Supporting Information for

Genome Mining for Fungal Polyketide-Diterpenoid Hybrids: Discovery of Key Terpene Cyclases and Multifunctional P450s for Structural Diversification

Wei-Guang Wang,^{*,a} Lian-Qiong Du,^a Shan-Ling Sheng,^a Ao Li,^b Yan-Ping Li,^c Gui-Guang Cheng,^d Gan-Peng Li,^a Guiling Sun,^e Qiu-Fen Hu,^a and Yudai Matsuda^{*,f}

^{*a*}Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China. *E-mail: wwg@live.cn (W.-G. Wang)

^bCollege of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.

^cSchool of Chinese Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.

^dYunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, China.

^{*e*}Key laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.

^fDepartment of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China. *E-mail: ymatsuda@cityu.edu.hk (Y. Matsuda)

Table of Contents

Supplementary Methods	S2-S4
Supplementary Tables S1-S14	S5-S18
Supplementary Figures S1-S62	S46-S50

Supplementary Methods

Isolation and Purification of Each Metabolite

Purification conditions for chevalone E (1):

The extract from *A. oryzae* NSAR1 with *cle1, cle3, cle5, cle6,* and *cle7* was subjected to silica-gel column chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained **1** were further purified by reverse-phase preparative HPLC (55% aqueous acetonitrile, 3.0 mL/min) to yield 10.0 mg of a white solid: $[\alpha]^{25}_{D}$ -81.1 (*c* 0.1, CH₃OH); for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Table S4 and Figures S3-S8; HRMS found *m/z* 415.2852 [M + H]⁺ (calcd 415.2852 for C₂₆H₃₉O₄).

Purification conditions for 20-hydroxychevalone E (2):

The extract from *A. oryzae* NSAR1 with *cle1, cle2, cle3, cle5, cle6,* and *cle7* was subjected to silica-gel column chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained **2** were further purified by reverse-phase preparative HPLC (35% aqueous acetonitrile, 3.0 mL/min) to yield 15.0 mg of a white solid: $[\alpha]^{25}_{D}$ -110.6 (*c* 0.1, CH₃OH); for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Table S5 and Figures S9-S14; HRMS found *m/z* 431.2801 [M + H]⁺ (calcd 431.2792 for C₂₆H₃₉O₅).

Purification conditions for 20-carboxychevalone E (3):

The extract from *A. oryzae* NSAR1 with *cle1, cle2, cle3, cle5, cle6,* and *cle7* was subjected to silica-gel column chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained **3** were further purified by reverse-phase preparative HPLC (35% aqueous acetonitrile, 3.0 mL/min) to yield 14.0 mg of a white solid: $[\alpha]^{25}_{D}$ -87.0 (*c* 0.1, CH₃OH); for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Table S6 and Figures S15-S20; HRMS found *m/z* 445.2593 [M + H]⁺ (calcd 445.2585 for C₂₆H₃₇O₆).

Purification conditions for 11-hydroxychevalone E (4):

The extract from *A. oryzae* NSAR1 with *cle1, cle2, cle3, cle4, cle5, cle6,* and *cle7* was subjected to silica-gel column chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained **4** were further purified by reverse-phase preparative HPLC (35% aqueous acetonitrile, 3.0 mL/min) to yield 2.0 mg of a white solid: $[\alpha]^{25}_{D}$ -87.5 (*c* 0.1, CH₃OH); for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Table S7 and Figures S21-S26; HRMS found *m/z* 431.2798 [M + H]⁺ (calcd 431.2792 for C₂₆H₃₉O₅).

Purification conditions for 11,12-dihydroxychevalone E (5):

The extract from *A. oryzae* NSAR1 with *cle1, cle3, cle4, cle5, cle6,* and *cle7* was subjected to silica-gel column chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained **5** were further purified by reverse-phase preparative HPLC (40% aqueous acetonitrile, 3.0 mL/min) to yield 14.0 mg of a white solid: $[\alpha]^{25}_{D}$ -102.2 (*c* 0.05, CH₃OH); for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Table S8 and Figures S27-S32; HRMS found *m/z* 447.2752 [M + H]⁺ (calcd 447.2741 for C₂₆H₃₉O₆).

Purification conditions for 11,20-dihydroxychevalone E (6):

The extract from *A. oryzae* NSAR1 with *cle1, cle2, cle3, cle4, cle5, cle6,* and *cle7* was subjected to silica-gel column chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained **6** were further purified by reverse-phase preparative HPLC (20% aqueous acetonitrile, 3.0 mL/min) to yield 5.0 mg of a white solid: $[\alpha]^{25}_{D}$ -65.2 (*c* 0.05, CH₃OH); for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Table S9 and Figures S33-S38; HRMS found *m/z* 447.2749 [M + H]⁺ (calcd 447.2741 for C₂₆H₃₉O₆).

Purification conditions for 20,11-olide-chevalone E (7):

The extract from *A. oryzae* NSAR1 with *cle1, cle2, cle3, cle4, cle5, cle6,* and *cle7* was subjected to silica-gel column chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained 7 were further purified by reverse-phase preparative HPLC (30% aqueous acetonitrile, 3.0 mL/min) to yield 6.0 mg of a white solid: $[\alpha]^{25}_{D}$ -86.0 (*c* 0.1, CH₃OH); for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Table S10 and Figures S39-S44; HRMS found *m/z* 443.2431 [M + H]⁺ (calcd 443.2428 for C₂₆H₃₅O₆).

Purification conditions for 12-hydroxy-20,11-olide-chevalone E (8):

The extract from *A. oryzae* NSAR1 with *cle1, cle2, cle3, cle4, cle5, cle6,* and *cle7* was subjected to silica-gel column chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained **8** were further purified by reverse-phase preparative HPLC (20% aqueous acetonitrile, 3.0 mL/min) to yield 6.0 mg of a white solid: $[\alpha]^{25}_{D}$ -88.0 (*c* 0.1, CH₃OH); for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Table S11 and Figures S45-S50; HRMS found *m/z* 459.2368 [M + H]⁺ (calcd 459.2383 for C₂₆H₃₅O₇).

Purification conditions for geranylgeranyl-triacetate lactone (9):

The extract from *A. oryzae* NSAR1 with *cle1*, *cle5*, and *cle6* was subjected to silica-gel column chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained **9** were further purified by reverse-phase preparative HPLC (80% aqueous acetonitrile, 3.0 mL/min) to yield 100.0 mg of a white solid: for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Table S12 and Figures S51-S55; HRMS found *m/z* 421.2715 [M + Na]⁺ (calcd 421.2713 for C₂₆H₃₈O₃Na).

Purification conditions for dihydroxygeranylgeranyl-triacetate lactone (10):

The extract from *A. oryzae* NSAR1 with *cle1, cle3, cle5,* and *cle6* was subjected to silica-gel column chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained **10** were further purified by reverse-phase preparative HPLC (45% aqueous acetonitrile, 3.0 mL/min) to yield 20.0 mg of a white solid: $[\alpha]^{25}_{D}$ -76.0 (*c* 0.1, CH₃OH); for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Table S13 and Figures S56-S60; HRMS found *m/z* 455.2779 [M + Na]⁺ (calcd 455.2768 for C₂₆H₄₀O₅Na).

Purification conditions for sartorypyrone D (11):

The extract from A. oryzae NSAR1 with cle1, cle3, cle5, cle6, and sre3 was subjected to silica-gel column

chromatography and eluted stepwise using a chloroform:methanol gradient (100:0 to 90:10). Fractions that contained **11** were further purified by reverse-phase preparative HPLC (40% aqueous acetonitrile, 3.0 mL/min) to yield 3.0 mg of a white solid: $[\alpha]^{25}_{D}$ -18.0 (*c* 0.5, CH₃OH); for UV spectrum see Figure S1; for ¹H and ¹³C NMR data see Figures S61 and S62; HRMS found *m/z* 415.2826 [M + H]⁺ (calcd 415.2843 for C₂₆H₃₉O₄).

