179.93	0.3344	-143.559	-146.871
	104 ->108	0.55402					
9	93 ->105	0.27929	7.1507	173.39	0.0108	-7.8166	-5.1367
	96 ->105	0.23549					
	102 ->105	0.3276					
	104 ->106	0.26104					
10	102 ->107	0.25206	7.1566	173.25	0.0704	26.0901	26.2446
	104 ->106	0.52818					
11	102 ->107	0.56603	7.1925	172.38	0.3424	30.5414	37.7019
12	90 ->105	-0.27916	7.2343	171.38	0.0066	31.4497	31.2083
	94 ->105	0.26479					
	97 ->105	0.28962					
13	102 ->105	0.45099	7.3345	169.04	0.024	13.0027	12.1632
	102 ->108	0.33647					
14	102 ->105	-0.32205	7.3494	168.7	0.0883	-7.2798	-6.0363
	102 ->108	0.47865					
15	103 ->108	0.33092	7.5271	164.72	0.0011	1.7415	2.6173
	104 ->108	0.25058					
16	103 ->106	0.4475	7.5554	164.1	0.0103	2.0022	6.6172
17	97 ->105	0.30954	7.5894	163.37	0.0125	16.7972	15.787
18	94 ->107	0.23343	7.6057	163.02	0.0051	-15.4487	-19.2192
	96 ->107	0.2578					
	103 ->107	0.22746					
19	89 ->105	0.30679	7.6876	161.28	0.0209	-20.0327	-14.826
	90 ->105	0.27934					
20	102 ->106	0.5769	7.6995	161.03	0.0025	-4.1066	-5.3857
	103 ->106	0.29664					
21	94 ->108	0.24885	7.7623	159.73	0.0062	-24.9921	-27.8647
	95 ->108	0.37533					
	98 ->108	-0.25722					
	102 ->108	-0.22938					
22	92 ->105	0.3094	7.8971	157	0.0067	0.185	0.8269
	93 ->105	0.34433					
	98 ->105	0.38589					
23	97 ->107	0.2237	8.0025	154.93	0.0037	-8.5559	-10.2449
	103 ->107	0.29849					
	104 ->107	0.26567					
24	103 ->109	-0.24862	8.0431	154.15	0.0027	-5.7594	-5.2208
	104 ->109	0.29216					
25	88 ->105	-0.25938	8.1547	152.04	0.0012	2.0559	2.1498
	89 ->105	-0.30007					
	96 ->105	0.24341					
	97 ->105	0.30761					
26	99 ->106	0.22579	8.2036	151.13	0.0165	-33.7699	-32.4979
	104 ->110	0.3373					
27	87 ->105	-0.32942	8.2447	150.38	0.0136	1.5726	1.7162

	96 ->105	0.27081					
	98 ->105	0.42869					
28	96 ->106	-0.24051	8.2575	150.15	0.0169	10.8727	11.6775
	97 ->108	0.28343					
29	97 ->108	0.29682	8.288	149.59	0.047	3.2532	5.4389
30	88 ->105	-0.23062	8.3359	148.74	0.0089	-7.1594	-3.4771
	103 ->109	0.26256					
	104 ->109	0.29552					

^aNumber of the excited states. ^bonly excited states with contribution over 10% were listed. ^cExcitation energy.

^{*d*}Wavelength. ^{*e*}Oscillator strength. ^{*f*}Rotatory strength in velocity form (10-40 cgs.). ^{*g*}Rotatory strength in length form (10-40 cgs.).

7.3 Computational data — Maoeriocalysin D (4)

Figure S25 Five possible candidates of compound 4.

Note: (1) When the C-1/O/C-7 bridge is formed and located behind rings A and B, the HO-10 can only be β -oriented according to molecular modeling, in this case, only one possible should be considered (4a); (2) C-1/O/C-7 bridge can't be in front of rings A and B, for it fails to satisfy the H-5/H-20b, HO-1/H-20a restraints; (3) When the C-1/O/C-10 ether bond is formed and located behind the ring A, the uncertainty of the configurations of C-7 requires 2 diastereoisomers to be considered (4b and 4c); (4) When the C-1/O/C-10 ether bond is formed and is in front of the ring A, the uncertainty of the configurations of C-7 requires 2 diastereoisomers to be considered (4d and 4e).

Figure S26 Optimized geometries of 1 dominant conformers of 4a at the M06-2X/def2-SVP level in the gas phase.

Table S25 Important thermodynamic parameters (a.u.) of the optimized **4a** at the M06-2X/def2-SVP level in the gas phase.

Conformers	<i>U(0)</i> ^a	$U(T)^{b}$	$H(T)^{c}$	$G(T)^{d}$		
4a -1	-1533.348863	-1533.319747	-1533.318803	-1533.406343		
${}^{a}U(0) = \text{electronic energy } (\varepsilon_{ele}) + \text{zero point energy (ZPE); } {}^{b}U(T) = \varepsilon_{ele} + ZPE + \Delta U_{0 \to T};$						

 ${}^{c}H(T) = \varepsilon_{ele} + ZPE + \varDelta H_{0 \to T}; {}^{d}G(T) = \varepsilon_{ele} + ZPE + \varDelta G_{0 \to T}$

Table S26 Conformational analysis of the optimized 4a at the M06-2X/def2-SVP level in the gas phase.

Conformers	$\Delta G(kcal/mol)$	Population
4a -1	0.00	100.00%

^{*a*}relative G(T) in kcal/mol. ^{*b*}Conformational distribution calculated at the M06-2X/def2-SVP level in the gas phase. (T=298.15 K)

Figure S27 Regression analysis of experimental versus calculated NMR chemical shifts of 4a.

Table S27 Optimized Z-matrixes of 4a-1 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	0.55124	1.49856	1.74595	Н	-1.39049	-4.94167	-1.17439
С	2.05554	1.58962	2.01477	Н	-1.12645	-3.97537	-2.62875
С	2.88281	1.37683	0.74628	Н	-3.25717	-3.21292	-1.72851
С	2.42483	2.26398	-0.43498	Н	-2.77269	-0.85105	-1.26887
С	0.85795	2.18315	-0.61942	Н	-1.44002	-1.39243	-2.30452

С	0.34184	0.76773	-1.05604	Н	-2.59521	-1.14159	1.341
С	-0.51552	0.13596	0.10619	Н	-3.61255	-3.84152	2.03469
С	-0.94418	-1.34858	-0.13242	Н	-3.98014	-4.65373	0.40673
С	0.25982	-2.28859	-0.34463	Н	2.60082	4.10536	0.79238
С	0.0905	2.52628	0.68672	Н	3.97735	3.80429	-0.23654
С	0.13656	-3.45383	-1.00356	Н	2.47402	4.39671	-0.95047
C	-1.196	-3.92492	-1.53539	Н	4.24193	2.00739	-1.63823
С	-2.3604	-2.98699	-1.14241	Н	2.79326	2.3468	-2.5936
С	-1.91434	-1.53246	-1.32872	Н	3.0692	0.73762	-1.89723
С	-1.85809	-1.89113	1.02487	Н	-2.00381	2.67022	1.30789
С	-2.63079	-3.02069	0.34956	Н	-1.76706	2.85217	-0.41537
С	-3.45314	-3.88425	0.96157	Н	-1.21766	2.04368	-4.4843
C	2.88448	3.72305	-0.19005	Н	-1.83789	0.35907	-4.39373
С	3.16567	1.81075	-1.71384	Н	-0.50327	0.76878	-5.4917
С	-1.41199	2.29986	0.46285	Н	0.77895	-2.47659	3.94184
С	0.04157	0.67774	-3.43727	Н	-0.6912	-3.32845	4.52949
С	-0.95025	0.9845	-4.51707	Н	-0.23631	-1.75297	5.20748
С	-1.06613	-1.66254	3.25061	0	0.28386	3.87461	1.09977
С	-0.24809	-2.3571	4.29578	0	1.16023	0.2306	-3.63547
Н	2.34479	0.82769	2.75051	0	-0.49621	0.96209	-2.22255
Н	2.30174	2.55336	2.47638	Н	-0.74891	1.01457	3.07427
Н	2.81744	0.31834	0.46322	0	-0.11023	1.75598	2.97774
Н	3.94095	1.55951	0.97291	0	-1.70943	0.91744	0.28859
Н	0.58999	2.92373	-1.38647	0	0.25535	0.16961	1.32607
Н	1.17135	0.09454	-1.27815	Н	0.04497	3.90048	2.04946
Н	1.21683	-2.01668	0.09421	0	-1.58115	-0.56206	3.40469
Н	0.99518	-4.1072	-1.13186	0	-1.12423	-2.42734	2.13202

Figure S28 Optimized geometries of 5 dominant conformers of **4b** at the M06-2X/def2-SVP level in the gas phase.

Table S28 Important thermodynamic parameters (a.u.) of the optimized **4b** at the M06-2X/def2-SVP level in the gas phase.

Conformers	<i>U(0)</i> ^a	$U(T)^{b}$	$H(T)^{c}$	$G(T)^{d}$
4b- 1	-1533.307388	-1533.277547	-1533.276603	-1533.365526
4b- 2	-1533.307120	-1533.277289	-1533.276345	-1533.365341
4b- 3	-1533.305515	-1533.276094	-1533.275150	-1533.362947
4b -4	-1533.304581	-1533.274995	-1533.274051	-1533.362409
4b -5	-1533.303407	-1533.273488	-1533.272544	-1533.362074

 $^{a}U(0) = \text{electronic energy} (\varepsilon_{ele}) + \text{zero point energy (ZPE)}; {}^{b}U(T) = \varepsilon_{ele} + ZPE + \Delta U_{0 \to T};$ $^{c}H(T) = \varepsilon_{ele} + ZPE + \Delta H_{0 \to T}; {}^{d}G(T) = \varepsilon_{ele} + ZPE + \Delta G_{0 \to T}$

Table S29 Conformational analysis of the optimized 4b at the M06-2X/def2-SVP level in the gas phase.

Conformers	$\Delta G(kcal/mol)$	Population
4b -1	0.00	50.46%
4b -2	0.12	41.47%
4b -3	1.62	3.28%
4b -4	1.96	1.85%
4b- 5	2.17	1.30%

^{*a*}relative G(T) in kcal/mol. ^{*b*}Conformational distribution calculated at the M06-2X/def2-SVP level in the gas phase. (T=298.15 K)

Figure S29 Regression analysis of experimental versus calculated NMR chemical shifts of 4b.

