Supporting Information

Asymmetric synthesis of highly functionlized furanones via

direct Michael reactions promoted by a bulky primary amine

Huicai Huang*a, Xue Lua, Yukang Maoa and Jinxing Ye*b

^aResearch Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education. Guangzhou, 510006, P. R. China. E-mail: huanghc@gzucm.edu.cn

^bEngineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. E-mail: yejx@ecust.edu.cn

A: General Information and Starting Materials	S2
B: Preparation of chiral catalysts	S2
C: General Procedure for Asymmetric Conjugated Addition	S5
D: Characterization of Conjugated Addition Products	S6
E: References	S12
F: HPLC Charts of Asymmetric Addition Products	S13
G: NMR Spectra of Asymmetric Addition Products	
H: Crystallographic Information for Product 4e	S49

A: General Information and Starting Materials

General Information. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AV-400 spectrometer (400 MHz and 100 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl₃: δ 7.26) Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.16). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). High resolution mass spectra (EI) were measured on a Waters Micromass GCT spectrometer. High resolution mass spectrometry (ESI) were carried out using a Waters Quatro Macro triple quadrupole mass spectrometer. Optical rotations were measured on an Autopol III automatic polarimeter (Rudolph Research analytical). Melting points were measured on a XT3A apparatus. High performance liquid chromatography (HPLC) was performed on an Agilent 1200 Series chromatographs using chiral columns (DAICEL CHIRALPAK IA) as noted.

Starting Materials. All solvents and inorganic reagents were from commercial sources(Adamas-beta®) and used without purification unless otherwise noted. The pronucleophiles 3(2H)-furanones were synthesized following the literature procedure.^[1]

B: Preparation of chiral catalysts

Catalyst **1a** are known compound.^[2] Catalysts **1b-1e** were synthesized following the reported procedure.^[3]

1b: (R)-3-ethyl-3-methoxy-1-(piperidin-1-yl)pentan-2-amine

Pale yellow oil; ¹H NMR (400MHz, CDCl₃): δ 3.24 (s, 3H), 3.06 (dd, J = 4.0, 9.2 Hz, 1H), 2.97 (s, 1H), 2.90 (s, 1H), 2.52 (br, 1H), 2.30-2.28 (m, 3H), 1.91 (brs, 3H), 1.66-1.56 (m, 7H), 1.44-1.43 (m, 2H), 0.91 (dt, J = 1.6, 7.6 Hz, 6H); ¹³C NMR (100MHz, CDCl₃): δ 79.4, 61.4, 52.3, 49.7, 26.2, 25.2, 24.7, 24.5, 8.6, 8.3. HRMS (ESI): exact mass calculated for [M+H]⁺ (C₁₃H₂₈N₂O) requires m/z 228.2202, found m/z 228.2206.

1c: (R)-1-methoxy-1, 1-diphenyl-3-(piperidin-1-yl) propan-2-amine

Pale yellow oil; ¹H NMR (400MHz, CDCl₃): δ 7.47-7.44 (m, 4H), 7.38-7.29 (m, 6H), 4.03 (dd, J = 1.6, 10.4 Hz, 1H), 2.99 (s, 3H), 2.56 (dd, J = 1.6, 12.4 Hz, 1H), 2.24 (br, 2H), 1.65 (dd, J = 10.4, 12.4 Hz, 1H), 1.61-1.49 (m, 6H), 1.45-1.40 (m, 2H); ¹³C NMR (100MHz, CDCl₃): δ 140.9, 140.3, 129.5, 129.3, 127.6, 127.4, 127.2, 85.4, 62.2, 55.4, 52.3, 51.3, 26.2, 24.5; HRMS (ESI): exact mass calculated for [M+H]⁺ (C₂₁H₂₉N₂O) requires m/z 325.2280, found m/z 325.2274.