Table S1. Annotation of each protein encoded by the *cle* and *sre* cluster.

The cle cluster from Aspergillus versicolor 0312 and sre cluster from Aspergullus felis 0260

Gene	Amino acids (base pairs)	Protein homologue, origin	Similarity/identity (%)	Proposed function
cle1	1807 (5488)	MPAS, Cladonia uncialis	50/33	polyketide synthase
cle2	544 (1824)	PrhD, Penicillium brasilianum	61/41	cytochrome P450 monooxygenase
cle3	491 (1636)	AtmM, Aspergillus flavus	66/50	FAD-dependent monooxygenase
cle4	496 (1711)	RoqO, Penicillium rubens	61/41	cytochrome P450 monooxygenase
cle5	321 (1090)	Pyr6, Aspergillus fumigatus	64/47	UbiA-like prenyltransferase
cle6	380 (1323)	AtmG, Aspergillus flavus	69/56	geranylgeranyl pyrophosphate synthase
cle7	242 (783)	AtmB, Aspergillus flavus	58/36	terpene cyclase
sre1	342 (1134)	Pyr6, Aspergillus fumigatus	63/46	UbiA-like prenyltransferase
sre2	364 (1257)	AtmG, Aspergillus flavus	79/64	geranylgeranyl pyrophosphate synthase
sre3	239 (804)	AtmB, Aspergillus flavus	56/38	terpene cyclase
sre4	476 (1612)	AtmM, Aspergillus flavus	65/50	FAD-dependent monooxygenase
sre5	434 (1361)	Pyr8, Aspergillus fumigatus	53/38	acetyltransferase
sre6	1840 (5584)	MPAS, Cladonia uncialis	53/36	polyketide synthase

Primer Sequence	(5' to 3')
0312-19-1F	agcaagctccgaattATGTCCTCCTCAATCCCTTCT
0312-19-1R	taccgagctcgaattCTAGACAGCCCCGTTATATATAT
0312-19-2F	agcaagctccgaattATGCTGCAAACCCAACTCCA
0132-19-2R	taccgagctcgaattTTACACAGTAGCCATTGGACAAG
0312-19-3F	agcaagctccgaattATGTATAGGGTACGCAGCAT
0312-19-3R	taccgagctcgaattTCAGAACGAGGAGAATCTAGC
0312-19-4F	agcaagctccgaattATGACAGTATTTGACATTTTCACC
0312-19-4R	taccgagctcgaattCTAGAACTCTAGCCCTATATCGT
0312-19-5F	agcaagctccgaattATGACATACAAGCAGAGGAAC
0312-19-5R	taccgagctcgaattCTAACAGCCATTTCCCCCAATAA
0312-19-6F	agcaagctccgaattATGCACTCTGTCCGTACTTC
0312-19-6R	taccgagctcgaattTCACTCCTTCAACTCCAGAAAAT
0312-19-7F	agcaagctccgaattATGGAAGAAGGCTGGGACTT
0312-19-7R	taccgagctcgaattTTAGGCCACCTTGTCTCTCT
PTA-0260-18-TC.F	agcaagctccgaattatggacgcatttgaccttTC
PTA-0260-18-TC.R	taccgagctcgaatttcacgccttctgtactttgg
pUSA-0260-18-TC.R	ACGAGCTACTACAGATCCCCtcacgccttctgtactttgG
Inf-PamyB-F	TGCCTGCAGGTCGACTCTAGACGACTCCAATCTTCAAGAGC
Inf-TamyB-R	ATGACTAGTAGATCCTCTAGGTAAGATACATGAGCTTCGGTG
Inf-link-F1	TTGCTCGCGAGCGCGTTCCACTGCATCATCAGTCTAGA
Inf-link-R1	TGGAACGCGCTCGCGAGCAAGTACCATACAGTACCGCG
Inf-0312-19-3F	TGAATTCGAGCTCGGTACCCATGTATAGGGTACGCAGCAT
Inf-0312-19-7R	ACGAGCTACTACAGATCCCCTTAGGCCACCTTGTCTCTCT
InF-pPTRI-F	TGATTACGCCAAGCTTCGACTCCAATCTTCAAGAGC
InF-pBARI-R	GCAGGCATGCAAGCTTGTAAGATACATGAGCTTCG

Table S2. Primers used in this study

Plasmid	Vector	Insert	Primer 1	Primer 2	PCR Template
pTAex3-cle1	pTAex3 digested with EcoRI	cle1	0312-19-1F	0312-19-1R	gDNA
pTAex3-cle2	pTAex3 digested with EcoRI	cle2	0312-19-2F	0312-19-2R	gDNA
pTAex3-cle3	pTAex3 digested with EcoRI	cle3	0312-19-3F	0312-19-3R	gDNA
pTAex3-cle4	pTAex3 digested with EcoRI	cle4	0312-19-4F	0312-19-4R	gDNA
pTAex3-cle5	pTAex3 digested with EcoRI	cle5	0312-19-5F	0312-19-5R	gDNA
pTAex3-cle6	pTAex3 digested with EcoRI	cleб	0312-19-6F	0312-19-6R	gDNA
pTAex3-cle7	pTAex3 digested with EcoRI	cle7	0312-19-7F	0312-19-7R	gDNA
pTAex3-sre3	pTAex3 digested with EcoRI	sre3	PTA-0260-18-TC.F	PTA-0260-18-TC.R	gDNA
pBarI-cle2	pBARI digested with HindIII	PamyB-cle2-TamyB	InF-pPTRI-F	InF-pBARI-R	pTAex3-cle2
pBarI-cle3	pBARI digested with HindIII	PamyB-cle3-TamyB	InF-pPTRI-F	InF-pBARI-R	pTAex3-cle3
pBarI-cle4	pBARI digested with HindIII	PamyB-cle4-TamyB	InF-pPTRI-F	InF-pBARI-R	pTAex3-cle4
"Dort olo2+4	DADI disposted with UindIII	PamyB-cle2-TamyB	InF-pPTRI-F	Inf-link-R1	pTAex3-cle2
pbari-cie2+4	pBARI digested with <i>Hin</i> diff	PamyB-cle4-TamyB	Inf-link-F1	InF-pBARI-R	pTAex3-cle4
		PamyB-cle5-TamyB	Inf-PamyB-F	Inf-link-R1	pTAex3-cle5
pAdeA-cle3+6	pAdeA digested with <i>xba</i> i	PamyB-cle6-TamyB	Inf-link-F1	Inf-TamyB-R	pTAex3-cle6
		cle3-TamyB	Inf-0312-19-3F	Inf-link-R1	pTAex3-cle3
pUSA-cles+/	pOSA digested with Small	PamyB-cle7	Inf-link-F1	Inf-0312-19-7R	pTAex3-cle7
	TICA disperted with Swall	cle3-TamyB	Inf-0312-19-3F	Inf-link-R1	pTAex3-cle3
pusa-cies+sres	posA digested with Smal	PamyB-sre5	Inf-link-F1	pUSA-0260-18-TC.R	pTAex3-sre3

Table S3. Plasmids constructed in this study and PCR conditions

Table S4. NMR data for chevalone E (1) (¹H NMR:800 MHz, ¹³C NMR: 200 MHz, δ in ppm, recorded in CDCl₃)