C	0.41555	-0 54145	-4 31681	Н	-2 89248	4 40743	1 18672
C	1 73002	1 13502	4.51001	н	3 183	3 82534	2 82850
	1.75002	-1.13302	-4.08033	11	-5.165	3.82334	2.62639
C	2.25566	-2.03982	-3.5/32/	H	-0.68433	4.10352	2.16167
C	2.2628	-1.38197	-2.16153	H	-1.13809	2.9/52/	-0.2039
С	0.78011	-1.03128	-1.7469	Н	0.28338	2.42503	0.6922
С	0.55422	-0.12115	-0.4858	Н	-0.03235	0.36612	2.45998
С	-1.00416	0.05649	-0.22273	Н	-0.60229	1.57443	5.02876
C	-1.4494	1.07065	0.90255	Н	-0.77435	3.39548	4.71451
С	-2.99402	1.2692	0.86506	Н	3.81396	-2.83201	-1.60774
С	-0.05101	-0.46517	-2.88356	Н	3.08551	-2.05151	-0.22411
С	-3.58183	2.40338	1.28358	Н	2.19104	-3.30483	-1.09594
С	-2.77459	3.54295	1.85118	Н	2.83391	0.67016	-2.74667
С	-1.27457	3.19987	1.97724	Н	3.38206	0.2051	-1.14185
С	-0.80997	2.47034	0.71253	Н	4.19073	-0.43766	-2.56146
С	-1.04359	0.75581	2.3755	Н	-1.9823	-1.25819	-2.37124
С	-1.03008	2.13439	3.03211	Н	-2.04293	0.18375	-3.37831
С	-0.78647	2.38163	4.32694	Н	2.01092	-0.79277	3.34874
С	2.8644	-2.44887	-1.21454	Н	3.6668	-0.58859	2.70528
С	3.20939	-0.16679	-2.15406	Н	2.69229	-1.96544	2.182
С	-1.496	-0.29472	-2.55945	Н	-2.5178	-3.20529	3.87794
С	2.1162	-0.07952	1.34217	Н	-2.79105	-1.77323	4.89012
С	2.6489	-0.91173	2.47031	Н	-3.72826	-2.00672	3.37405
С	-1.70315	-1.40425	3.09388	0	-0.55402	-0.49849	-5.36424
С	-2.75863	-2.13856	3.8606	0	-1.6176	0.55912	-1.43006
Н	1.63127	-1.7286	-5.59716	0	-1.56726	-1.22814	0.08286
Н	2.45262	-0.3424	-4.90672	Н	-0.93101	-1.67472	0.68144
Н	1.63653	-2.94729	-3.53936	0	1.16731	-0.76747	0.65018
Н	3.26649	-2.36864	-3.84756	0	2.45454	1.07354	1.12286
Н	0.32374	-2.00506	-1.512	0	0.52137	0.66726	-3.55398
Н	0.9938	0.85864	-0.70212	0	-1.96829	-0.07648	3.08829
Н	-3.59916	0.44503	0.49379	Н	-0.66304	0.42125	-5.66422
Н	-4.66142	2.51132	1.23843	0	-0.74694	-1.93863	2.54556
L	1	1	1	1	1	1	1

Table S30 Optimized Z-matrixes of 4b-1 in the gas phase (Å) at the M06-2X/def2-SVP level.

Table S31 Optimized Z-matrixes of 4b-2 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	0.20151	-0.53547	-4.33908	Н	-2.70888	4.51244	1.3436
С	1.48604	-1.16128	-4.75741	Н	-2.93867	3.92556	2.99336
С	2.03453	-2.0744	-3.66889	Н	-0.46702	4.14201	2.212
С	2.12307	-1.40919	-2.26326	Н	-1.06011	3.04386	-0.13623
С	0.67107	-1.01185	-1.78439	Н	0.38543	2.44793	0.68928
С	0.53135	-0.0961	-0.51485	Н	0.09224	0.38322	2.45906
С	-1.00667	0.12383	-0.18042	Н	-0.31697	1.59107	5.05615
С	-1.37261	1.14005	0.97154	Н	-0.45202	3.41835	4.76032
С	-2.91122	1.38066	1.00633	Н	3.65142	-2.90642	-1.77453
С	-0.19331	-0.42285	-2.88435	Н	3.01995	-2.09247	-0.36362
С	-3.44755	2.52706	1.45925	Н	2.04137	-3.32121	-1.17869
С	-2.58389	3.63991	1.99616	Н	2.72706	0.62221	-2.88653

С	-1.08945	3.25584	2.04992	Н	3.33122	0.1503	-1.30414
С	-0.70411	2.52323	0.76081	Н	4.05819	-0.52368	-2.7533
С	-0.90941	0.80364	2.42267	Н	-2.13475	-1.13129	-2.29831
С	-0.82505	2.17652	3.08571	Н	-2.17214	0.32316	-3.28814
С	-0.51191	2.40781	4.36849	Н	2.14265	-0.81211	3.25069
С	2.73577	-2.48903	-1.33807	Н	3.77212	-0.66151	2.52952
С	3.10387	-0.2221	-2.30533	Н	2.73003	-2.00619	2.05517
С	-1.61432	-0.18781	-2.49651	Н	-2.43293	-3.12092	3.97198
С	2.17617	-0.10259	1.24016	Н	-2.60885	-1.68824	5.00456
С	2.73435	-0.95156	2.34335	Н	-3.62916	-1.88156	3.53729
С	-1.603	-1.34074	3.15694	0	-0.82771	-0.50041	-5.33208
С	-2.6406	-2.04709	3.97275	0	-1.65673	0.65511	-1.35384
Н	1.33651	-1.75504	-5.66716	0	-1.592	-1.14834	0.13796
Н	2.21731	-0.3869	-5.01679	Н	-0.9507	-1.60896	0.72042
Н	1.39234	-2.96379	-3.6015	0	1.17712	-0.7618	0.59188
Н	3.02262	-2.43293	-3.98555	0	2.53869	1.03998	1.00591
Н	0.19627	-1.97129	-1.52811	0	0.38406	0.67818	-3.59685
Н	0.98852	0.87101	-0.7511	0	-1.82456	-0.00533	3.17396
Н	-3.55526	0.57722	0.65596	Н	-1.04189	-1.39226	-5.65267
Н	-4.52456	2.66562	1.46317	0	-0.69481	-1.90107	2.55535

Figure S30 Optimized geometries of 5 dominant conformers of 4c at the M06-2X/def2-SVP level in the gas phase.

Table S32 Important thermodynamic parameters (a.u.) of the optimized **4c** at the M06-2X/def2-SVP level in the gas phase.

Conformers	<i>U(0)</i> ^a	$U(T)^{b}$	$H(T)^{c}$	$G(T)^{d}$
4c -1	-1533.303414	-1533.273656	-1533.272711	-1533.361775
4c -2	-1533.301881	-1533.272054	-1533.271110	-1533.360532

4c- 3	-1533.301862	-1533.272048	-1533.271104	-1533.360458
4c- 4	-1533.301205	-1533.271647	-1533.270703	-1533.359130
4c- 5	-1533.300997	-1533.271356	-1533.270411	-1533.358299
TT(0) 1 :	· · ·			

^{*a*}U(0) = electronic energy (ε_{ele}) + zero point energy (ZPE); ^{*b*} $U(T) = \varepsilon_{ele} + ZPE + \Delta U_{0 \to T}$; ^{*c*} $H(T) = \varepsilon_{ele} + ZPE + \Delta H_{0 \to T}$; ^{*d*} $G(T) = \varepsilon_{ele} + ZPE + \Delta G_{0 \to T}$

Table S33 Conformational analysis of the optimized 4c at the M06-2X/def2-SVP level in the gas phase.

Conformers	$\Delta G(kcal/mol)$	Population
4c -1	0.00	60.37%
4c- 2	0.78	16.16%
4c- 3	0.83	14.94%
4c -4	1.66	3.66%
4c -5	2.18	1.51%

^{*a*}relative G(T) in kcal/mol. ^{*b*}Conformational distribution calculated at the M06-2X/def2-SVP level in the gas phase. (T=298.15 K)

Figure S31 Regression analysis of experimental versus calculated NMR chemical shifts of 4c.

Table S34 Optimized Z-matrixes of 4c-1 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	-0.38657	2.30811	3.33188	Н	-0.37756	-3.68261	-4.06027
С	-0.21778	3.7818	3.20885	Н	0.57957	-2.23528	-4.39144
С	-0.65464	4.28146	1.83666	Н	1.8894	-3.58525	-2.81697
С	-0.02376	3.50218	0.64711	Н	2.10376	-2.02338	-0.94831
С	-0.47618	1.993	0.72174	Н	1.55767	-1.01939	-2.29247
С	0.21783	0.99374	-0.26493	Н	-1.40066	-3.25072	-0.19519
С	0.0293	-0.51182	0.21741	Н	-0.30898	-5.86271	-0.65072
С	-0.06919	-1.62199	-0.89877	Н	0.67061	-5.88079	-2.22604
С	-1.19069	-1.38183	-1.9303	Н	-0.05192	3.82005	-1.53323
С	-0.48515	1.41489	2.11803	Н	-0.40984	5.26108	-0.60566
С	-1.12823	-1.88793	-3.17438	Н	-1.63703	4.00001	-0.76217
С	0.02076	-2.76533	-3.61083	Н	1.99719	3.16409	1.47275
С	0.97271	-3.11652	-2.4447	Н	1.95676	3.31955	-0.28244
С	1.27153	-1.8481	-1.64155	Н	1.77141	4.7457	0.72858
С	-0.32599	-3.06913	-0.32317	Н	-2.15708	0.17631	2.594
С	0.27617	-3.96955	-1.39913	Н	-0.60327	-0.56938	2.97258

С	0.21386	-5.30819	-1.42513	Н	0.25712	1.44937	-4.72427
С	-0.56302	4.17555	-0.63712	Н	-1.25617	1.16493	-3.85991
С	1.50736	3.68462	0.64679	Н	-0.56456	2.81307	-3.90803
С	-1.12383	0.06804	2.24818	Н	0.82482	-3.20465	3.47721
С	0.45697	1.47048	-2.60753	Н	1.64488	-4.63231	2.75544
С	-0.33136	1.74749	-3.85215	Н	0.20333	-4.84251	3.76993
С	-0.19296	-4.08309	1.82174	0	-0.92237	1.84437	4.57242
С	0.6833	-4.19294	3.03242	0	-1.17872	-0.61846	0.99222
Н	-0.81847	4.29117	3.97196	0	1.15333	-0.78971	1.0714
Н	0.82432	4.05953	3.40548	Н	1.21005	-1.7561	1.16458
Н	-1.7491	4.20747	1.76952	0	-0.37946	1.24572	-1.55919
Н	-0.41474	5.35019	1.76449	0	1.6778	1.49644	-2.55471
Н	-1.54023	2.0112	0.4344	0	0.73609	1.56063	2.85756
Н	1.29447	1.19184	-0.2874	0	0.41104	-3.28936	0.89305
Н	-2.0666	-0.81933	-1.61275	Н	-0.19278	1.56757	5.15411
Н	-1.93444	-1.71402	-3.88171	0	-1.28007	-4.62927	1.71011