1d: (R)-3-methoxy-N¹,N¹-dimethyl-3,3-diphenylpropane-1,2-diamine

Pale yellow oil; ¹H NMR (400MHz, CDCl₃): δ 7.45-7.43 (m, 4H), 7.39-7.31 (m, 6H), 3.96 (dd, J = 2.0, 10.4 Hz, 1H), 2.97 (s, 3H), 2.48 (dd, J = 2.0, 10.4 Hz, 1H), 2.25 (s, 6H), 1.66 (dd, J = 10.4, 12.4 Hz, 1H); ¹³C NMR (100MHz, CDCl₃): δ 140.5, 140.1, 129.4, 129.2, 127.7, 127.5, 127.4, 127.3, 85.7, 62.7, 53.3, 51.4, 46.2; HRMS (ESI): exact mass calculated for [M+H]⁺ (C₁₈H₂₅N₂O) requires m/z 285.1967, found m/z 285.1961.

1e: (*R*)-3-ethoxy-*N*¹,*N*¹-dimethyl-3,3-di(naphthalen-2-yl)propane-1,2-diamine

Pale yellow solid; ¹H NMR (400MHz, CDCl₃): δ 8.11 (s, 1H), 8.02 (s, 1H), 7.88-7.80 (m, 6H), 7.59-7.46 (m, 6H), 4.19-4.15 (m, 1H), 3.23-3.18 (m, 2H), 2.65 (d, J =12.4 Hz, 1H), 2.29 (s, 6H), 1.80 (t, J = 11.2 Hz, 1H), 1.20 (t, J = 6.8 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): δ 138.8, 138.5, 132.8, 132.7, 132.6, 128.6, 128.5, 128.4, 128.0, 127.5, 127.4, 127.3, 127.1, 126.3, 126.2, 126.1, 126.0, 85.4, 63.0, 59.0, 53.5, 46.3, 15.7; HRMS (ESI): exact mass calculated for [M+H]⁺ (C₂₇H₃₁N₂O) requires m/z 399.2436, found m/z 399.2441.

C: General Procedure for Asymmetric Conjugated Addition

3(2H)-furanones **2** (0.20 mmol, 1.0 equiv.) was added to a mixture of catalyst **1e** (0.04 mmol, 0.20 equiv.) and α,β -unsaturated ketones **3** (0.30 mmol, 1.5 equiv.) in MTBE (0.8 mL) at 30°C. The reaction mixture was maintained at this temperature for 3 days and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired addition product. The enantiomeric ratio was determined by HPLC analysis on chiral column.

D: Characterization of Conjugated Addition Products

4a: (S)-2-methyl-2-((S)-3-oxo-1-phenylbutyl)-5-phenylfuran-3(2H)-one

The product was obtained in 99% yield, 63.4 mg, yellow oil. [α]²⁵_D 70.3 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.76-7.74 (m, 2H), 7.58-7.54 (m, 1H), 7.50-7.46 (m, 2H), 7.24-7.21 (m, 2H), 7.18-7.14 (m, 3H), 5.72 (s, 1H), 3.80-3.76 (m, 1H), 3.23 (dd, *J* = 4.8, 16.8 Hz, 1H),3.14 (dd, *J* = 9.6, 16.8 Hz, 1H), 2.07 (s, 3H), 1.49 (s, 3H). ¹³C NMR

(100 MHz, CDCl₃): δ (ppm) 206.1, 205.5, 183.7, 138.1, 132.7, 129.1, 128.9, 128.8, 128.1, 127.3, 127.0, 100.3, 91.6, 45.7, 43.5, 30.3, 20.1; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₂₀O₃) requires m/z 320.1412, found m/z 320.1414; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 7.7 min (major), 12.6 min (minor), ee 93%.

4b:(S)-2-((S)-1-(2-fluorophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

The product was obtained in 98% yield, 66.3 mg, yellow oil. [α]²⁵_D 43.8 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.78-7.76 (m, 2H), 7.57-7.53 (m, 1H), 7.49-7.45 (m, 2H), 7.30-7.25 (m, 1H), 7.18-7.13 (m, 1H), 7.00-6.95 (m, 2H), 5.83 (s, 1H), 4.18-4.14 (m, 1H), 3.28 (dd, *J* = 4.8, 17.2

Hz, 1H), 3.11 (dd, J = 9.6, 17.6 Hz, 1H), 2.08 (s, 3H), 1.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.6, 205.2, 183.8, 162.3, 159.8, 132.8, 130.2, 130.1, 129.0, 128.9, 128.7, 127.1, 125.5, 125.4, 123.8, 123.7, 115.7, 115.5, 99.9, 91.0, 42.6, 38.5, 30.1, 19.7; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₁₉FO₃) requires m/z 338.1318, found m/z 338.1320; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 8.4 min (major), 17.1 min (minor), ee 85%.