	¹³ C				$^{1}\mathrm{H}$		
position	δ (ppm)	δ (ppm)	Multiplicity	intensity	HMBC correlation	COSY correlation	NOESY correlation
1	38.2 t	0.93α	overlap	1H	2, 3, 5, 9, 10, 20	Η-1β, Η-2α	Η-1β, Η-2α, Η-3α, Η-9α
		1.68β	overlap	1H	2, 3, 5, 9, 10	H-1a	Η-1α, Η-2β, Η ₃ -20β
2	27.0 t	1.56α	overlap	1H	1, 3, 4, 10	Η-1α, Η-3α	Η-1α, Η-3α
		1.61β	overlap	1H	1, 3, 4, 10	Η-3α	Η-1β, Η-3α
3	78.4 d	3.15α	d (<i>J</i> = 11.1 Hz)	1H	1, 2, 4, 5, 18, 19	Η-2α, Η-2β	Η-1α, Η-2α, Η-5α, Η ₃ -19α
4	38.7 s						
5	55.2 d	0.73α	overlap	1H	1, 3, 4, 6, 7, 9, 10, 18, 19, 20	Η-6α, Η-6β	Η-3α, Η-6α, Η-7α, Η-9α, Η ₃ -19α
6	17.8 t	1.40α	m	1H	4, 5, 7, 8, 10	Η-5α, Η-6β, Η-7α, Η-7β	Η-5α, Η-6β, Η-7β
		1.55β	overlap	1H	4, 5, 7, 10	Η-5α, Η-6α, Η-7α, Η-7β	Η-6α, Η-7α, Η3-15β
7	40.9 t	0.98α	overlap	1H	5, 6, 8, 14, 15	Η-6α, Η-6β, Η-7β	Η-5α, Η-6α, Η-7β, Η-9α, Η-14α
		1.92β	dd (<i>J</i> = 12.8, 2.5 Hz)	1H	5, 6, 8, 9, 15	Η-6α, Η-6β, Η-7α	Η-6α, Η-7α, Η3-15β
8	37.0 s						
9	60.1 d	0.88α	d (J = 12.1 Hz)	1H	1, 5, 8, 10, 11, 12, 14, 15, 20	Η-11β	Η-1α, Η-5α, Η-7α, Η-11α, Η-12α, Η-14α
10	37.1 s						
11	18.5 t	1.30β	q (J = 13.1 Hz)	1H	8, 9, 12, 13	Η-9α, Η-11α, Η-12α, Η-12β	Η-11α, Η3-15β, Η3-20β
		1.68α	overlap	1H	8, 9, 10, 12, 13	Η-11β, Η-12β	Η-9α, Η-11β, Η-12α
12	39.9 t	1.64α	overlap	1H	9, 11, 13, 14, 16	Η-11β, Η-12β	Η-9α, Η-11α, Η-14α
		2.05β	m	1H	9, 11, 13, 14, 16	Η-11α, Η-11β, Η-12α	Η-11β, Η ₃ -16β
13	84.2 s						
14	52.2 d	1.45α	d (<i>J</i> = 12.9 Hz)	1H	7, 8, 9, 12, 13, 15, 16, 17, 2'	Η-17α, Η-17β	Η-9α, Η-12α, Η-17α
15	15.9 q	0.83β	s	3H	7, 8, 9, 14		Η-6β, Η-7β, Η ₃ -16β, Η-17β
16	20.4 q	1.23β	s	3H	12, 13, 14		Η-11β, Η-12β, Η ₃ -15β, Η-17β
17	15.2 t	2.09β	dd $(J = 16.2, 2.7 \text{ Hz})$	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17α	Η-7β, Η3-15β, Η3-16β, Η-17α
		2.49α	ddd (J = 16.2, 3.8, 2.7 Hz)	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17β	Η-14α, Η-17β
18	15.1 q	0.73β	s	3H	3, 4, 5, 19		Η-2β, Η-6β, Η ₃ -19α
19	27.8 q	0.92α	s	3H	3, 4, 5, 18		Η-3α, Η-5α, Η-6α, Η3-18β
20	16.3 q	0.79	s	3H	1, 5, 9, 10		Η-1β, Η-11β
1'	162.5 s						
2'	98.4 s						
3'	180.5 s						
4'	111.7 d	5.94	8	1H	2', 3', 5', 6'		H ₃ -6'
5'	160.4 s						
6'	19.1 q	2.15	d (<i>J</i> = 1.5 Hz)	3H	4', 5'		H-4'

Table S5. NMR data for 20-hydroxychevalone E (2) (¹H NMR:800 MHz, ¹³C NMR: 200 MHz, δ in ppm, recorded in methanol- d_4)

-	¹³ C				$^{1}\mathrm{H}$		
position	δ (ppm)	δ (ppm)	Multiplicity	intensity	HMBC correlation	COSY correlation	NOESY correlation
1	34.1 t	0.88α	td ($J = 13.4, 3.0 \text{ Hz}$)	1H	3, 5, 9, 10, 20	Η-2β	Η-1β, Η-2α, Η-3α, Η-9α
		2.32β	dt (<i>J</i> = 13.4, 3.4 Hz)	1H	2, 3, 5, 9, 10, 20	H-1a	H-1a, H-2a, H-2β, H ₂ -11, H-20b
2	28.0 t	1.61α	m	1H	1, 3, 4, 10	Η-2β	Η-1α, Η-1β, Η-3α
		1.68β	m	1H	1, 3, 4	H-1a, H-3a	H-1β, H-3α, H ₃ -18β, H-20b
3	79.5 d	3.17α	dd (<i>J</i> = 11.9, 4.6 Hz)	1H	1, 4, 5, 18, 19	Η-2β	Η-1α, Η-2α, Η ₃ -19α
4	39.8 s						
5	57.4 d	0.90α	overlap	1H	1, 7, 9, 10, 18, 19, 20	H2-6	Η-3α, Η2-6, Η3-19α
6	18.8 t	1.55	overlap	2H	4, 7, 8, 10	Η-5α, Η-7α	Η-5α, Η-7α, Η-7β, Η ₃ -15β, Η-20a
7	42.9 t	1.14α	td ($J = 12.7, 4.2$ Hz)	1H	5, 6, 8, 9, 14, 15	Η-7β	Η-5α, Η2-6, Η-7β, Η-14α
		1.91β	overlap	1H	5, 6, 8, 9, 14, 15	Η-6, Η-7α	Η-6, Η-7α, Η ₃ -15β
8	38.6 s						
9	62.6 d	1.04α	dd (<i>J</i> = 11.5, 2.5 Hz)	1H	1, 5, 7, 8, 10, 11, 12, 14, 15, 20	H ₂ -11	Η-1α, Η-5α, Η-7α, Η2-11, Η-14α
10	43.4 s						
11	22.9 t	1.89	overlap	2H	8, 9, 12, 13	Η-9α, Η-12α	Η-1α, Η-9α, Η-12α, Η3-16β
12	42.4 t	1.52α	overlap	1H	9, 11, 13, 16	H ₂ -11, H-12β	Η2-11, Η3-16β
		2.04β	dt (<i>J</i> = 12.2, 3.1 Hz)	1H	9, 11, 13, 14, 16	H ₂ -11	H2-11
13	86.3 s						
14	53.8 d	1.56α	overlap	1H	7, 8, 9, 12, 15, 16, 17, 2'	Η-17α, Η-17β	Η-7α, Η-9α, Η-12α, Η-17α, Η-17β
15	16.1 q	1.09β	s	3H	7, 8, 9, 14		Η-7β, Η ₃ -16β, Η-17β
16	20.5 q	1.29β	s	3H	12, 13, 14		Η-12β, Η ₃ -15β, Η-17β
17	16.4 t	2.50α	dd (<i>J</i> = 16.3, 4.8 Hz)	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17β	Η-7α, Η-7β, Η-14α, Η-17β
		2.16β	dd (<i>J</i> = 16.3, 12.8 Hz)	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17α	H_{3} -15 β , H_{3} -16 β , H -17 α
18	16.5 q	0.74β	s	3H	3, 4, 5, 19		H-2β, H ₂ -6, H ₃ -19α, H-20a
19	29.3 q	0.97α	s	3H	3, 4, 5, 18		Η-2α, Η-3α, Η3-18β
20	62.3 t	3.94a	d (<i>J</i> = 11.9 Hz)	1H	1, 5, 9, 10	H-20b	Η-1β, Η-2β, Η ₃ -18β
		3.81b	d (<i>J</i> = 11.9 Hz)	1H	1, 5, 9, 10	H-20a	H2-6, H3-19α
1'	165.1 s						
2'	99.6 s						
3'	182.9 s						
4'	111.8 d	6.03	d (J = 0.7 Hz)	1H	2', 3', 5', 6'		H ₃ -6'
5'	163.7 s						
6'	19.1 q	2.24	br s	3H	4', 5'		H-4'