 Table S35 Optimized Z-matrixes of 4c-2 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	-1.31353	3.50773	1.77723	Н	-0.34773	-3.16708	-4.87148
С	-1.48281	3.35025	3.24855	Н	-1.47511	-1.87386	-5.28821
С	-0.58421	2.24141	3.78736	Н	0.71494	-0.81884	-5.26292
С	-0.74793	0.88409	3.04381	Н	0.45748	0.83723	-3.48402
С	-0.34173	1.0616	1.52974	Н	-1.20281	0.33761	-3.83791
С	-0.75628	-0.08147	0.54048	Н	1.10532	-2.19171	-1.32407
С	-0.69346	0.42529	-0.9658	Н	3.24258	-2.71923	-3.09663
С	-0.32055	-0.66112	-2.04588	Н	2.64677	-2.61201	-4.85168
С	-1.37417	-1.79045	-2.13086	Н	0.08012	-1.12972	3.39064
С	-0.74734	2.39215	0.93476	Н	0.0227	-0.13002	4.8292
С	-1.58068	-2.48945	-3.26088	Н	1.25635	0.1748	3.6021
С	-0.78287	-2.22646	-4.51401	Н	-2.92294	0.93297	2.67426
С	0.32138	-1.16864	-4.303	Н	-2.27742	-0.68724	2.93022
С	-0.23394	-0.01516	-3.46407	Н	-2.47428	0.39976	4.29495
С	1.11038	-1.29615	-1.9523	Н	0.75688	3.31036	-0.27159
С	1.41643	-1.69026	-3.39381	Н	-0.82687	3.25781	-1.05102
С	2.49338	-2.37531	-3.80376	Н	1.50732	-2.9382	1.94415
С	0.20785	-0.10726	3.74852	Н	0.27667	-4.20291	1.99776
С	-2.18422	0.35812	3.23836	Н	1.0432	-3.80189	0.43941
С	-0.14288	2.70014	-0.40085	Н	4.4523	0.72573	-1.25621
С	-0.38992	-2.38025	1.13221	Н	3.39575	1.20085	0.11861
С	0.6847	-3.39317	1.38598	Н	4.72215	0.04425	0.36024
С	3.03235	-0.75043	-0.65978	0	-1.19737	4.84804	1.29276
С	3.95724	0.38479	-0.34346	0	0.25438	1.50264	-1.06873
Н	-1.22421	4.28542	3.75939	0	-1.98673	0.93066	-1.36562
Н	-2.5332	3.15184	3.49038	Н	-2.41999	1.33379	-0.59268
Н	0.46251	2.56729	3.71059	0	0.1521	-1.18028	0.78167
Н	-0.79007	2.1175	4.85844	0	-1.5859	-2.61645	1.22236
Н	0.75979	1.08471	1.53359	0	-2.15825	2.64955	0.99793
Н	-1.79301	-0.37535	0.73377	0	2.10033	-0.34088	-1.5541

Н	-1.97812	-2.01508	-1.25643	Н	-0.54355	5.35821	1.8001
Н	-2.34023	-3.2657	-3.29423	0	3.12096	-1.86456	-0.16348

C	1 51833	3 52223	1 56143	Н	-2 3909	-2 35249	-4 74199
C	1.27849	3.63199	3.02573	Н	-2.27638	-0.67225	-5.27191
C	1.12353	2.25563	3.66488	Н	0.02147	-1.45894	-5.16404
C	0.06026	1.35676	2.97005	Н	0.98119	0.01719	-3.46892
C	0.49825	1.08675	1.47954	Н	-0.54546	0.80331	-3.89642
C	-0.5811	0.48936	0.51318	Н	-0.7166	-2.43986	-1.15804
C	-0.15843	0.70232	-1.00583	Н	0.4531	-4.43311	-2.78474
C	-0.64411	-0.4029	-2.01961	Н	0.12727	-4.05865	-4.57367
C	-2.1862	-0.47091	-2.11945	Н	-0.1362	0.22867	4.84041
С	1.15187	2.27244	0.80499	Н	-0.78183	-0.62307	3.45125
С	-2.8104	-0.89812	-3.23124	Н	0.96922	-0.51451	3.68011
С	-2.04261	-1.35581	-4.44666	Н	-1.43905	2.89533	2.46501
С	-0.51647	-1.36599	-4.21499	Н	-2.12986	1.31322	2.82126
С	-0.11004	-0.10127	-3.45478	Н	-1.52519	2.31685	4.12922
С	-0.07517	-1.85074	-1.82011	Н	2.89338	1.76365	-0.32281
С	-0.11714	-2.44257	-3.22542	Н	1.76269	2.79366	-1.20641
С	0.17128	-3.71181	-3.54634	Н	-1.90228	-3.42506	0.67282
С	0.02612	0.03525	3.77321	Н	-2.74942	-3.06363	2.19885
С	-1.33124	2.00884	3.09493	Н	-0.98468	-3.02602	2.1643
С	1.83066	1.96379	-0.49355	Н	3.40378	-3.26688	0.64583
С	-1.93715	-1.36224	1.21862	Н	3.27295	-1.53282	0.2834
С	-1.88341	-2.81576	1.57834	Н	3.71539	-2.70281	-1.00794
С	1.65855	-2.72135	-0.4422	0	2.5413	4.36485	1.03126
С	3.10865	-2.5377	-0.11406	0	1.27373	0.79546	-1.09647
Н	2.12187	4.14409	3.50435	0	-0.71435	1.94276	-1.49819
Н	0.39547	4.25169	3.21919	Н	-0.77782	2.57137	-0.75852
Н	2.09577	1.74393	3.63934	0	-0.70531	-0.91063	0.85112
Н	0.87537	2.39126	4.72551	0	-2.95704	-0.68873	1.2465
Н	1.29931	0.33382	1.5529	0	0.32849	3.45056	0.76628
Н	-1.53029	1.01605	0.655	0	1.29519	-1.83908	-1.40454
Н	-2.78451	-0.1506	-1.2714	Н	2.15126	5.19657	0.70925
Н	-3.89578	-0.92018	-3.27661	0	0.93225	-3.54317	0.09879

Table S36 Optimized Z-matrixes of 4c-3 in the gas phase (Å) at the M06-2X/def2-SVP level.

Figure S32 Optimized geometries of 4 dominant conformers of 4d at the M06-2X/def2-SVP level in the gas phase.

Table S37 Important thermodynamic parameters (a.u.) of the optimized **4d** at the M06-2X/def2-SVP level in the gas phase.

Conformers	<i>U(0)</i> ^a	$U(T)^{b}$	$H(T)^{c}$	$G(T)^{d}$
4d- 1	-1533.305208	-1533.275567	-1533.274623	-1533.364055
4d- 2	-1533.303564	-1533.273909	-1533.272965	-1533.362131
4d- 3	-1533.303341	-1533.273929	-1533.272985	-1533.361264
4d -4	-1533.302949	-1533.273674	-1533.272730	-1533.359906

 $^{a}U(0) = \text{electronic energy} (\varepsilon_{ele}) + \text{zero point energy (ZPE)}; {}^{b}U(T) = \varepsilon_{ele} + ZPE + \Delta U_{0 \to T};$ $^{c}H(T) = \varepsilon_{ele} + ZPE + \Delta H_{0 \to T}; {}^{d}G(T) = \varepsilon_{ele} + ZPE + \Delta G_{0 \to T}$

Table S38 Conformational analysis of the optimized 4d at the M06-2X/def2-SVP level in the gas phase.

Conformers	$\Delta G(kcal/mol)$	Population
4d -1	0.00	81.66%
4d- 2	1.21	10.62%
4d- 3	1.75	4.23%
4d -4	2.60	1.00%

^{*a*}relative G(T) in kcal/mol. ^{*b*}Conformational distribution calculated at the M06-2X/def2-SVP level in the gas phase. (T=298.15 K)

Figure S33 Regression analysis of experimental versus calculated NMR chemical shifts of 4d.

Table S 39 Optimized Z-matrixes of 4d-1 in the gas phase (Å) at the M06-2X/def2-SVP level.

C	4.072079	-1.366659	0.445874	Н	-4.55065	-2.49708	-2.00183

С	5.062416	-0.447341	-0.216135	Н	-3.07885	-3.12541	-2.75217
C	4.584221	0.995087	-0.133865	Н	-3.20546	-0.73029	-3.27473
С	3.146907	1.176074	-0.659672	Н	-1.10072	0.067229	-2.27165
С	2.167244	0.435476	0.304124	Н	-0.87941	-1.71673	-2.24952
С	0.710309	0.470517	-0.208766	Н	-2.2516	1.22372	-0.16623
С	-0.185161	-0.653606	0.356669	Н	-5.21875	1.135389	-0.53238
С	-1.550614	-0.867228	-0.34557	Н	-5.50262	0.268077	-2.16486
С	-2.117343	-2.199727	0.129369	Н	2.787078	3.103192	0.315388
С	2.674611	-0.959573	0.694163	Н	3.679697	3.198884	-1.22322
С	-2.966072	-2.91249	-0.612788	Н	1.940829	2.91183	-1.25185
С	-3.450292	-2.449737	-1.961502	Н	2.1491	0.980421	-2.60117
С	-2.983497	-1.01107	-2.236313	Н	3.013448	-0.48992	-2.09137
С	-1.494263	-0.883078	-1.882825	Н	3.917294	0.927269	-2.6816
C	-2.649567	0.20273	-0.107812	Н	2.050096	-3.02148	0.677652
C	-3.624532	-0.049964	-1.25065	Н	1.377489	-2.02465	2.004249
C	-4.841709	0.480538	-1.321349	H	-1.37266	4.451087	-0.73233
С	2.860854	2.682809	-0.699141	H	0.059343	4.371139	0.351925
C	3.047072	0.610877	-2.085586	H	-1.4438	3.570187	0.854291
С	1.638307	-2.040125	0.936029	Н	-4.77268	0.214338	3.189203
C	-0.369429	2.57075	-0.684566	H	-3.25664	-0.48078	3.79671
C	-0.826067	3.832114	-0.01489	Н	-3.63395	1.232452	4.161936
C	-2.988746	0.834918	2.167137	0	4.314157	-2.71038	0.296863
C	-3.72364	0.438622	3.414438	0	0.493202	-1.8559	0.141446
Η	6.036083	-0.564959	0.289872	0	-0.36647	-0.46063	1.731897
Η	5.197683	-0.770326	-1.258516	H	-0.53766	0.484078	1.881841
Η	4.630324	1.334809	0.912904	0	-0.4471	2.326626	-1.85892
Η	5.25685	1.64101	-0.718556	0	0.16947	1.726812	0.213077
Η	2.154631	0.988977	1.257944	0	3.666121	-0.94752	1.72153
Н	0.680392	0.407162	-1.300322	0	-2.17227	1.722646	2.102245
Η	-1.8089	-2.541521	1.118575	Н	5.201751	-2.89856	0.626767
Н	-3.340044	-3.867904	-0.234853	0	-3.32415	0.058196	1.140572