4c: (S)-2-((S)-1-(4-chlorophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

The product was obtained in 94% yield, 66.5 mg, white solid. Mp 97-98°C; $[\alpha]^{25}_D$ 99.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.76-7.74 (m, 2H), 7.60-7.56 (m, 1H), 7.51-7.48 (m, 2H), 7.17-7.11 (m, 4H), 5.73 (s, 1H), 3.77-3.73 (m, 1H), 3.20 (dd, J = 4.8, 16.8 Hz,

1H), 3.10 (dd, J = 9.6, 16.8 Hz, 1H), 2.09 (s, 3H), 1.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.7, 205.3, 183.7, 136.7, 133.1, 132.9, 130.3, 129.0, 128.6, 128.3, 127.0, 100.4, 91.3, 45.0, 43.3, 30.4, 20.2; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₁₉ClO₃) requires m/z 354.1023, found m/z 354.1028; The enantiomeric excess

was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 8.7 min (major), 14.2 min (minor), ee 90%.

4d: (S)-2-((S)-1-(3-bromophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

O O Br

The product was obtained in 98% yield, 78.1 mg, yellow oil. $[\alpha]^{25}_{D}$ 69.2 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.76-7.74 (m, 2H), 7.58-7.54 (m, 1H), 7.50-7.47 (m, 2H), 7.38-7.37 (m, 1H), 7.28-7.25 (m, 1H), 7.17-7.15 (m, 1H), 7.05-7.01 (m, 1H), 5.73 (s, 1H), 3.76-3.72 (m, 1H), 3.23 (dd, J = 4.8, 17.2 Hz, 1H), 3.08 (dd, J

= 9.6, 17.2 Hz, 1H), 2.10 (s, 3H), 1.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.5, 205.1, 183.8, 140.6, 132.8, 131.9, 130.4, 129.6, 129.0, 128.5, 128.0, 127.1, 100.3, 91.1, 45.2, 43.2, 30.4, 19.9; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₁₉BrO₃) requires m/z 398.0518, found m/z 398.0523; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 8.0 min (major), 10.1 min (minor), ee 90%.

4e: (S)-2-((S)-1-(4-bromophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

The product was obtained in 98% yield, 78.1 mg, white solid. Mp 103-104°C; $[\alpha]^{25}_{D}$ 103.2 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.76-7.74 (m, 2H), 7.58-7.55 (m, 1H), 7.50-7.46 (m, 2H), 7.28-7.26 (m, 2H), 7.11-7.08 (m, 2H), 5.73 (s, 1H), 3.75-3.72 (m,

1H), 3.20 (dd, J = 4.8, 17.2 Hz, 1H), 3.09 (dd, J = 9.6, 17.2 Hz, 1H), 2.08 (s, 3H), 1.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.7, 205.2, 183.7, 137.3, 132.9, 131.2, 130.7, 129.0, 128.6, 127.0, 121.3, 100.4, 91.2, 45.0, 43.3, 30.4, 20.2; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₁₉BrO₃) requires m/z 398.0518, found m/z 398.0520; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 9.5 min (major), 15.0 min (minor), ee 92%.

4f: (S)-2-methyl-2-((S)-1-(3-nitrophenyl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

The product was obtained in 97% yield, 70.8 mg, gray solid. Mp 128-129°C; $[\alpha]^{25}{}_{D}$ 62.2 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.12-8.11 (m, 1H), 8.03-8.00 (m, 1H), 7.77-7.74 (m, 2H), 7.60-7.56 (m, 2H), 7.52-7.48 (m, 2H), 7.40-7.36 (m, 1H), 5.72 (s, 1H), 3.93-3.89 (m, 1H), 3.33 (dd, *J* =

4.4, 18.0 Hz, 1H), 3.21 (dd, J = 9.6, 17.6 Hz, 1H), 2.15 (s, 3H), 1.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.1, 204.8, 184.0, 140.5, 136.2, 133.1, 129.0, 128.2, 127.0, 123.1, 123.1, 122.4, 100.3, 90.9, 44.9, 43.0, 30.5, 20.1; HRMS (EI):

exact mass calculated for M^+ ($C_{21}H_{19}NO_5$) requires m/z 365.1263, found m/z 365.1265; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 13.2 min (major), 16.0 min (minor), ee 90%.