Table S6. NMR data for 20-carboxychevalone E (3) (¹ H NMR:800 MF	Hz, ¹³ C NMR: 200 MHz, δ in ppm, recorded in methanol- d_4)
--	--

	¹³ C				¹ H		
position	δ (ppm)	δ (ppm)	Multiplicity	intensity	HMBC correlation	COSY correlation	NOESY correlation
1	38.7 t	0.91α	br dd ($J = 13.0, 2.5$ Hz)	1H	2, 3, 5, 10	Η-1β, Η-2α	Η-1β, Η-2α, Η-3α, Η-9α
		2.62β	dt (<i>J</i> = 13.0, 3.1 Hz)	1H	2, 3, 5, 9, 10, 20	Η-1α, Η-2β	Η-1α, Η-2β, Η-11β
2	29.9 t	1.53α	overlap	1H	1, 3, 4, 10	Η-1α, Η-3α	Η-1α, Η-1β, Η-3α
		1.58β	overlap	1H	1, 3, 4, 10	Η-1β	Η-1β, Η-3α
3	80.1 d	3.15α	dd $(J = 11.8, 4.1 \text{ Hz})$	1H	1, 4, 18, 19	Η-2α	Η-2α, Η3-19α
4	40.6 s						
5	57.2 d	0.97α	overlap	1H	1, 6, 9, 10, 18, 19, 20	Η-6β	Η-3α, Η-6α, Η3-19α
6	19.9 t	1.58α	overlap	1H	4, 5, 7, 8, 10	Η-6β	Η-5α, Η-6α, Η-7β
		2.57β	m	1H	4, 5, 7, 10	Η-5α, Η-6α, Η-7α	Η-6α, Η-6β, Η-7α, Η ₃ -15β
7	42.8 t	1.11α	td ($J = 12.9, 3.4 \text{ Hz}$)	1H	5, 6, 8, 14, 15	Η-6β, Η-7β	Η-5α, Η2-6, Η-7β, Η-14α
		1.92β	dt (<i>J</i> = 12.9, 3.3 Hz)	1H	5, 6, 8, 9, 15	Η-6α, Η-7α	H ₂ -6, H-7α, H ₃ -15β
8	38.7 s						
9	60.7 d	1.15α	br d ($J = 10.9$ Hz)	1H	1, 5, 8, 10, 11, 12, 14, 15, 20	H-11a	Η-1α, Η-5α, Η-7α, Η-11α, Η-14α
10	49.8 s						
11	22.0 t	1.58β	overlap	1H	8, 9, 12, 13	Η-9α, Η-11β	Η-11α, Η3-15β, Η3-16β
		2.04α	dd $(J = 14.1, 1.7 \text{ Hz})$	1H	8, 9, 10, 12, 13	Η-12α	Η-9α, Η-11α, Η-12β
12	41.5 t	1.68α	m	1H	9, 13, 16	Η-12β	Η-9α, Η-14α, Η-17α
		2.12β	overlap	1H	9, 13, 14, 16	Η-11β	Η-11β, Η ₃ -16β
13	86.2 s						
14	53.6 d	1.50α	dd (<i>J</i> = 12.7, 4.9 Hz)	1H	7, 8, 9, 12, 15, 16, 17, 2'	Η-17α, Η-17β	Η-9α, Η-12α, Η-17α
15	14.6 q	0.96β	S	3H	7, 8, 9, 14		Η-7β, Η ₃ -16β, Η-17β
16	20.8 q	1.28β	S	3H	12, 13, 14		Η-12β, Η ₃ -15β, Η-17β
17	16.4 t	2.10β	overlap	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17α	Η-7α, Η-7β, Η-14α, Η-17α
		2.51α	dd (<i>J</i> = 16.3, 4.8 Hz)	1H	13, 14, 1', 2', 3'	Η-14α, Η-17β	Η ₃ -15β, Η ₃ -16β, Η-17β
18	17.1 q	0.86β	s	3H	3, 4, 5, 19		Η-2β, Η-6β, Η ₃ -19α
19	28.9 q	0.98α	s	3H	3, 4, 5, 18		Η-3α, Η-6α, Η3-18β
20	180.3 s						
1'	165.2 s						
2'	99.7 s						
3'	183.0 s						
4'	111.8 d	6.03	d (J = 0.4 Hz)	1H	2', 3', 5', 6'		H ₃ -6'
5'	163.7 s						
6'	19.1 q	3.03	dt ($J = 3.2, 0.4$ Hz)	3H	4', 5'		H-4'

Table S7. NMR data for 11-hydroxychevalone E (4) (¹ H NMR:800 MHz, ¹³ C	\mathbb{C} NMR: 200 MHz, δ in ppm, recorded in pyridine- d_5)
--	---

	¹³ C				¹ H		
position	δ (ppm)	δ (ppm)	Multiplicity	intensity	HMBC correlation	COSY correlation	NOESY correlation
1	38.7 t	1.06α	overlap	1H	9, 20	Η-1β, Η-2β	Η-1β, Η-2α, Η-3α, Η-9α
		1.98β	overlap	1H	2, 3, 5, 10, 20	H-1a	Η-1α, Η-11β, Η3-20β
2	28.2 t	1.99β	overlap	1H	1, 3, 10	Η-1α, Η-3α	Η-1α, Η-1β, Η-3α
		0.89α	m	1H	3, 10	Η-3α	Η-1β
3	78.0 d	3.44α	br d ($J = 11.6$ Hz)	1H	2, 4, 18, 19	Η-2α, Η-2β	Η-2α, Η-5α, Η3-18β, Η3-19α
4	39.6 s						
5	56.4 d	0.78α	dd $(J = 9.5, 5.0 \text{ Hz})$	1H	4, 7, 9, 10, 18, 19, 20	H2-6	Η-1α, Η-3α, Η-9α, Η ₃ -19α
6	18.8 t	1.58	m	2H	4, 5, 7, 8	Η-5α, Η-7α	Η-5α, Η-6α, Η-7β, Η3-15β, Η3-18β, Η3-19α
7	43.4 t	0.97α	m	1H	5, 8, 9, 14, 15	H ₂ -6, H-7β	Η-5α, Η2-6, Η-7β, Η-14α
		1.71β	overlap	1H	5, 8, 9, 14, 15	Η-7α	Η2-6, Η-7α, Η3-15β, Η-17β
8	37.9 s						
9	60.9 d	0.89α	dd $(J = 6.6, 4.5 \text{ Hz})$	1H	1, 5, 7, 8, 10, 11, 12, 14, 15, 20	Η-11α	Η-1α, Η-5α, Η-11α, Η-12α, Η-14α
10	38.5 s						
11	66.5 d	4.78α	br s	1H	8, 9, 13	Η-9α, Η-12α, Η-12β	Η-1α, Η-9α, Η-12α
12	48.9 t	2.05α	dd (<i>J</i> = 13.2, 3.1 Hz)	1H	11, 13, 16	Η-11α, Η-12β	Η-9α, Η-11α, Η-12β, Η-14α
		2.48β	overlap	1H	9, 11, 13, 14, 16	Η-11α, Η-12α	Η-11α, Η-12α, Η ₃ -15β, Η ₃ -16β
13	84.7 s						
14	53.2 d	1.63α	dd (J = 12.7, 4.8 Hz, 1H)	1H	8, 9, 12, 13, 15, 16, 17, 2'	Η-17α, Η-17β	Η-7α, Η-9α, Η-12α, Η-17α
15	17.5 q	1.41β	s	3H	7, 8, 9, 14		H2-6, H3-16β, H-17β
16	22.0 q	1.52β	s	3H	12, 13, 14		H ₃ -15β, H-17β
17	16.1 t	2.49β	overlap	1H	13, 14, 1', 2', 3'	Η-14α, Η-17α	Η-7α, Η-7β, Η-14α, Η-17α
		2.88α	dd (J = 16.2, 4.8 Hz, 1H)	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17β	Нз-15β, Нз-16β, Н-17β
18	16.2 q	1.08β	s	3Н	3, 4, 5, 19		Η2-6, Η3-19α, Η3-20β
19	28.7 q	1.22α	s	3Н	3, 4, 5, 18		Η-5α, Η3-18β
20	17.8 q	1.52β	s	3Н	1, 5, 9, 10		Η-1β, Η3-15β, Η3-18β
1'	162.6 s						
2'	98.9 s						
3'	179.9 s						
4'	112.3 d	6.19	d (J = 0.4 Hz)	1H	2', 3', 5', 6'		H ₃ -6'
5'	160.7 s						
6'	18.8 q	2.01	s	3H	4', 5'		Н-4'