Table S40 Optimized Z-matrixes of 4d-2 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	3.471471	1.872214	-0.111496	Н	-4.99946	-1.69779	1.68246
С	4.699903	1.186843	0.410766	Н	-3.86926	-3.04315	1.500906
С	4.611628	-0.313622	0.182248	Н	-4.46173	-2.27698	-0.75661
С	3.301111	-0.939555	0.700679	Н	-2.17944	-1.66806	-1.59682
C	2.126107	-0.392246	-0.166776	Н	-1.86699	-2.58349	-0.0821
С	0.736568	-0.854034	0.31305	Н	-2.56902	0.848051	-1.48967
С	-0.392857	0.009599	-0.297045	Н	-5.47923	1.482689	-0.57713
С	-1.817283	-0.390067	0.128012	Н	-6.26985	-0.20491	-0.4021
С	-1.991969	-0.475632	1.630529	Н	2.621832	-2.99879	1.042647
C	2.197708	1.139259	-0.334491	H	3.492973	-2.75554	-0.50151
C	-2.972334	-1.202936	2.174635	Н	4.384441	-2.78652	1.036274
C	-3.982798	-1.955282	1.344903	Н	2.321686	-1.20998	2.640474
С	-3.832029	-1.612942	-0.14888	Н	2.816114	0.468229	2.316481
С	-2.340266	-1.689193	-0.508668	H	4.03284	-0.75978	2.741992
C	-2.849237	0.620148	-0.449725	Н	1.073931	2.852921	0.34447

С	-4.156048	-0.148048	-0.383162	Н	0.661442	2.289016	-1.3096
С	-5.363718	0.403014	-0.460787	Н	0.472386	-4.88089	-1.78013
С	3.447182	-2.460925	0.560204	Н	-0.24919	-4.68024	-0.13755
C	3.101905	-0.58645	2.180137	Н	1.513461	-4.71415	-0.32409
C	0.916753	1.967661	-0.288775	Н	-3.17998	4.078116	1.380352
C	0.600998	-2.908609	-0.982845	Н	-1.46812	3.660135	1.582549
C	0.576234	-4.398564	-0.803849	Н	-1.92566	4.932556	0.39727
C	-2.310597	2.917361	-0.205277	0	3.46868	3.21536	0.18822
С	-2.223872	3.982785	0.851502	0	-0.16522	1.275319	0.284885
Η	5.572011	1.620864	-0.101215	0	-0.30746	0.126222	-1.67507
Η	4.800747	1.431483	1.478315	Н	0.0965	-0.67885	-2.0451
Η	4.699546	-0.522601	-0.896294	0	0.649499	-2.35432	-2.05581
Η	5.459702	-0.811368	0.676958	0	0.559737	-2.2761	0.186522
Η	2.264131	-0.777349	-1.189546	0	3.068862	1.540772	-1.40248
Η	0.643819	-0.701797	1.393635	0	-1.88332	3.010991	-1.32085
Η	-1.327155	0.122409	2.258436	Н	2.951176	3.67224	-0.48689
Η	-3.078667	-1.239422	3.26218	0	-2.92607	1.825282	0.286038

Table S41 Optimized Z-matrixes of 4d-3 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	-3.991552	-1.119807	-0.861622	Н	4.554773	-3.23485	0.900061
С	-4.958004	-0.702278	0.214325	Н	3.06423	-4.13847	1.193995
С	-4.492577	0.578791	0.89297	Н	3.120083	-2.26991	2.784011
С	-3.026395	0.500621	1.361583	Н	1.04711	-1.09883	2.177072
С	-2.117506	0.446739	0.0942	Н	0.859408	-2.65464	1.304525
С	-0.619473	0.29833	0.470899	Н	2.207741	0.892577	0.977376
С	0.285337	-0.455917	-0.535301	Н	5.235174	0.633843	1.285602
С	1.602643	-1.004627	0.059931	Н	5.479413	-0.90961	2.315495
С	2.217688	-1.957758	-0.957985	Н	-1.71128	1.748692	2.595008
С	-2.615214	-0.588664	-0.924467	Н	-2.85412	2.66532	1.576824
С	3.043703	-2.941519	-0.597971	Н	-3.43463	1.821803	3.033142
С	3.456695	-3.1715	0.831994	Н	-1.92191	-0.6839	2.848045
С	2.95114	-2.02849	1.725685	Н	-2.78828	-1.66876	1.648349
С	1.475123	-1.749563	1.398691	Н	-3.67836	-0.83816	2.949455
С	2.667267	0.055496	0.431822	Н	-1.96712	-2.34685	-1.98582
С	3.616431	-0.71921	1.334029	Н	-1.28655	-0.80841	-2.58538
С	4.837013	-0.309639	1.666317	Н	0.390463	4.715681	0.261362
C	-2.7315	1.756445	2.188693	Н	1.186887	3.677416	1.493963
С	-2.838527	-0.743776	2.243831	Н	-0.54281	4.088542	1.66899
С	-1.564222	-1.374764	-1.682467	Н	4.616382	1.590278	-2.60246
С	-0.115462	2.658614	0.157456	Н	2.943513	1.530903	-3.19661
С	0.258543	3.874077	0.946988	Н	3.640208	3.11256	-2.71167
С	3.07962	1.805132	-1.11776	0	-4.20542	-2.3671	-1.39596
С	3.622229	2.040074	-2.496583	0	-0.43878	-1.61751	-0.87927
Н	-5.950673	-0.560796	-0.246185	0	0.605162	0.29598	-1.65984
Н	-5.049439	-1.528513	0.934055	Н	0.081829	1.118695	-1.68379
Н	-4.600207	1.422625	0.193227	0	-0.47488	2.666632	-0.99584
Н	-5.134075	0.792437	1.761867	0	-0.05466	1.547104	0.905407
Н	-2.242006	1.402387	-0.432995	0	-3.65723	-0.10785	-1.77301

Н	-0.579749	-0.314596	1.374313	0	2.470605	2.614249	-0.46743
Н	1.965739	-1.789548	-2.005793	Н	-5.09623	-2.39022	-1.76762
Н	3.454385	-3.606884	-1.361965	0	3.346708	0.562037	-0.70507

Table S42 Optimized Z-matrixes of 4d-4 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	-2.432668	-1.900384	-0.979547	Н	5.546747	0.42828	0.826291
С	-2.990561	-2.216785	0.395	Н	5.349085	1.690514	-0.39524
С	-2.734093	-1.10572	1.410018	Н	5.021595	-0.48245	-1.51075
С	-2.977433	0.326096	0.903623	Н	2.704594	-0.12531	-2.38986
С	-2.036884	0.614131	-0.312497	Н	3.184118	1.51054	-1.85739
С	-0.560878	0.892272	0.095993	Н	1.638148	-1.70033	-0.80143
С	0.558949	0.7504	-1.001151	Н	3.709451	-3.03823	1.140116
С	1.95518	0.403474	-0.419966	Н	5.344265	-2.38325	0.515398
С	2.406204	1.286109	0.732813	Н	-4.61592	1.571977	0.2055
С	-2.023217	-0.521378	-1.326101	Н	-4.708	-0.0995	-0.38948
С	3.70132	1.509579	0.977507	Н	-5.10972	0.271009	1.312647
С	4.809423	0.901937	0.158316	Н	-1.73558	1.169057	2.522665
С	4.240391	-0.13834	-0.819347	Н	-3.47885	1.071169	2.864859
С	3.025325	0.476635	-1.528437	Н	-2.86618	2.331233	1.777958
С	2.119089	-1.085587	-0.030774	Н	-1.06109	-1.17251	-3.12073
С	3.623129	-1.289818	-0.043298	Н	-1.19988	0.608393	-2.97062
С	4.257231	-2.287202	0.565872	Н	-1.01144	5.360594	0.874426
С	-4.440719	0.518544	0.473576	Н	0.488406	4.532265	1.418824
С	-2.735586	1.280622	2.080842	Н	-1.04744	4.164173	2.227361
С	-1.011735	-0.33217	-2.421303	Н	0.15216	-1.75275	3.314285
С	-0.827486	3.32303	0.271052	Н	-0.63918	-3.28567	2.776472
С	-0.594428	4.426795	1.262506	Н	1.110199	-3.23608	3.176109
С	0.604801	-2.355255	1.306756	0	-1.90614	-2.95833	-1.67503
C	0.270644	-2.678367	2.737069	0	0.267655	-0.33507	-1.84077
Н	-4.068752	-2.406131	0.276661	0	0.711516	1.923209	-1.72606
Η	-2.531886	-3.152523	0.742979	Н	-0.13564	2.383789	-1.82335
Η	-3.350642	-1.273242	2.307686	0	-1.30921	3.47565	-0.82445
Η	-1.687619	-1.171423	1.750954	0	-0.41533	2.154297	0.767083
Η	-2.420908	1.501539	-0.837563	0	-3.25397	-1.07443	-1.7586
Н	-0.294647	0.170297	0.882136	0	0.085522	-2.86886	0.347195
Н	1.65513	1.717768	1.393307	Н	-1.11043	-3.22739	-1.18945
Н	3.982635	2.145674	1.82128	0	1.563855	-1.43061	1.23898

Figure S34 Optimized geometries of 6 dominant conformers of 4e at the M06-2X/def2-SVP level in the gas phase.

Table S43 Important thermodynamic parameters (a.u.) of the optimized **4e** at the M06-2X/def2-SVP level in the gas phase.

Conformers	<i>U(0)</i> ^a	$U(T)^{b}$	$H(T)^{c}$	$G(T)^{d}$
4e -1	-1533.313715	-1533.284318	-1533.283374	-1533.371180
4e -2	-1533.313262	-1533.284276	-1533.283332	-1533.370828
4e -3	-1533.312297	-1533.282638	-1533.281694	-1533.370527
4e -4	-1533.312370	-1533.282894	-1533.281950	-1533.370245
4e -5	-1533.311674	-1533.282057	-1533.281113	-1533.369557
4e -6	-1533.311382	-1533.281931	-1533.280987	-1533.368226

 $^{a}U(0) = \text{electronic energy} (\varepsilon_{ele}) + \text{zero point energy (ZPE)}; {}^{b}U(T) = \varepsilon_{ele} + ZPE + \Delta U_{0 \to T};$ $^{c}H(T) = \varepsilon_{ele} + ZPE + \Delta H_{0 \to T}; {}^{d}G(T) = \varepsilon_{ele} + ZPE + \Delta G_{0 \to T}$

Table S44 Conformational analysis of the optimized 4e at the M06-2X/def2-SVP level in the gas phase.