4g: (S)-2-methyl-2-((S)-1-(4-nitrophenyl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

The product was obtained in 97% yield, 70.7 mg, yellow solid. Mp 135-136°C; $[\alpha]^{25}_{D}$ 106.6 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.00-7.98 (m, 2H), 7.75-7.73 (m, 2H), 7.59-7.56 (m, 1H), 7.51-7.47 (m, 2H), 7.41-7.39 (m, 2H), 5.72 (s, 1H), 3.90-3.87 (m, 1H), 3.30 (dd, J = 4.4, 17.6 Hz, 1H),

3.19 (dd, J = 9.6, 17.6 Hz, 1H), 2.12 (s, 3H), 1.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.1, 204.7, 183.9, 147.1, 146.1, 133.1, 130.0, 129.1, 128.3, 127.0, 123.2, 100.3, 91.0, 45.2, 43.1, 30.3, 20.3; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₁₉NO₅) requires m/z 365.1263, found m/z 365.1266; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 13.1 min (major), 19.3 min (minor), ee 90%.

4h: (S)-2-methyl-2-((S)-3-oxo-1-m-tolylbutyl)-5-phenylfuran-3(2H)-one

The product was obtained in 78% yield, 52.1 mg, yellow oil. $[\alpha]^{25}{}_{D}$ 61.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77-7.75 (m, 2H), 7.58-7.55 (m, 1H), 7.51-7.47 (m, 2H), 7.06-7.00 (m, 3H), 6.95-6.94 (m, 1H), 5.71 (s, 1H), 3.75-3.71 (m, 1H), 3.21 (dd, *J* = 4.8, 17.2 Hz, 1H), 3.12 (dd, *J* = 9.6, 16.8 Hz, 1H), 2.16 (s,

3H), 2.08 (s, 3H), 1.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 206.2, 205.6, 183.7, 137.9, 137.5, 132.6, 129.9, 128.8, 128.0, 127.9, 127.0, 126.1, 100.3, 91.6, 45.7, 43.5, 30.3, 21.3, 20.0; HRMS (EI): exact mass calculated for M⁺ (C₂₂H₂₂O₃) requires m/z 334.1569, found m/z 334.1568; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 6.3 min (major), 8.6 min (minor), ee 89%.

4i:(S)-2-((S)-1-(3-methoxyphenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)one

The product was obtained in 79% yield, 55.2 mg, yellow oil. $[\alpha]^{25}_{D}$ 73.2 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.78-7.77 (m, 2H), 7.59-7.55 (m, 1H), 7.51-7.48 (m, 2H), 7.10-7.06 (m, 1H), 6.83-6.6.77 (m, 2H), 6.70-6.6.69 (m, 1H), 5.75

(s, 1H), 3.78-3.74 (m, 1H), 3.63 (s, 1H), 3.21 (dd, J = 4.8, 17.2 Hz, 1H), 3.12 (dd, J = 9.6, 16.8 Hz, 1H), 2.10 (s, 3H), 1.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 206.1, 205.5, 183.6, 159.2, 139.6, 132.7, 129.0, 128.9, 128.8, 127.1, 121.5, 114.4, 113.2, 100.3, 91.5, 55.0, 45.7, 43.5, 30.4, 20.1; HRMS (EI): exact mass calculated for M⁺ (C₂₂H₂₂O₄) requires m/z 350.1518, found m/z 350.1521; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 8.4 min (major), 11.0 min (minor), ee 85%.

4j: (S)-2-methyl-2-((S)-1-(naphthalen-2-yl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

The product was obtained in 95% yield, 70.2 mg, yellow oil solid. $[\alpha]^{25}_{D}$ 141.1 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77-7.66 (m, 6H), 7.59-7.55 (m, 1H), 7.51-7.47 (m, 2H), 7.42-7.39 (m, 3H), 5.70 (s, 1H), 4.00-3.96 (m, 1H), 3.36-3.25 (m, 2H), 2.10 (s, 3H), 1.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 206.1,

205.5, 183.7, 135.8, 133.1, 132.7, 132.6, 128.9, 128.8, 128.1, 127.9, 127.7, 127.5, 127.2, 127.1, 125.9, 127.8, 125.8, 100.4, 91.7, 45.8, 43.6, 30.4, 20.2; HRMS (EI): exact mass calculated for M⁺ ($C_{25}H_{22}O_3$) requires m/z 370.1569, found m/z 370.1573; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 10.2 min (major), 15.9 min (minor), ee 90%.