Table S8. NMR data for 11,12-dihydroxychevalone E (5) (¹H NMR:800 MHz, ¹³C NMR: 200 MHz, δ in ppm, recorded in pyridine- d_5)

	¹³ C				¹ H		
position	δ (ppm)	δ (ppm)	Multiplicity	intensity	HMBC correlation	COSY correlation	NOESY correlation
1	38.6 t	1.02α	td (<i>J</i> = 12.4, 2.9 Hz)	1H	2, 3, 5, 9, 10, 20	Η-1β, Η-2β	Η-1β, Η-3α, Η-5α, Η-9α, Η-11α
		1.93β	dt (<i>J</i> = 12.4, 3.3 Hz)	1H	2, 3, 5, 10, 20	H-1a	Η-1α, Η-2α, Η-11α, Η3-20β
2	28.1 t	1.97β	m	1H	3, 10	Η-1α, Η-3α, 3-ΟΗβ	Η-1α, Η-1β, Η-2β, Η-3α
		1.83α	m	1H	3, 10	Η-1β, Η-3α	Η-1α, Η-2α, Η3-20β
3	78.0 d	3.41α	m	1H	4, 18, 19	Η-2α, Η-2β	Η-1α, Η-2α, Η-5α, Η3-19α
4	39.5 s						
5	56.5 d	0.78α	dd (<i>J</i> = 10.3, 4.2 Hz)	1H	1, 3, 4, 6, 7, 9, 10, 18, 19, 20	H2-6	Η-3α, Η2-6, Η-9α, Η3-19α
6	18.8 t	1.59	overlap	2H	4, 5, 7, 8, 10	Η-5α, Η-7α	Η-5α, Η-7α, Η3-15β, Η3-18β, Η3-19α
7	43.3 t	0.94α	overlap	1H	5, 8, 14, 15	H ₂ -6, H-7β	Η-5α, Η2-6, Η-7β, Η-14α
		1.70β	dt (<i>J</i> = 12.3, 3.0 Hz)	1H	5, 8, 9, 15	Η-7α	H ₂ -6, H-7α, H ₃ -15β, H-17β
8	37.9 s						
9	59.8 d	0.95α	overlap	1H	1, 5, 7, 8, 10, 11, 12, 14, 15, 20	H-11a	Η-1α, Η-5α, Η-11α, Η-12α, Η-14α
10	38.4 s						
11	71.5 d	4.77α	br s	1H	8, 9, 10, 12, 13	Η-9α, 11-ΟΗβ, Η-12α	Η-1α, Η-9α, 11-ΟΗβ, Η-12α
12	78.0 d	4.04α	br s	1H	13, 16	H-11a	Η-9α, Η-11α, 12-ΟΗβ, Η-14α, Η3-16β
13	88.8 s						
14	51.7 d	1.60α	overlap	1H	7, 8, 9, 12, 13, 15, 16, 17, 2'	Η-17α, Η-17β	Η-7α, Η-9α, Η-12α, Η-17α
15	17.5 q	1.42β	S	3H	7, 8, 9, 14		11-ОНВ, Н3-16В, Н-17В, Н3-20В
16	16.0 q	1.77β	s	3H	12, 13, 14		11-ΟΗβ, Η-12α, Η3-15β, Η-17β
17	15.9 t	2.56β	dd (<i>J</i> = 16.0, 12.7 Hz)	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17α	Η ₃ -15β, Η ₃ -16β, Η-17α
		2.89α	dd (<i>J</i> = 16.0, 4.8 Hz)	1H	12, 13, 14, 1', 2', 3'	Η-14α, Η-17β	Η-7α, Η-7β, Η-14α, Η-17β
18	16.1 q	1.08β	s	3H	3, 4, 5, 19		H-2β, H ₂ -6, H ₃ -19α, H ₃ -20β
19	28.7 q	1.21α	s	3H	3, 4, 5, 18		Η-3α, Η-5α, Η ₃ -18β
20	18.8 q	1.56β	s	3H	1, 5, 9, 10		Η-1β, Η ₃ -15β, Η ₃ -18β
1'	162.8 s						
2'	98.7 s						
3'	179.8 s						
4'	112.3 d	6.18	d (J = 0.4 Hz)	1H	2', 3', 5', 6'		H ₃ -6'
5'	160.6 s						
6'	18.3 q	2.00	S	3H	4', 5'		H-4'
3-OH		5.75β	d (<i>J</i> = 5.3 Hz)	1H	2, 3, 4	Η-3α	Η-2α, Η-2β, Η-3α, Η3-18β, Η3-19α
11-OH		5.92β	br s	1H	9, 11	H-11a	Нз-15β, Нз-16β, Нз-20β
12-OH		7.19β	br s	1H	11, 12, 13	Η-12α	11-OHβ, H-12α, H ₃ β

Table S9. NMR data for 11,20-dihydroxychevalone E (6) (¹ H NMR:800 MHz,	(z, ¹³ C NMR: 200 MHz, δ in ppm, recorded in pyridine- d_5)
---	--