Conformers	$\Delta G(kcal/mol)$	Population
4e -1	0.00	35.86%
4e -2	0.22	24.69%
4e- 3	0.41	17.94%
4e -4	0.59	13.31%
4e- 5	1.02	6.42%
4e -6	1.85	1.56%

^{*a*}relative G(T) in kcal/mol. ^{*b*}Conformational distribution calculated at the M06-2X/def2-SVP level in the gas phase. (T=298.15 K)

Figure S35 Regression analysis of experimental versus calculated NMR chemical shifts of 4e.

Table S45 Optimized Z-matrixes of 4e-1 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	-3.614049	-1.526459	-0.308407	Н	5.180841	1.752939	-0.11635
C	-4.685245	-0.904286	0.547894	Н	3.972473	3.012157	0.169778
C	-4.560421	0.613809	0.548126	Н	4.080774	1.570719	2.177039
C	-3.139776	1.097138	0.895331	Н	1.672899	0.883743	2.267573
C	-2.173713	0.646348	-0.235681	Н	1.685984	2.219851	1.083147
C	-0.701279	1.039308	0.018447	Н	2.136374	-1.40178	1.636133
С	0.225299	-0.177413	0.147933	Н	5.163974	-2.00635	0.981992
C	1.725988	0.18697	0.210967	Н	5.980408	-0.39221	1.46324
C	2.279378	0.660869	-1.122908	Н	-2.16519	3.057205	1.124008
C	-2.37996	-0.808872	-0.668956	Н	-3.82278	2.968064	1.762439
C	3.34854	1.460434	-1.194364	Н	-3.54919	3.044388	0.005556
С	4.102037	1.924805	0.026537	Н	-3.50349	0.770095	3.006608
С	3.61508	1.163052	1.269742	Н	-2.56818	-0.54672	2.234463
С	2.076619	1.216626	1.298987	Н	-1.78305	0.985006	2.611084
С	2.596279	-0.990586	0.724162	Н	-1.15216	-2.56203	-0.37766
С	3.901325	-0.320175	1.09548	Н	-1.31015	-2.01563	-2.0655
С	5.074559	-0.938027	1.189186	Н	1.430485	3.225788	-2.55174
С	-3.162958	2.62836	0.949698	Н	-0.26006	3.547624	-2.98571
С	-2.72527	0.539716	2.261619	Н	0.680482	4.791822	-2.07674
С	-1.177384	-1.675896	-1.030653	Н	1.666843	-3.49717	-2.22646
С	0.079537	3.103341	-0.919802	Н	3.194381	-4.11598	-1.56266
С	0.507143	3.721316	-2.220438	Н	1.630622	-4.93657	-1.15946
С	1.926047	-3.061428	-0.186917	0	-3.51992	-2.89719	-0.24579
С	2.127354	-3.981132	-1.352224	0	0.064313	-1.00084	-0.98155
Н	-4.5975	-1.316734	1.563203	0	-0.19651	-0.81895	1.308906
Н	-5.668679	-1.213384	0.153468	Н	0.173182	-1.7222	1.307907
Н	-5.270459	1.046188	1.270117	0	-0.25186	1.814868	-1.09386
Н	-4.833543	0.996845	-0.447996	0	0.043538	3.669879	0.139961
Н	-2.461331	1.220956	-1.129959	0	-3.4736	-0.96112	-1.58372
Η	-0.610565	1.641757	0.929888	0	2.784765	-2.04107	-0.21026
Η	1.775321	0.307775	-2.023069	Н	-4.38411	-3.27207	-0.45674
Н	3.716702	1.77935	-2.173975	0	1.075257	-3.20687	0.659283

	2 2 2 5 4 2 5	1 (1010)	0.105006		5 10 50 00	1 5502	0.005050
C	-3.395497	-1.618126	-0.197086	H	5.125388	1.7583	0.235068
C	-4.355606	-1.140188	0.86443	Н	3.903546	3.009593	0.501546
C	-4.473947	0.381106	0.836348	Н	3.863869	1.472665	2.436134
C	-3.110823	1.081714	0.979338	Н	1.451682	0.799166	2.317052
C	-2.221659	0.707518	-0.245221	H	1.561123	2.185184	1.189664
C	-0.737305	1.0827	-0.074406	Н	1.953984	-1.46957	1.602582
C	0.164258	-0.158682	0.055855	Н	5.024098	-2.05132	1.164085
C	1.657945	0.19365	0.240262	Н	5.80455	-0.46613	1.781838
C	2.30306	0.733241	-1.024804	Н	-2.35344	3.133733	0.951117
C	-2.372806	-0.72158	-0.752268	Н	-3.88876	2.93113	1.830707
C	3.372385	1.534717	-0.979948	Н	-3.87407	2.902498	0.048988
С	4.039977	1.930242	0.312761	Н	-3.23075	0.938538	3.128736
C	3.464932	1.109959	1.479153	Н	-2.2419	-0.36177	2.397769
C	1.929123	1.170936	1.397176	Н	-1.58746	1.267152	2.552235
C	2.486263	-1.011913	0.754524	Н	-1.29634	-2.38382	-1.57998
С	3.75981	-0.365688	1.257971	Н	-1.32774	-0.90013	-2.57875
С	4.921386	-0.993152	1.413191	Н	-0.19743	3.408581	-3.20108
С	-3.31787	2.600323	0.949892	Н	0.720922	4.699854	-2.33344
С	-2.503934	0.699345	2.336311	Н	1.483343	3.115911	-2.70593
С	-1.209569	-1.288681	-1.554317	Н	1.786208	-3.39564	-2.37337
С	0.096688	3.07149	-1.105111	Н	3.282023	-4.00622	-1.63252
C	0.549233	3.623474	-2.426619	Н	1.715082	-4.87752	-1.36971
C	1.897361	-3.039547	-0.303863	0	-3.14503	-2.96496	-0.22437
С	2.200211	-3.904201	-1.49009	0	0.087791	-0.93394	-1.10722
Н	-4.014914	-1.508984	1.84213	0	-0.33022	-0.86668	1.148197
Н	-5.337849	-1.603645	0.666158	Н	0.006146	-1.78163	1.081264
Н	-5.13574	0.721545	1.647813	0	-0.30461	1.795539	-1.23377
Н	-4.93907	0.681825	-0.115284	0	0.09777	3.671345	-0.06385
Н	-2.580123	1.326486	-1.084105	0	-3.59287	-0.99074	-1.44449
Н	-0.601011	1.723125	0.803291	0	2.745461	-2.01072	-0.21848
Н	1.868612	0.421047	-1.975147	Н	-3.98948	-3.43211	-0.24323
Н	3.809388	1.902317	-1.913205	0	0.988512	-3.22886	0.467313

 $\label{eq:Table S46} Table \ S46 \ \mbox{Optimized Z-matrixes of $4e$-2 in the gas phase (Å) at the $M06$-2X/def2-SVP level.}$

Table S47 Optimized Z-matrixes of 4e-3 in the gas phase (Å) at the M06-2X/def2-SVP level.

C	-3.246247	-1.691102	-0.125227	Н	5.128091	1.7128	0.344593
С	-4.196499	-1.240905	0.955487	Н	3.924197	2.976628	0.632666
С	-4.457141	0.25871	0.847319	Н	3.832766	1.384135	2.520969
С	-3.162063	1.088543	0.926431	Н	1.409192	0.764302	2.352622
С	-2.248052	0.718435	-0.285154	Н	1.558024	2.174189	1.258861
C	-0.765052	1.113407	-0.098795	H	1.88612	-1.49092	1.596305
C	0.145201	-0.122599	0.043189	Н	4.946615	-2.12304	1.156602
C	1.635835	0.20871	0.263563	Н	5.751924	-0.57041	1.822315
С	2.307846	0.770588	-0.977992	Н	-2.57896	3.18747	0.777267
С	-2.347904	-0.723016	-0.769071	Н	-4.09256	2.912678	1.672273
C	3.3876	1.554767	-0.896897	H	-4.07724	2.782424	-0.10534
C	4.044911	1.901116	0.414603	Н	-3.27739	1.028614	3.07989

С	3.440392	1.057186	1.548685	Н	-2.11948	-0.15919	2.414391
С	1.906292	1.149573	1.449158	Н	-1.69489	1.556269	2.494771
С	2.431848	-1.027323	0.760113	Н	-1.26224	-2.2582	-1.83118
С	3.712926	-0.417502	1.288548	Н	-1.31033	-0.66341	-2.60581
C	4.861717	-1.070219	1.433606	Н	-0.17276	3.468918	-3.19152
С	-3.498026	2.579047	0.808313	Н	0.784749	4.72039	-2.30789
С	-2.518337	0.853239	2.301566	Н	1.50386	3.125401	-2.71284
С	-1.186019	-1.176707	-1.636924	Н	1.786318	-3.26228	-2.46883
С	0.1275	3.088477	-1.103156	Н	3.190645	-4.00417	-1.67513
С	0.584196	3.650676	-2.41865	Н	1.560787	-4.78095	-1.54069
С	1.799391	-3.005391	-0.381337	0	-2.96307	-3.03005	-0.07974
С	2.111034	-3.836522	-1.588318	0	0.100664	-0.88863	-1.13292
Н	-3.774642	-1.51777	1.932149	0	-0.37018	-0.84715	1.116504
Н	-5.128065	-1.81478	0.831686	Н	-0.0061	-1.75086	1.056404
Н	-5.133453	0.583429	1.65324	0	-0.32422	1.829809	-1.25229
Н	-4.965054	0.461081	-0.108314	0	0.163937	3.664649	-0.05005
Н	-2.602125	1.319111	-1.139559	0	-3.5612	-1.12855	-1.38686
Н	-0.641991	1.754728	0.779834	0	2.677915	-2.0148	-0.23058
Н	1.88244	0.49153	-1.942504	Н	-2.01342	-3.16929	-0.1798
Н	3.841344	1.942788	-1.813608	0	0.855605	-3.19388	0.352418

 Table S48 Optimized Z-matrixes of 4e-4 in the gas phase (Å) at the M06-2X/def2-SVP level.