4k: (S)-2-((S)-1-(furan-2-yl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

The product was obtained in 84% yield, 52.1 mg, yellow oil. $[\alpha]^{25}_D$ 3.9 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.81-7.79 (m, 2H), 7.60-7.56 (m, 1H), 7.52-7.48 (m, 2H), 7.28-7.25 (m, 1H), 6.27-6.25 (m, 1H), 6.17-6.16 (m, 1H), 5.88 (s, 1H), 3.89-3.85 (m, 1H), 3.19 (dd, *J* = 4.8, 17.2 Hz, 1H), 3.11 (dd, *J* = 9.6, 17.2 Hz, 1H),

2.14 (s, 3H), 1.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.7, 205.3, 183.9, 152.1, 141.7, 132.8, 128.9, 127.2, 110.4, 108.1, 99.8, 90.5, 40.9, 39.7, 30.2, 19.3; HRMS (EI): exact mass calculated for M⁺ (C₁₉H₁₈O₄) requires m/z 310.1205, found m/z 310.1209; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 8.7 min (major), 16.0 min (minor), ee 90%.

41: (*S*)-2-methyl-2-((*R*)-3-oxo-1-(thiophen-2-yl)butyl)-5phenylfuran-3(2*H*)-one

The product was obtained in 87% yield, 56.7 mg, yellow oil.

[α]²⁵_D 52.7 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84-7.81 (m, 2H), 7.60-7.57 (m, 1H), 7.53-7.48 (m, 2H), 7.09-7.08 (m, 1H), 6.91-6.90 (m, 1H), 6.86-6.85 (m, 1H), 5.83 (s, 1H), 4.13-4.10 (m, 1H), 3.26 (dd, J = 4.4, 17.2 Hz, 1H), 3.10 (dd, J = 9.6, 17.2 Hz, 1H), 2.13 (s, 3H), 1.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.6, 205.4, 184.1, 140.6, 132.8, 128.9, 128.8, 127.3, 126.9, 126.3, 124.6, 100.3, 91.0, 44.5, 41.2, 30.4, 19.7; HRMS (EI): exact mass calculated for M⁺ (C₁₉H₁₈O₃S) requires m/z 326.0977, found m/z 326.0981; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 9.8 min (major), 17.5 min (minor), ee 87%.

4m: (S)-2-methyl-2-((S)-3-oxo-1-phenylhexyl)-5-phenylfuran-3(2H)-one

The product was obtained in 72% yield, 50.1 mg, colorless oil. $[\alpha]^{25}_{D}$ 94.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77-7.76 (m, 2H), 7.59-7.55 (m, 1H), 7.51-7.48 (m, 2H), 7.24-7.21 (m, 2H), 7.16-7.14 (m, 3H), 5.72 (s, 1H), 3.82-3.78 (m, 1H), 3.20-3.09 (m, 2H), 2.41-2.24 (m, 2H), 1.54-0.45 (m, 2H), 1.49 (s, 3H), 0.79 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.4, 205.6, 183.7,

138.2, 132.7, 129.1, 128.9, 128.8, 128.0, 127.2, 127.0, 100.3, 91.7, 45.7, 45.2, 42.6, 20.2, 17.0, 13.6; HRMS (EI): exact mass calculated for M^+ ($C_{23}H_{24}O_3$) requires m/z 348.1725, found m/z 348.1727; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 7.3 min (major), 10.3 min (minor), ee 85%.