	^{13}C				$^{1}\mathrm{H}$		
position	δ (ppm)	δ (ppm)	Multiplicity	intensity	HMBC correlation	COSY correlation	NOESY correlation
1	32.7 t	0.93α	td (<i>J</i> = 13.0, 2.6 Hz)	1H	2, 3, 9, 10, 20	Η-1β, Η-2α, Η-2β	Η-1β, Η-2α, Η-3α, Η-9α, Η-11α
		2.61β	dt (<i>J</i> = 13.0, 3.2 Hz)	1H	2, 3, 5, 10	Η-1α, Η-2α	H-1α, H-2α, H-2β, H-20a
2	27.8 t	1.91α	m	1H	1, 3, 4, 10	Η-1α, Η-1β, Η-3α	Η-1α, Η-1β, Η-3α
		1.99β	S	1H	1, 3, 4, 10	Η-1α, Η-3α	H-1β, H-3α, H-18β, H-20a
3	78.0 d	3.51a	d (J = 10.2 Hz)	1H	4, 18, 19	Η-2α, Η-2β	Η-1α, Η-2α, Η-2β, Η-5α, Η ₃ -18β, Η ₃ -19α
4	39.5 s						
5	57.4 d	1.03α	overlap	1H	1, 3, 4, 6, 9, 10, 18, 19, 20	H2-6	Η-3α, Η2-6, Η-9α, Η3-19α
6	18.3 t	1.51	m	2H	5, 7, 8, 9, 10	Η-5α, Η-7α	Η-5α, Η-7α, Η-7β, Η-17α, Η3-19α
7	44.0 t	1.01α	overlap	1H	6, 8, 9, 14	H ₂ -6, H-7β	Η2-6, Η-7β, Η-9α, Η-14α
		1.73β	overlap	1H	5, 6, 8, 9, 14, 15	Η-7α	H ₂ -6, H-7α, H ₃ -15β
8	37.7 s						
9	62.9 d	1.15α	S	1H	1, 5, 8, 10, 11, 12, 14, 15, 20	H-11α	Η-1α, Η-7α, Η-11α, Η-12α, Η-14α
10	44.0 s						
11	65.3 d	4.62α	br s	1H	8, 9, 10, 12, 13	Η-9α, Η-12α, Η-12β	Η-1α, Η-9α, Η-12α, Η-12β, Η3-15β, Η3-16β
12	46.6 t	2.07α	dd $(J = 13.0, 3.2 \text{ Hz})$	1H	11, 13, 14, 16	Η-11α, Η-12β	Η-9α, Η-11α, Η-12β, Η-14α, Η3-16β
		2.65β	dd (<i>J</i> = 13.0, 2.9 Hz)	1H	9, 11, 13, 14, 16	Η-11α, Η-12α	Η-11α, Η-12α, Η3-16β
13	84.7 s						
14	53.7 d	1.66α	dd $(J = 12.7, 4.8 \text{ Hz})$	1H	7, 8, 9, 12, 13, 15, 16, 17, 2'	Η-17α, Η-17β	Η-7α, Η-9α, Η-12α, Η-17α, Η-17β
15	17.5 q	1.49β	S	3H	7, 8, 9, 14		H-7β, H ₃ -16β, H-17β, H-20b
16	22.0 q	1.73β	S	3H	12, 13, 14		Η-12α, Η-12β, Η ₃ -15β, Η-17β
17	16.2 t	2.48β	dd (<i>J</i> = 16.2, 12.7 Hz)	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17α	Η-15β, Η ₃ -16β, Η-17α
		2.88α	dd $(J = 16.2, 4.8 \text{ Hz})$	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17β	Η-7α, Η-14α, Η-17β
18	17.4 q	1.06β	S	3H	3, 4, 5, 19		H-2β, H-3α, H ₃ -19α, H-20a
19	29.8 q	1.25α	S	3H	3, 4, 5, 18		Η-3α, Η2-6, Η3-18β
20	59.6 t	4.18b	d (<i>J</i> = 11.8 Hz)	1H	1, 5, 9, 10	H-20a	H ₃ -15β, H-20a
		4.38a	d (<i>J</i> = 11.8 Hz)	1H	1, 5, 9, 10	H-20b	Η-1β, Η-2β, Η-7β, Η ₃ -18β, Η-20b
1'	162.7 s						
2'	98.8 s						
3'	197.9 s						
4'	112.3 d	6.20	d (J = 0.7 Hz)	1H	2', 3', 5', 6'		H-6'
5'	160.7 s						
6'	18.9 q	2.02	S	3H	4', 5'		H-4'

Table S10. NMR data for 20,11-olide-chevalone E (7) (¹H NMR:800 MHz, ¹³C NMR: 200 MHz, δ in ppm, recorded in pyridine- d_5)

	^{13}C				^{1}H		
position	δ (ppm)	δ (ppm)	Multiplicity	intensity	HMBC correlation	COSY correlation	NOESY correlation
1	34.4 t	1.42α	overlap	1H	2, 3, 5, 10	Η-1β, Η-2β	Η-1β, Η-2α, Η-3α, Η-5α, Η-9α
		2.17β	dt (<i>J</i> = 13.5, 3.5 Hz)	1H	2, 3, 5, 9, 10, 20	H-1a	Η-1α, Η-2α, Η-11α
2	28.1 t	1.93α	ddd (J = 12.7, 7.1, 3.5 Hz)	1H	1, 3, 4, 10	Η-2β, Η-3α	Η-1α, Η-1β, Η-2β, Η-3α
		2.21β	m	1H	1, 3, 4, 10	Η-1α, Η-2α, Η-3α	Η-1α, Η-2α, Η3-19α
3	77.8 d	3.50α	dd ($J = 7.1, 4.3$ Hz)	1H	2, 4, 5, 10, 18, 19	Η-2α, Η-2β, 3-ΟΗ	Η-1α, Η-2α, 3-ΟΗ, Η-5α, Η ₃ -18β, Η ₃ -19α
4	39.9 s						
5	51.0 d	1.40α	dd (<i>J</i> = 9.1, 3.7 Hz)	1H	1, 3, 4, 6, 9, 10, 18, 19, 20	H2-6	Η-1α, Η-3α, Η-7α, Η-9α, Η ₃ -19α
6	19.5 t	1.66	overlap	2H	4, 5, 7, 8, 10	Η-5α, Η-7α	Η-5α, Η-7α, Η-7β
7	35.4 t	1.09α	td ($J = 12.3, 4.7$ Hz)	1H	5, 6, 8, 9, 14, 15	H ₂ -6, H-7β	Η-5α, Η2-6, Η-7β, Η-9α, Η-14α, Η-17α
		1.55β	m	1H	5, 6, 8, 9, 14, 15	Η-7α	Η2-6, Η-7α, Η-14α, Η-17α, Η-17β
8	33.8 s						
9	57.7 d	1.61a	d (J = 3.4 Hz)	1H	1, 7, 8, 10, 12, 14, 15, 20	Η-11α	Η-1α, Η-5α, Η-7α, Η-11α, Η-12α
10	48.9 s						
11	73.8 d	4.96α	overlap	1H	8, 9, 10, 12, 13	Η-9α, Η-12α	Η-1β, Η-9α, Η-12α, Η-12β
12	39.3 t	2.32α	overlap	1H	9, 11, 13, 14, 16	Η-11α, Η-12β	Η-11α, Η-12β, Η-14α
		2.62β	d (J = 16.4 Hz)	1H	9, 11, 13, 14, 16,	Η-12α	Η-12α, Η ₃ -15β, Η ₃ -16β
13	83.0 s						
14	48.3 d	1.65α	overlap	1H	7, 8, 9, 12, 13, 15, 16, 17, 2'	Η-17α, Η-17β	Η-7α, Η ₃ -16β, Η-17α
15	16.6 q	1.03β	S	3H	7, 8, 9, 14		Η-7β, Η-14α, Η ₃ -16β, Η-17β
16	24.8 q	1.36β	S	3H	12, 13, 14		$H-12\beta$, $H_3-15\beta$
17	16.0 t	2.29β	overlap	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17α	Η-7β, Η3-15β, Η3-16β, Η-17α
		2.73α	dd ($J = 16.1, 4.7$ Hz)	1H	13, 14, 1', 2', 3'	Η-14α, Η-17β	Η-7α, Η-7β, Η-14α, Η-17β
18	15.9 q	1.64β	s	3Н	3, 4, 5, 19		Η-3α, Η-5α, Η3-19α
19	28.3 q	1.21a	s	3Н	3, 4, 5, 18		Η-3α, Η ₃ -18β
20	176.9 s						
1'	162.8 s						
2'	99.7 s						
3'	179.7 s						
4'	112.4 d	6.18	d (J = 0.8 Hz)	1H	2', 3', 5', 6'		H ₃ -6'
5'	161.0 s						
6'	18.8 q	2.03	d (J = 0.6 Hz)	3H	4', 5'		H-4'
3-OH		6.11	s	1H	2, 3, 4	Η-3α	Η-3α