С	2 864642	-1 78367	0.091835	Н	-5 1193	1 716607	-0 28866
C	3.565632	-1.544196	-1.232559	Н	-3.92981	2.981789	-0.62589
С	3.279731	-0.168129	-1.843844	Н	-3.8714	1.349607	-2.4851
С	3.306459	1.000342	-0.845614	Н	-1.44029	0.756642	-2.36416
С	2.297773	0.756673	0.315184	Н	-1.57123	2.186313	-1.29787
С	0.810002	1.138491	0.056619	Н	-1.88015	-1.45915	-1.58887
С	-0.113327	-0.088759	-0.053018	Н	-4.92337	-2.13259	-0.99615
С	-1.609194	0.239596	-0.260106	Н	-5.76584	-0.59902	-1.66059
С	-2.262997	0.814611	0.984806	Н	4.754192	2.06788	0.38273
С	2.31293	-0.659781	0.86193	Н	5.457349	1.264066	-1.04022
С	-3.350637	1.589131	0.916336	Н	4.986345	0.305147	0.3924
С	-4.039046	1.909761	-0.385602	Н	2.781923	3.127867	-0.89456
С	-3.453316	1.047847	-1.5154	Н	3.830483	2.584308	-2.22701
С	-1.916712	1.15577	-1.456007	Н	2.10307	2.197445	-2.25101
С	-2.401598	-1.011074	-0.729182	Н	1.273824	-1.94757	2.219168
С	-3.70773	-0.42334	-1.215181	Н	1.175255	-0.20303	2.629153
С	-4.857146	-1.085473	-1.298597	Н	0.20035	3.658394	3.011744
С	4.710919	1.158811	-0.237786	Н	-0.75069	4.864751	2.060906
С	2.97806	2.298856	-1.592971	Н	-1.47517	3.294049	2.544787
С	1.168746	-0.937733	1.805414	Н	-1.50936	-3.24019	2.44431
С	-0.092298	3.171241	0.944637	Н	-2.97597	-3.9788	1.765017
С	-0.553138	3.801715	2.22742	Н	-1.36155	-4.75945	1.504567
С	-1.684689	-2.981856	0.370786	0	2.357392	-3.04956	0.289067
С	-1.906121	-3.814801	1.593893	0	-0.07286	-0.86698	1.120792
Н	3.245996	-2.332169	-1.927898	0	0.383033	-0.79459	-1.15145
Н	4.644128	-1.689149	-1.062491	Н	0.001967	-1.69103	-1.1193

Н	2.288722	-0.190446	-2.316439	0	0.353414	1.919324	1.162326
Н	4.014554	0.035571	-2.639474	0	-0.12045	3.689633	-0.13737
Н	2.602059	1.422211	1.141156	0	3.537885	-1.26795	1.217345
Н	0.703071	1.724577	-0.861316	0	-2.58755	-2.0105	0.263379
Н	-1.815292	0.555491	1.944707	Н	1.443625	-3.08413	-0.03317
Н	-3.786857	1.987042	1.837319	0	-0.7774	-3.15402	-0.41606

Table S49 Optimized Z-matrixes of 4e-5 in the gas phase (Å) at the M06-2X/def2-SVP level.

0	2	-3.607714	-1.529191	-0.302874	Н	5.186301	1.736294	-0.06445
0	2	-4.659261	-0.91901	0.588316	Н	3.981261	2.998746	0.221699
0	2	-4.549803	0.600751	0.576554	Н	4.062792	1.538171	2.21657
0	2	-3.131184	1.108384	0.896435	Н	1.650331	0.86455	2.277096
0	2	-2.173703	0.66118	-0.244366	Н	1.682492	2.20978	1.102674
0	2	-0.699869	1.05008	0.004004	Н	2.10992	-1.4174	1.632534
0	2	0.219511	-0.172445	0.132912	Н	5.140654	-2.03282	0.996662
0	2	1.720909	0.184092	0.215208	Н	5.960619	-0.42696	1.499002
0	2	2.290046	0.667128	-1.108802	Н	-2.17532	3.080003	1.085189
0	2	-2.376891	-0.793316	-0.674407	Н	-3.81929	2.981758	1.757407
0	2	3.363213	1.46276	-1.162443	Н	-3.58166	3.040898	-0.00549
0	2	4.107052	1.912181	0.069805	Н	-3.46741	0.806864	3.015305
0	2	3.604203	1.141299	1.300901	Н	-2.52191	-0.5086	2.252878
0	2	2.065671	1.202885	1.315251	Н	-1.75448	1.037687	2.599974
0	2	2.579791	-1.002221	0.727476	Н	-1.16095	-2.56553	-0.47711
0	2	3.884919	-0.341806	1.115624	Н	-1.31693	-1.93479	-2.13361
0	2	5.054442	-0.966055	1.213014	Н	-0.23641	3.545115	-3.00639
0	2	-3.172455	2.639773	0.935196	Н	0.711227	4.785705	-2.09966
0	2	-2.693929	0.575401	2.265679	Н	1.451885	3.214201	-2.56997
0	2	-1.180664	-1.645952	-1.083637	Н	1.653214	-3.48607	-2.24779
0	2	0.098843	3.103948	-0.939037	Н	3.179751	-4.10753	-1.58364
0	2	0.531123	3.715984	-2.240862	Н	1.615344	-4.93217	-1.19088
0	2	1.90602	-3.062944	-0.205323	0	-3.58372	-2.91051	-0.34079
0	2	2.112053	-3.975075	-1.375426	0	0.067384	-0.98506	-1.00429
H	ł	-4.54275	-1.313679	1.610578	0	-0.21601	-0.8262	1.282984
H	ł	-5.643734	-1.249001	0.220978	H	0.158311	-1.7277	1.274491
H	ł	-5.255537	1.031058	1.303975	0	-0.24758	1.818967	-1.11132
H	ł	-4.844597	0.967605	-0.419441	0	0.070684	3.671491	0.120452
H	ł	-2.468061	1.239568	-1.134345	0	-3.49376	-0.96153	-1.56127
Η	I	-0.604258	1.655406	0.912918	0	2.770061	-2.04759	-0.21273
Ι	I	1.793372	0.324336	-2.017029	Н	-3.74591	-3.24658	0.547387
Η	I	3.742179	1.789092	-2.13547	0	1.046141	-3.21019	0.632296

Table S50 The DP4+ probabilities of 4a, 4b, 4c, 4d, and 4e.

Functional	Solvent	Basis Set	Type of Data
mPW1PW91	PCM	6-31G(d,p)	Unscaled Shifts

	Isomer 1 (4a)	Isomer 2 (4b)	Isomer 3 (4c)	Isomer 4 (4d)	Isomer 5 (4e)
sDP4+ (H data)	100.00%	0.00%	0.00%	0.00%	0.00%

sDP4+ (C data)	100.00%	0.00%	0.00%	0.00%	0.00%
sDP4+ (all data)	100.00%	0.00%	0.00%	0.00%	0.00%
uDP4+ (H data)	100.00%	0.00%	0.00%	0.00%	0.00%
uDP4+ (C data)	100.00%	0.00%	0.00%	0.00%	0.00%
uDP4+ (all data)	100.00%	0.00%	0.00%	0.00%	0.00%
DP4+ (H data)	100.00%	0.00%	0.00%	0.00%	0.00%
DP4+ (C data)	100.00%	0.00%	0.00%	0.00%	0.00%
DP4+ (all data)	100.00%	0.00%	0.00%	0.00%	0.00%

Computational Data of (1S, 5S, 6S, 7R, 8S, 10R, 13R, 15R) -4 (4a)

Experimental ECD spectrum of 4a (black); Calculated ECD spectrum of (1*S*, 5*S*, 6*S*, 7*R*, 8*S*, 10*R*, 13*R*, 15*R*) -4a (shift = 5 nm, red) and (1*R*, 5*R*, 6*R*, 7*S*, 8*R*, 10*S*, 13*S*, 15*S*) -4a (shift = 5 nm, blue dash) at the CAM-B3LYP-SCRF/def2-SVP level of theory in MeOH with PCM.

Num ^a	<i>exited state</i> ^b	CI Coefficient	$\Delta E \ (eV)^c$	$\lambda (nm)^d$	f ^e	R_{vel}^{f}	R _{len} g
1	113 ->121	0.27515	6.0015	206.59	0.0021	1.6474	-1.1744
	114 ->121	0.3955					
	114 ->122	0.25838					
2	114 ->123	-0.22553	6.0716	204.2	0.0007	-0.9069	-1.9429
	116 ->123	0.45504					
3	120 ->121	-0.40882	6.7523	183.62	0.1087	213.5377	210.5781
	120 ->122	0.52534					
4	120 ->123	-0.29618	6.8883	179.99	0.3581	-157.9556	-161.4597
	120 ->124	0.61381					
5	119 ->121	-0.36995	7.1779	172.73	0.3451	63.469	67.4034
	119 ->122	0.5216					
6	120 ->121	0.4713	7.2413	171.22	0.029	-17.715	-12.9353

 Table S51 Key transitions, oscillator strengths, and rotatory strengths in the ECD spectra of

 conformer 4a-1 at the CAM-B3LYP-SCRF/def2-SVP level in MeOH with PCM.

	120 ->122	0.37412					
7	119 ->123	-0.33752	7.3577	168.51	0.0921	26.5538	27.8792
	119 ->124	0.56176					
8	118 ->121	0.5786	7.5543	164.12	0.0003	0.5435	1.3738
	118 ->122	0.331					
9	112 ->122	0.26397	7.6015	163.1	0.018	-43.7525	-46.895
10	119 ->121	0.42599	7.6814	161.41	0.0043	-2.3667	-2.6143
	119 ->122	0.30522					
	120 ->123	0.28195					
11	110 ->123	-0.23331	7.7013	160.99	0.0057	-30.9954	-32.8277
	110 ->124	0.3172					
12	119 ->121	-0.2787	7.7102	160.8	0.0128	-1.6874	-1.7164
	119 ->122	-0.27156					
	120 ->123	0.39274					
13	117 ->121	-0.24909	7.9134	156.68	0.0767	9.3847	2.8103
	117 ->123	0.34454					
	119 ->123	0.25589					
14	117 ->121	0.50239	7.9976	155.03	0.0038	6.7276	7.489
	117 ->122	0.22861					
15	120 ->125	0.38394	8.0456	154.1	0.0012	0.2761	0.1127
	120 ->127	0.3796					
16	117 ->123	-0.30988	8.1386	152.34	0.0163	-16.0349	-17.7508
	117 ->124	0.33854					
17	117 ->122	0.25622	8.1531	152.07	0.0166	18.2979	15.8805
18	118 ->122	0.23644	8.1713	151.73	0.0421	-19.9092	-4.0189
	118 ->123	0.29465					
	118 ->124	0.22675					
19	118 ->123	0.46918	8.2075	151.06	0.0043	-7.7244	-7.1561
	118 ->124	-0.34598					
20	110 ->122	0.25998	8.2971	149.43	0.0149	-10.1591	-8.6435
	117 ->122	0.33446					
	117 ->124	-0.26599					
21	118 ->128	0.28605	8.3607	148.29	0.0115	18.321	28.7991
22	117 ->124	0.26412	8.3972	147.65	0.0108	-28.1608	-21.6317
	118 ->122	-0.25046					
	118 ->124	0.32777					
23	112 ->121	0.32254	8.4171	147.3	0.0108	-8.6308	-12.859
24	112 ->124	0.2372	8.4251	147.16	0.0188	-45.083	-49.7241
25	119 ->125	0.26005	8.4359	146.97	0.0028	-12.6652	-12.2367
	119 ->127	0.28865					
26	117 ->123	0.23319	8.4602	146.55	0.0201	-35.4905	-33.1283
27	112 ->121	0.21757	8.511	145.68	0.0108	33.972	39.546
28	119 ->123	0.43652	8.529	145.37	0.0137	-19.6374	-20.525
29	118 ->122	-0.23066	8.5469	145.06	0.012	-1.4405	-3.1371

	118 ->124	0.24166					
30	116 ->124	0.23429	8.6319	143.63	0.019	22.4587	24.7793

^{*a*}Number of the excited states. ^{*b*}only excited states with contribution over 10% were listed. ^{*c*}Excitation energy. ^{*d*}Wavelength. ^{*e*}Oscillator strength. ^{*f*}Rotatory strength in velocity form (10-40 cgs.). ^{*g*}Rotatory strength in length form (10⁻⁴⁰ cgs.).