4n: (S)-2-ethyl-2-((S)-3-oxo-1-phenylbutyl)-5-phenylfuran-3(2H)-one

The product was obtained in 90% yield, 60.1 mg, colorless oil. $[\alpha]^{25}_{D}$ 126.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.78-7.76 (m, 2H), 7.59-7.55 (m, 1H), 7.51-7.47 (m, 2H), 7.25-7.22 (m, 2H), 7.16-7.14 (m, 3H), 5.76 (s, 1H), 3.81-3.77 (m, 1H), 3.19 (dd, *J* = 5.2, 16.8 Hz,

1H), 3.12 (dd, J = 9.6, 16.8 Hz, 1H), 2.05 (s, 3H), 1.96 (q, J = 7.2 Hz, 2H), 0.81 (t, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 206.1, 205.1, 184.7, 138.1, 132.7, 129.2, 128.9, 128.7, 128.0, 127.2, 127.0, 102.3, 94.8, 45.8, 43.5, 30.3, 27.2, 7.3; HRMS (EI): exact mass calculated for M⁺ (C₂₂H₂₂O₃) requires m/z 334.1569, found m/z 334.1566; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 7.0 min (major), 11.0 min (minor), ee 90%.

40: (S)-2-((S)-1-(4-bromophenyl)-3-oxobutyl)-2-ethyl-5-phenylfuran-3(2H)-one

The product was obtained in 99% yield, 81.5 mg, yellow

O O Br

oil. $[\alpha]^{25}_{D}$ 131.3 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.79-7.77 (m, 2H), 7.60-7.56 (m, 1H), 7.52-7.48 (m, 2H), 7.29-7.27 (m, 2H), 7.13-7.11 (m, 2H), 5.79 (s, 1H), 3.77-3.74(m, 1H), 3.17 (dd, *J* = 4.8, 16.8 Hz, 1H), 3.07 (dd, *J* = 9.6, 17.2 Hz, 1H), 2.06 (s, 3H), 1.94 (q, *J* = 7.2 Hz, 2H), 0.81 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.7, 204.8, 184.7, 137.4, 132.9, 131.2, 130.9, 129.0, 128.5, 127.0, 121.3, 102.4, 94.4, 45.1, 43.4, 30.4, 27.4, 7.2; HRMS (EI): exact mass calculated for M⁺ (C₂₂H₂₁BrO₃) requires m/z 412.0674, found m/z 412.0670;The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 8.9 min (major), 12.1 min (minor), ee 89%.

4p: (S)-2-ethyl-2-((S)-1-(naphthalen-2-yl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

The product was obtained in 96% yield, 73.7 mg, yellow oil. $[\alpha]^{25}_{D}$ 186.5 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.80-7.78 (m, 2H), 7.76-7.74 (m, 2H), 7.71-7.67 (m, 2H), 7.59-7.56 (m, 1H), 7.51-7.48 (m, 2H), 7.45-7.40 (m, 3H), 5.76 (s, 1H), 4.03-3.99 (m, 1H), 3.30-3.27 (m, 2H), 2.08 (s, 3H), 2.05 (q, *J* = 7.2 Hz, 2H), 0.86

(t, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 206.1, 205.0, 184.7, 135.9, 133.1, 132.7, 132.6, 128.9, 128.7, 128.3, 128.0, 127.6, 127.5, 127.4, 127.0, 125.9, 125.8, 102.4, 94.9, 46.0, 43.7, 30.4, 27.3, 7.3; HRMS (EI): exact mass calculated for M⁺ (C₂₆H₂₄O₃) requires m/z 384.1725, found m/z 384.1728; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 9.9 min (major), 13.8 min (minor), ee 90%.

4q: (S)-2-ethyl-2-((R)-3-oxo-1-(thiophen-2-yl)butyl)-5-phenylfuran-3(2H)-one

The product was obtained in 96% yield, 65.2 mg, yellow oil. [α]²⁵_D 91.8 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84-7.82 (m, 2H), 7.59-7.56 (m, 1H), 7.52-7.48 (m, 2H), 7.07-7.06 (m, 1H), 6.90-6.89 (m, 1H), 6.84-6.82 (m, 1H), 5.86 (s, 1H), 4.14-4.10 (m, 1H), 3.21 (dd, *J* = 4.4, 16.8 Hz, 1H), 3.07 (dd, *J* = 9.6, 16.8 Hz, 1H), 2.10 (s, 3H), 1.96

(q, J = 7.2 Hz, 2H), 0.82 (t, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.6, 204.8, 185.0, 140.8, 132.8, 128.9, 128.7, 127.2, 126.9, 126.3, 124.6, 102.2, 94.1, 44.5, 41.2, 30.4, 26.8, 7.3; HRMS (EI): exact mass calculated for M⁺ (C₂₀H₂₀O₃S) requires m/z 340.1133, found m/z 340.1130; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 8.7 min (major), 14.3 min (minor), ee 87%.