Table S11. NMR data for 12-hydroxy-20,11-olide-chevalone E (8) (¹H NMR:800 MHz, ¹³C NMR: 200 MHz, δ in ppm, recorded in pyridine- d_5)

	¹³ C				¹ H		
position	δ (ppm)	δ (ppm)	Multiplicity	intensity	HMBC correlation	COSY correlation	NOESY correlation
1	34.0 t	1.41α	td ($J = 13.5, 2.7$ Hz)	1H	2, 3, 5, 9, 10, 20	Η-1β, Η-2β	Η-1β, Η-2α, Η-3α, Η-9α
		2.17β	dt (<i>J</i> = 13.5, 3.4 Hz)	1H	2, 3, 5	Η-1α, Η-2α	Η-1α, Η-2α, Η-11α
2	28.0 t	1.91α	m	1H	1, 3, 4, 10	Η-2β, Η-3α	Η-1α, Η-2β, Η-3α
		2.23β	m	1H	1, 3, 4, 10	Η-1α, Η-2α, Η-3α	Η-1α, Η-2α, Η ₃ -18β
3	77.8 d	3.50α	d (J = 10.6 Hz)	1H	2, 4, 18, 19	Η-2α, Η-2β, 3-ΟΗ	Η-2α, Η-5α, Η ₃ -19α
4	39.9 s						
5	51.1 d	1.45α	dd (<i>J</i> = 13.2, 5.4 Hz)	1H	1, 3, 4, 6, 7, 9, 10, 18, 19, 20	H2-6	Η-3α, Η2-6, Η-9α, Η3-19α
6	19.8 t	1.71	m	2H	4, 5, 8, 10	Η-5α, Η-7α	Η-5α, Η-7α
7	35.7 t	1.15α	overlap	1H	5, 6, 8, 9, 14, 15	H ₂ -6, H-7β,	Η-7β, Η-17α
		1.60β	m	1H	5, 6, 8, 9	Η-7α	H ₂ -6, H-7α
8	34.8 s						
9	57.1 d	1.75α	overlap	1H	1, 5, 7, 8, 10, 11, 12, 14, 15, 20	Η-11α	Η-1α, Η-5α, Η-11α, Η-12α, Η-14α
10	49.0 s						
11	77.5 d	5.25α	dd (<i>J</i> =5.7, 2.9 Hz)	1H	8, 9, 10, 12, 13	Η-9α, Η-12α	Η-9α, Η-12α
12	75.9 d	4.44α	d (<i>J</i> =5.1 Hz)	1H	13, 16	Η-11α, 12-ΟΗβ	Η-9α, Η-11α
13	88.4 s						
14	47.1 d	1.75α	overlap	1H	7, 8, 9, 12, 13, 15, 16, 17, 2'	Η-17α, Η-17β	Η-9α, Η-12α, Η-17α
15	16.6 q	1.17α	s	3H	7, 8, 9, 14		Η-7β, Η ₃ -16β, Η-17β
16	19.4 q	1.67α	m	3H	12, 13, 14		Η-12α, Η ₃ -15β, Η-17β
17	15.9 t	2.50β	dd (<i>J</i> = 16.2, 12.8 Hz)	1H	8, 13, 14, 1', 2', 3'	Η-14α, Η-17α	Η3-15β, Η3-16β, Η-17α
		2.80α	dd (<i>J</i> = 16.2, 4.9 Hz)	1H	8, 12, 13, 14, 1', 2', 3'	Η-14α, Η-17β	Η-7β, Η-14α, Η-17β
18	15.7 q	1.65β	S	3Н	3, 4, 5, 19		Η-2β, Η ₃ -19α
19	28.2 q	1.20α	S	3H	3, 4, 5, 18		Η-3α, Η-5α, Η3-18β
20	177.2 s						
2'	98.9 \$						
3'	179.7 s						
4'	112.4 d	6.19	d ($J = 0.7$ Hz)	1H	2', 3', 5', 6'		H ₃ -6'
5'	160.9 s						
6'	18.8 q	2.04	d ($J = 0.7$ Hz)	3H	4', 5'		H-4'
3-OH		6.09β	S	1H		Η-3α	
12-OH		8.08β	S	1H		Η-12α	

geranylgeranyl-triacetate lactone (9)

Table S12. NMR data for geranylgeranyl-triacetate lac	tone (9) (¹ H NMR:600 MHz.	¹³ C NMR: 150 MHz, δ in ppm.	recorded in acetone- d_6

	¹³ C				$^{1}\mathrm{H}$	
position	δ (ppm)	δ (ppm)	Multiplicity	intensity	HMBC correlation	COSY correlation
1	165.7 s					
2	102.4 s					
3	165.4 s					
4	100.8 d	5.98	S	1H	2, 3, 5, 6	
5	160.7 s					
6	19.6 q	2.04	S	3H	4, 5	
1'	22.7 t	3.09	d (J = 7.0 Hz)	2H	1, 2, 3, 2', 3'	H-2'
2'	122.6 d	5.23	t ($J = 7.0$ Hz)	1H	1', 4', 17'	H2-1'
3 4'	40.4 t	1.93	overlap	2H	2'. 3'. 5'. 6'. 17'	H2-5'
5'	27.2 t	2.05	overlap	2H	3' 4' 6' 7'	H ₂ -4' H-6'
6'	125.1 d	5.12	overlap	1H	4' 5' 8' 18'	H ₂ -5'
7'	135.6 s	0.12	overnep		.,,,,,,,,	112 0
8'	40.4 t	2.04	overlap	2H	6', 7', 9', 10'	H ₂ -9'
9'	27.2 t	1.93	overlap	2H	7', 8', 10', 11'	H ₂ -8', H-10'
10'	125.1 d	5.12	overlap	1H	8', 9', 12', 19'	H ₂ -9'
11'	135.4 s		-			
12'	40.5 t	2.04a	overlap	1H	10', 11', 13', 14'	H-12'b, H-13'a, H-13'b
		1.93b	overlap	1H	10', 11', 13', 14', 19'	H-12'a, H-13'a, H-13'b
13'	27.4 t	2.04a	overlap	1H	11', 12', 14'	H-12'a, H-13'b, H-14'
		1.93b	overlap	1H	11', 12', 15	H-12'b, H-13'a
14'	125.0 d	5.12	overlap	1H	12', 16', 20'	H-13'a
15'	131.5 s					
16'	17.7 q	1.74	s	3H	20'	
17'	16.1 q	1.59	s	3Н	2', 3', 4'	
18'	16.1 q	1.59	s	3Н	6', 7', 8'	
19'	16.3 q	1.59	s	3Н	10', 11', 12'	
20'	25.8 q	1.65	s	3H	16'	

dihydroxygeranylgeranyl-triacetate lactone (10)

Table S13. NMR data for dihydroxygeranylgeranyl-triacetate lactone (10) (¹H NMR:600 MHz, ¹³C NMR: 150 MHz, δ in ppm, recorded in acetone-

 d_6)