8. Results of the biological activity evaluation.

Compounds 1–4 were evaluated neurotrophic activities, including Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity, induction PC-12 cells differentiation activity, the inhibitory effects of samples on platelet aggregation in rabbits induced by ADP, AA, and PAF, only compound **2** showed weak anti-AChE activity (IC₅₀ = $37.6 \pm 2.3 \mu$ M) and weak anti-ADP (inhibited rate = $39.2\pm10.7\%$) and anti-AA induced (inhibited rate = $15.9\pm10.3\%$) platelet aggregation in rabbits.

8.1 Acetylcholinesterase/butyrylcholinesterase inhibitory activity

Acetylcholinesterase/butyrylcholinesterase (AChE/BuChE) inhibitory activity of the compounds isolated was assayed by the spectrophotometric method developed by Ellman et al¹ with slightly modification. S-Acetylthiocholine iodide, S-butyrylthiocholineiodide, 5,5'-dithio-bis-(2-nitrobenzoic) acid (DTNB, Ellman's reagent), acetylcholinesterase and butyrylcholinesterase derived from human erythrocytes were purchased from Sigma Chemical. Compounds were dissolved in DMSO. The reaction mixture (totally 200 μ L) containing phosphate buffer (pH 8.0), test compound (50 μ M), and acetyl cholinesterase (0.02 U/mL) or butyrylcholinesterase (0.016 U/mL), was incubated for 20 min (37 °C). Then, the reaction was initiated by the addition of 40 μ L of solution containing DTNB(0.625mM) and acetylthiocholine iodide (0.625 mM) or butyrylthiocholine iodide (0.625 mM) for AChE or BuChE inhibitory activity assay, respectively. The hydrolysis of acetylthiocholine or butyrylthiocholine was monitored at 405 nm every 30seconds for one hour. Tacrine was used as positive control with final concentration of 0.333 μ M. All the reactions were performed in triplicate.

The percentage inhibition was calculated as follows:

% inhibition = $(E - S)/E \times 100$ (E is the activity of the enzyme without test compound and S is the activity of enzyme with test compound).

Sample	Tacrine	1	2	3	4
Inhibited rate (%)	55.41	35.26	51.64	4.43	11.93
SD	2.04	2.96	0.21	2.32	2.44
Inhibited activity		++	++	_	+

Table S52 AChE inhibitory effects of compounds 1-4.

% inhibition = $(E - S)/E \times 100$ (E is the activity of the enzyme without test compound and S is the activity of enzyme with test compound).

Sample	Tacrine	1	2	3	4					
Inhibited rate (%)	90.96	0.66	9.36	1.40	0.04					
SD	0.17	0.23	0.35	0.88	0.83					
Inhibited activity		- 🗆	- 🗆	- 🗆	- 🗌					

Table S53 BuChE inhibitory effects of compounds 1-4.

% inhibition = $(E - S)/E \times 100$ (E is the activity of the enzyme without test compound and S is the activity of enzyme with test compound).

8.2 Neurite outgrowth-promoting activity

The neurotrophic activities of the test compounds were examined according to an assay using PC12 cells as reported.² Briefly, PC12 cells were maintained in 1640 medium supplemented with 10% horse serum (HS), and 5% fetal bovine serum (FBS), and incubated at 5% CO₂ and 37°C. Test compounds were dissolved in DMSO. For the neurite outgrowth-promoting activity bioassay, PC12 cells were seeded at a density of $5*10^4$ cells/ml in 48-well plate coated with poly-L-lysine. After 24 h, the medium was changed to that containing 10 μ M of each test compounds plus 5 ng/ml NGF, or various concentrations of NGF (50 ng/ml for the positive control, 5 ng/ml for the negative control). The final concentration of DMSO was 0.05%, and the same concentration of DMSO was added into the negative control. After 72 h incubation, the neurite outgrowth was assessed under a phase contrast microscope. Neurite processes with a length equal to or greater than the diameter of the neuron cell body was scored as neurite bearing cells. The ratio of the neurite-bearing cells to total cells (with at least 100 cells examined/view area; 5 viewing area/well) was determined and expressed as a percentage.

Group	Blank	Negative 5ng/mL NGF	Positive 50ng/mL NGF	1	2	3	4
72 h differentiation rate (%)	0.00%	4.31%	21.03%	6.03%	6.57%	5.45%	5.70%

Table S54 Neurite outgrowth-promoting activity (PC-12 cells).

(1) Blank

(2) Negative 5ng/mL NGF

(3) Positive 50ng/mL NGF

(4) compound $1 \ 10 \mu M$

(5) compound $\mathbf{2}$ (10 μ M)

(6) compound **3** (10μM)

(7) compound 4 ($10\mu M$)

Figure S37 72 h cellular morphology of 1–4.

8.3 Test of platelet aggregation assays.

Turbid metric measurements of platelet aggregation of the compounds **1–4** and Ginkgolide B were performed in a Chronolog Model 700 Aggregometer (Chronolog Corporation, Havertown, PA, USA) according to Born's method.³⁻⁵

The blood from the central aural artery of rabbits by a butterfly infusion set, were anticoagulated with 3.8% sodium citrate (9:1, v/v). Platelet-rich plasma (PRP) was prepared shortly after blood collection by spinning the sample at 180 g for 10 min at 22 °C. The PRP was carefully removed and the remaining blood were centrifuged at 2400 g for 10 min to obtain PPP. The centrifuge temperature was maintained at 22°C. Platelet counts were adjusted by the addition of PPP to the PRP to achieve a count of 500×10^9 L⁻¹. Platelet aggregation studies were completed within 3h of the preparation of PRP. Immediately after the preparation of PRP, 250 μ L was transferred into each of prepared test tubes, with 250 μ L PPP set as a control. Before addition of inducers, compounds were incubated with PRP at 37°C for 5 min. The change of optical density as a results of platelet aggregation was recorded, and inhibition percentage of compounds was calculated according to the formula:

Inhibition of aggregation (%) = (A-B)/Ax100%

A: maximum change of turbidity in DMSO added

B: maximum change of turbidity in sample added

Sample				Induce	er	Maximum	Inhibited	
	sample amounts (C×V)	concentration		sample amounts (C×V)	concentration	aggregation rate (%)	rate (%)	
DMSO	2.5µl	1%				1.0±0.0***		
CON.(DMSO)	2.5µl	1%	ADP			50.0±4.7		
Ticagrelor	0.5mg/ml×2.5µl	5 µg/ml					10.0±2.0***	80.1±4.9***
1	10.0mM×2.5µl	100µM				10.34	49.0±8.2	3.7±6.3
2	10.0mM×2.5µl	100µM		ImM×2.5μl	10µM	30.5±6.4**	39.2±10.7**	
3	10.0mM×2.5µl	100µM		-			48.3±2.5	4.2±5.6
4	10.0mM×2.5µl	100µM				51.7±4.7	-2.1±2.1	

Table S55 The inhibitory effects of samples on platelet aggregation in rabbits induced by ADP.

In comparison with the control: **P < 0.01, ***P < 0.001.

Table S56	The inhibitory	effects of sam	ples on platelet	aggregation in	rabbits induced b	ov AA.
						· _ ·

Sample				Inducer	Maximum	Inhibited		
	sample amounts (C×V)	concentration		sample amounts (C×V)	concentration	aggregatio n rate (%)	rate (%)	
DMSO	2.5µl	1%				1.0±0.0***		
CON.(DMSO)	2.5µl	1%	AA			57.8±5.5		
Aspirin	4mg/ml×2.5µl	40µg/ml				8.0±6.2***	87.3±9.7***	
1	10.0mM×2.5µl	100µM		AA	50 14 25 1	0.5	62.0±0.0	-4.1±11.2
2	10.0mM×2.5µl	100µM			50mM×2.5µl	0.5mivi	48.4±5.2*	15.9±10.3*
3	10.0mM×2.5µl	100µM					60.0±2.6	-0.5±8.6
4	10.0mM×2.5µl	100µM			-	56.0±3.6	5.9±13.2	

In comparison with the control: *P < 0.05, ***P < 0.001.

Sample			Inducer			Maximum	Inhibited
	sample amounts (C×V)	concentration		sample amounts (C×V)	concentration	aggregation rate (%)	rate (%)
DMSO	2.5µl	1%				1.0±0.0***	
CON.(DMSO)	2.5µl	1%				65.8±11.5	
GB	3.7mg/ml×2.5µl	37µg/ml	PA F	0.04 mg/ml×2.5µl	0.4µg/ml	7.5±5.0***	88.3±9.0***
1	10.0mM×2.5µl	100µM				69.3±11.7	-2.3±4.5

Table S57 The inhibitory effects of samples on platelet aggregation in rabbits induced by PAF.

2	10.0mM×2.5µl	100µM		60.3±8.7	8.0±4.1
3	10.0mM×2.5µl	100µM		69.3±9.1	-2.8±7.8
4	10.0mM×2.5µl	100µM		62.3±5.7	6.9±12.3

In comparison with the control: ***P < 0.001.

Reference:

1. Ellman, G. L.; Courtney, K. D.; Andres, V.; Featherstone, R. M., A new and rapid colorimetric determination of acetylcholinesterase activity. *Biochem Pharmacol* **1961**, *7*, 88-95.

2. Rede, L. A.; Tischler, A. S., Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. *Proc. Natl. Acad. Sci. U.S.A.* **1976**, *73*, 2424-2428.

3. Born, G. V. R. Aggregation of blood platelets by adenosine diphosphate and its reversal. *Nature* **1962**, *194*, 927–929.

4. Küster, L. J., Filep, J., Frölich, J. C. Mechanism of PAF-induced platelet aggregation in man. *Thromb Res.* **1986**, *43*, 425-33.

5. Ming, Y. W., Wen, D. D., Gao, N., Xiao, C., Yang, L., Li Xu, Wu Lian, Peng, W., L., Jiang, J., M., Zhao, J. H. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase. *Eur J Med Chem* **2015**, *92*, 257–269.

9. HRESIMS, NMR, UV, CD and OR spectra of compounds 1-4

9.1 HRESIMS, NMR, UV, CD and OR spectra of maoeriocalysin A (1)

Figure S38 HRESIMS spectrum of maoeriocalysin A (1).

Figure S39 ¹H NMR spectrum (CDCl₃, 800MHz) of maoeriocalysin A (1).

Figure S40 ¹³C NMR spectrum (CDCl₃, 800MHz) of maoeriocalysin A (1).

Figure S41 HSQC spectrum (CDCl₃, 800MHz) of maoeriocalysin A (1).

Figure S42 ¹H-¹H COSY spectrum (CDCl₃, 800MHz) of maoeriocalysin A (1).

Figure S43 HMBC spectrum (CDCl₃, 800MHz) of maoeriocalysin A (1).

Figure S44 ROESY spectrum (CDCl₃, 800MHz) of maoeriocalysin A (1).

Figure S45 UV spectrum of maoeriocalysin A (1).

Figure S46 CD spectrum of maoeriocalysin A (1).

Optical rotation measurement

Model :	P-1020 (A06	60460638)						
No.	Sample	Mode	Data	Monitor Blank	Temp. Cell Temp Point	Date Comment Sample Name	Light Filter Operator	Cycle Time Integ Time
No.1	20 (1/3)	Sp.Rot	-110.0000	-0.0275 0.0000	24.1 50.00 Cell	Wed Sep 20 09:25:30 2017 0.00050g/mL MeOH SIE-57	Na 589nm	2 sec 2 sec
No.2	20 (2/3)	Sp.Rot	-120.0000	-0.0300 0.0000	24.1 50.00 Cell	Wed Sep 20 09:25:36 2017 0.00050g/mL MeOH SIE-57	Na 589nm	2 sec 2 sec
No.3	20 (3/3)	Sp.Rot	-118.0000	-0.0295 0.0000	24.1 50.00 Cell	Wed Sep 20 09:25:41 2017 0.00050g/mL MeOH SIE-57	Na 589nm	2 sec _ 11
No.4	21 (1/3)	Sp.Rot	-107.2000	-0.0268 0.0000	24.1 50.00 Cell	Wed Sep 20 09:25:51 2017 0.00050g/mL MeOH SIE-57	Na 589nm	2 sec 2 sec
No.5	21 (2/3)	Sp.Rot	-126.8000	-0.0317 0.0000	24.1 50.00 Cell	Wed Sep 20 09:25:56 2017 0.00050g/mL MeOH SIE-57	Na 589nm	2 sec 2 sec
No.6	21 (3/3)	Sp.Rot	-111.2000	-0.0278 0.0000	24.0 50.00 Cell	Wed Sep 20 09:26:02 2017 0.00050g/mL MeOH SIE-57	Na 589nm	2 sec 2 sec

15. 7337 °

Figure S47 OR spectrum of maoeriocalysin A (1).

9.2 HRESIMS, NMR, UV, CD and OR spectra of maoeriocalysin B (2)

Qualitative Analysis Report

--- End Of Report ---

Figure S48 HRESIMS spectrum of maoeriocalysin B (2).

Figure S49 ¹H-NMR spectrum of maoeriocalysin B (2).

Figure S50 ¹³C NMR spectrum (CDCl₃, 800MHz) of maoeriocalysin B (2).

Figure S51 HSQC spectrum (CDCl₃, 800MHz) of maoeriocalysin B (2).

Figure S52 ¹H-¹H COSY spectrum (CDCl₃, 800MHz) of maoeriocalysin B (2).

Figure S53 HMBC spectrum (CDCl₃, 800MHz) of maoeriocalysin B (2).

Figure S54 ROESY spectrum (CDCl₃, 800MHz) of maoeriocalysin B (2).

Figure S55 UV spectrum of maoeriocalysin B (2).

Figure S56 CD spectrum of maoeriocalysin B (2).

Optical rotation measurement

Model : No.	P-1020 (A0 Sample	60460638) Mode	Data	Monitor Blank	Temp. Cell Temp Point	Date Comment Sample Name	Light Filter Operator	Cycle Time Integ Time
No.1	16 (1/3)	Sp.Rot	38.5450	0.0212 0.0000	23.3 50.00	Thu May 25 08:51:19 2017 0.00110g/mL MeOH	Na 589nm	2 sec 2 sec
No.2	16 (2/3)	Sp.Rot	39.8180	0.0219 0.0000	23.3 50.00	SIE-14A Thu May 25 08:51:24 2017 0.00110g/mL MeOH SIE-14A	Na 589nm	2 sec +39. 8788 °
No.3	16 (3/3)	Sp.Rot	41.2730	0.0227 0.0000	23.4 50.00 Cell	Thu May 25 08:51:29 2017 0.00110g/mL MeOH SIE-14A	Na 589nm	2 sec 2 sec

Figure S57 OR spectrum of maoeriocalysin B (2).

9.3 HRESIMS, NMR, UV, CD and OR spectra of maoeriocalysin C (3)

Qualitative Analysis Report Data Filename Sie-12-1-3.d Sample Name Sie-12-1-3 Sample Position P1-A4 Sample Type Instrument Name Instrument 1 User Name Acquired Time 3/12/2018 4:24:12 PM Acq Method s.m IRM Calibration Status DA Method Default.m Comment Sample Group Info. Acquisition SW Version 6200 series TOF/6500 series Q-TOF B.05.01 (B5125.2) User Spectra ntor Voltage 135 **Collision Energy** Ionization Mode ESI Frage 0 x10 5 +ESI Scan (0.16-0.17 min, 2 Scans) Frag=135.0V Sie-12-1-3.d Subtract 411.1784 ([C22 H28 O6]+Na)+ 2.5 2.25 2-1.75-1.5-1.25-1 0.75 0.5 0.25 0 410.4 410.6 410.8 411 411.2 411.4 Counts vs. Mass-to-Charge (m/z) 411.6 411.8 412 Peak List z Abund Formula Ion 112.1873 1 61725.59 0 290.2689 1 39637.48 Ĥ 411.1784 1 226087.08 C22 H28 O6 (M+Na)+ °0 OHI∕POH 412.1816 1 51856.26 C22 H28 O6 (M+Na)+ 413.1928 1 63103.4 427.1521 1 91125.02 429.1661 1 46415.21 799.3671 1 56641.21 Formula Calculator Element Limits Element Min Max 60 Ĥ 0 120 н 0 0 30 Formula Calculator Results Formula Calculate 30 CalculatedMass Calculate Diff. (mDa) Diff. (ppm) DBE Mz 411.1778 411.1784 -0.5 -1.4 9.0000 C22 H28 O6 388.1886

--- End Of Report ---

Figure S58 HRESIMS spectrum of maoeriocalysin C (3).

Figure S59 ¹H-NMR spectrum (pyridine-*d*₅, 800MHz) of maoeriocalysin C (3).

Figure S60 ¹H-NMR spectrum (CDCl₃, 800MHz) of maoeriocalysin C (3).

Figure S61 ¹³C NMR spectrum (CDCl₃, 800MHz) of maoeriocalysin C (3).

Figure S62 ¹³C NMR spectrum (pyridine-*d*₅, 800MHz) of maoeriocalysin C (3).

Figure S63 HSQC spectrum (pyridine-*d*₅, 800MHz) of maoeriocalysin C (3).

Figure S64 ¹H-¹H COSY spectrum (pyridine-*d*₅, 800MHz) of maoeriocalysin C (3).

Figure S65 HMBC spectrum (pyridine-*d*₅, 800MHz) of maoeriocalysin C (3).

Figure S66 ROESY spectrum (pyridine-*d*₅, 800MHz) of maoeriocalysin C (3).

Figure S67 UV spectrum of maoeriocalysin C (3).

Figure S68 CD spectrum of maoeriocalysin C (3).
Optical rotation measurement

Model : P-1020 (A060460638)									
	No.	Sample	Mode	Data	Monitor Blank	Temp. Cell Temp Point	Date Comment Sample Name	Light Filter Operator	Cycle Time Integ Time
	No.1	9 (1/3)	Sp.Rot	-22.3530	-0.0038 0.0000	23.9 10.00 Cell	Fri Jul 21 00:50:46 2017 0.00170g/mL MeOH SIE-12-1-3	Na 589nm	2 sec 2 sec
	No.2	9 (2/3)	Sp.Rot	-22.9410	-0.0039 0.0000	23.9 10.00 Cell	Fri Jul 21 00:50:51 2017 0.00170g/mL MeOH SIE-12-1-3	Na 589nm	2 sec - 22 · 12/2
	No.3	9 (3/3)	Sp.Rot	-24.1180	-0.0041 0.0000	24.0 10.00 Cell	Fri Jul 21 00:50:56 2017 0.00170g/mL MeOH SIE-12-1-3	Na 589nm	2 sec 2 sec

Figure S69 OR spectrum of maoeriocalysin C (3).

107

9.4 HRESIMS, NMR, UV, CD and OR spectra of maoeriocalysin D (4)

--- End Of Report ---

Figure S70 HRESIMS spectrum of maoeriocalysin D (4).

Figure S71 ¹H NMR spectrum (CDCl₃, 800MHz) of maoeriocalysin D (4).

Figure S72 ¹H NMR spectrum (CD₃OD, 800MHz) of maoeriocalysin D (4).

Figure S73 ¹H NMR spectrum (pyridine-*d*₅, 800MHz) of maoeriocalysin D (4).

Figure S74 ¹³C NMR spectrum (CDCl₃, 800MHz) of maoeriocalysin D (4).

Figure S75 ¹H-¹H COSY spectrum (CDCl₃, 800MHz) of maoeriocalysin D (4).

Figure S76 ¹H-¹H COSY spectrum (CDCl₃, 800MHz) of maoeriocalysin D (4).

Figure S77 HMBC spectrum (CDCl₃, 800MHz) of maoeriocalysin D (4).

Figure S78 ROESY spectrum (CDCl₃, 800MHz) of maoeriocalysin D (4).

Figure S79 UV spectrum of maoeriocalysin D (4).

Figure S80 CD spectrum of maoeriocalysin D (4).

Optical rotation measurement

Model :	P-1020 (A06	60460638)						
No.	Sample	Mode	Data	Monitor Blank	Temp. Cell Temp Point	Date Comment Sample Name	Light Filter Operator	Cycle Time Integ Time
No.1	28 (1/3)	Sp.Rot	66.5600	0.0832 0.0000	27.6 50.00 Cell	Thu Jun 21 14:43:22 2018 0.00250g/mL Acetonitrile SIE-21-1A	Na 589nm	2 sec 2 sec
No.2	28 (2/3)	Sp.Rot	67.0400	0.0838 0.0000	27.6 50.00 Cell	Thu Jun 21 14:43:28 2018 0.00250g/mL Acetonitrile SIE-21-1A	Na 589nm	2 sec +67.0133
No.3	28 (3/3)	Sp.Rot	67.4400	0.0843 0.0000	27.6 50.00 Cell	Thu Jun 21 14:43:33 2018 0.00250g/mL Acetonitrile SIE-21-1A	Na 589nm	2 sec 2 sec

Figure S81 OR spectrum of maoeriocalysin D (4).