	¹³ C					1H	
position	δ (ppm)	δ (ppm)	Multiplicity	intensity	HMBC correlation	COSY correlation	
1	171.0 s						
2	100.5 s						
3	167.0 s						
4	103.6 d	5.98	S	1H	2, 5, 6		
5	159.0 s						
6	19.7 q	2.04	s	3H	4, 5		
1'	23.0 t	3.06	d ($J = 7.0$ Hz)	2H	1, 2, 3, 2', 3'	H-2'	
2'	124.4 d	5.28	t (J = 7.0 Hz)	1H	1', 4', 17'	H2-1'	
5 4'	134.0 8	2.06	overlan	211	2, 2, 5, 6,	11. 5'	
4 5'	40.4 t	2.06	overlap	2H 2U	2, 5, 5, 0		
5	27.2 t	2.07	overlap	2H	3,4,0,/	H ₂ -4, H-0	
0	125.2 d	5.12	overlap	IH	4,5,8,18	H ₂ -5	
7	135.1 s	1.02					
8'	40.6 t	1.93	overlap	2H	6', 7', 9', 10'	H ₂ -9 [°]	
9'	27.3 t	1.93	overlap	2H	7', 10', 11'	$H_2-8', H-10'$ (weak)	
10'	124.9 d	5.12	overlap	1H	9', 12', 19'	H_2-9' (weak)	
11'	135.8 s						
12'	37.6 t	2.24a	m	1H	10', 11', 13', 14', 19'	H-12'b, H-13'a	
		1.99b	overlap	1H	10', 11', 13', 19'	H-12'a, H-13'a	
13'	30.8 t	1.64a	overlap	1H		H-12'a, H-13'b	
		1.33b	overlap	1H	14'	H-12'b, H-13'a, H-14	
14'	78.5 d	3.25	d (<i>J</i> = 10.4 Hz)	1H	12', 13', 15', 16', 20'	H-13'a	
15'	72.8 s						
16'	25.0 q	1.10	s	3H	14', 15', 20'		
17'	16.1 q	1.73	S	3H	2', 3', 4'		
18'	16.4 q	1.57	8	3H	6', 7', 8'		
19'	16.2 q	1.58	s	3H	10', 11', 12'		
20'	26.0 g	1.11	s	3H	14', 15', 16'		

Table S14. ¹³C NMR data for sartorypyrone D (11)

	200 MHz	100 MHz ^a	
position	CD ₃ OD	CD ₃ Cl	
1	34.8 t	32.4 t	
2	33.2 t	32.0 t	
3	78.0 d	77.3 d	
4	41.0 S	40.4 S	
5	52.0 d	51.2 d	
6	24.6 t	23.9 t	
7	40.9 t	38.6 t	
8	136.3 s	136.3 s	
9	125.4 d	123.2 d	
10	149.0 s	147.3 s	
11	27.5 t	26.0 t	
12	39.6 t	39.6 t	
13	136.5 s	140.6 s	
14	122.5 d	120.4 d	
15	16.1 q	16.2 q	
16	16.3 q	16.3 q	
17	22.8 t	22.9 t	
18	15.7 q	16.2 q	
19	26.4 q	26.1 q	
20	108.5 t	108.5 t	
1'	168.6 s	165.9 s	
2'	103.1 s	100.7 s	
3	167.5 s	165.8 s	
4	101.6 d	100.7 d	
2.	101.6 s	160.3 s	
6'	19.6 q	19.7 q	

(^a δ in ppm, data reported in *The Journal of Antibiotics*, 68, 403–405 (2015))

Figure S1. UV spectra of secondary metabolites isolated in this study.

Figure S2. Compounds **1**, **2**, **5-8** synergistically enhances cytotoxicity of DOX in MCF-7 breast cancer cells. (A–F) MCF-7 cells were treated with DOX, compounds 1, 2, 5-8, or the combination of both agents at a 1 : 8 M ratio. After 48 h, cell viability was determined using the colorimetric MTT assay. (G) Combination index values were calculated using CompuSyn software to determine drug interaction. A CI < 1 indicates synergism, CI = 1 indicates additive effects, and CI > 1 indicates antagonism. The data are presented as mean \pm standard deviation of three independent experiments.

Figure S5. HSQC spectrum of chevalone E(1)

Figure S6. HMBC spectrum of chevalone E(1)

Figure S7. ¹H-¹H COSY spectrum of chevalone E (1)

Figure S8. ROESY spectrum of chevalone E (1)

Figure S10. ¹³C NMR spectrum of 20-hydroxychevalone E (2)

Figure S11. HSQC spectrum of 20-hydroxychevalone E (2)

Figure S12. HMBC spectrum of 20-hydroxychevalone E (2)

Figure S13. ¹H-¹H COSY spectrum of 20-hydroxychevalone E (2)

Figure S14. ROESY spectrum of 20-hydroxychevalone E (2)

Figure S16. ¹³C NMR spectrum of 20-carboxychevalone E (3)

Figure S17. HSQC spectrum of 20-carboxychevalone E (3)

Figure S18. HMBC spectrum of 20-carboxychevalone E (3)

3.5 f2 (ppm) Figure S20. ROESY spectrum of 20-carboxychevalone E (3)

3. 0

2. 5

2.0

4.0

6.0

5.5

5.0

4. 5

-6.0

1.5

1. 0

Figure S22. ¹³C NMR spectrum of 11-hydroxychevalone E (4)

Figure S23. HSQC spectrum of 11-hydroxychevalone E (4)

Figure S24. HMBC spectrum of 11-hydroxychevalone E (4)

Figure S25. ¹H-¹H COSY spectrum of 11-hydroxychevalone E (4)

Figure S26. ROESY spectrum of 11-hydroxychevalone E (4)

Figure S28. ¹³C NMR spectrum of 11,12-dihydroxychevalone E (5)

Figure S29. HSQC spectrum of 11,12-dihydroxychevalone E (5)

Figure S30. HMBC spectrum of 11,12-dihydroxychevalone E (5)

Figure S31. ¹H-¹H COSY spectrum of 11,12-dihydroxychevalone E (5)

Figure S32. ROESY spectrum of 11,12-dihydroxychevalone E (5)

Figure S34. ¹³C NMR spectrum of 11,20-dihydroxychevalone E (6)

Figure S35. HSQC spectrum of 11,20-dihydroxychevalone E (6)

Figure S36. HMBC spectrum of 11,20-dihydroxychevalone E (6)

Figure S38. ROESY spectrum of 11,20-dihydroxychevalone E (6)

Figure S40. ¹³C NMR spectrum of 20,11-olide-chevalone E (7)

Figure S42. HMBC spectrum of 20,11-olide-chevalone E (7)

Figure S44. ROESY spectrum of 20,11-olide-chevalone E (7)

Figure S46. ¹³C NMR spectrum of 12-hydroxy-20,11-olide-chevalone E (8)

Figure S47. HSQC spectrum of 12-hydroxy-20,11-olide-chevalone E (8)

Figure S48. HMBC spectrum of 12-hydroxy-20,11-olide-chevalone E (8)

Figure S49. ¹H-¹H COSY spectrum of 12-hydroxy-20,11-olide-chevalone E (8)

Figure S50. ¹H-¹H COSY spectrum of 12-hydroxy-20,11-olide-chevalone E (8)

Figure S52. ¹³C NMR spectrum of geranylgeranyl-triacetate lactone (9)

Figure S53. HSQC spectrum of geranylgeranyl-triacetate lactone (9)

Figure S54. HMBC spectrum of geranylgeranyl-triacetate lactone (9)

Figure S56. ¹H NMR spectrum of dihydroxygeranylgeranyl-triacetate lactone (10)

Figure S57. ¹³C NMR spectrum of dihydroxygeranylgeranyl-triacetate lactone (10)

Figure S58. HSQC spectrum of dihydroxygeranylgeranyl-triacetate lactone (10)

Figure S59. HMBC spectrum of dihydroxygeranylgeranyl-triacetate lactone (10)

Figure S60. ¹H-¹H spectrum of dihydroxygeranylgeranyl-triacetate lactone (10)