5: (S)-2-methyl-2-((S)-3-oxo-1,3-diphenylpropyl)-5-phenylfuran-3(2H)-one

The product was obtained in 56% yield, 42.7 mg, colorless oil(79:21 dr, 8/0 ee). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.05-8.03 (m, 2H), 7.93-7.91 (m, 2H), 7.85-7.83 (m, 2H), 7.70-7.68 (m, 2H), 7.46-7.38 (m, 5H), 7.19-7.17 (m, 1H), 7.04-7.03 (m, 1H), 5.67 (s, 1H), 3.95-3.92 (m, 1H), 3.67-3.63 (m, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 206.1, 197.7, 183.8, 138.4, 136.9, 135.2, 133.6, 133.1, 132.7,

132.7, 129.1, 128.9, 128.7, 128.5, 128.2, 128.1, 127.8, 127.2, 127.1, 100.4, 93.9, 92.0, 45.8, 38.6, 25.1, 20.4;; HRMS (EI): exact mass calculated for M^+ ($C_{26}H_{22}O_3$) requires m/z 382.1569, found m/z 382.1574; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: IPA = 5:1, 1.0 mL/min]: 8.7 min (major), 14.3 min (minor), ee 8%.

E: References

- [1] a) Li, Z.; Nakashige, M.; William, W. J. J. Am. Chem. Soc. 2011, 133, 6553-6556;
 b) Mukerji, S. K.; Sharma, K. K.; Torssell, K. B. G.. Tetrahedron 1983, 39, 2231–2235; c) Winkler, J. D.; Oh, K.; Asselin, S. M. Org. Lett. 2005, 7, 387–389.
- [2] Gao, Y.; Ren, Q.; Wang, L.; Wang, J. Chem. Eur. J. 2010, 16, 13068-13071.
- [3] Yu, F.; Hu, H.; Gu, X.; Ye, J. Org. Lett. 2012, 14, 2038–2041.

F: HPLC Charts of Asymmetric Addition Products

4a:(S)-2-methyl-2-((S)-3-oxo-1-phenylbutyl)-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	6.648	2317.9	257	0.1503	8325.43	17.909
2	6.87	2344.8	255.3	0.1531	0.797	18.116
3	7.682	4163.4	389.8	0.161	0.844	32.167
4	12.387	4117	240.2	0.2611	0.945	31.808

4b:(S)-2-((S)-1-(2-fluorophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.156	1243.1	125.7	0.1503	0.881	5.952
2	7.792	1321.1	122.9	0.1633	0.899	6.325
3	8.503	9142.5	779.6	0.179	0.846	43.776
4	17.301	9178	380.1	0.4025	1.015	43.946

4c: (S)-2-((S)-1-(4-chlorophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.232	1778.9	155.9	0.1695	1.189	6.839
2	7.454	3153.1	181.9	0.2401	0.494	12.123
3	8.658	10587.2	536.2	0.2799	0.538	40.704
4	13.982	10490.8	323.1	0.5411	0.589	40.334

#	Time	Area	Height	Width	Symmetry	Area %
1	8.719	57240.8	2794	0.29	0.527	95.047
2	14.195	2983.1	104.8	0.4742	0.705	4.953

4d: (S)-2-((S)-1-(3-bromophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	6.917	302.7	32.1	0.1434	0.917	5.506
2	7.249	310.2	30.8	0.1525	0.908	5.643
3	8.007	2462.3	221.3	0.1855	0.895	44.796
4	10.142	2421.6	171.5	0.2157	0.94	44.055

#	Time	Area	Height	Width	Symmetry	Area %
1	7.725	656.1	46.3	0.206	1.459	4.036
2	7.959	920	49.5	0.2593	0.49	5.659
3	9.391	7345.8	314.2	0.3267	0.702	45.188
4	14.625	7334.2	206.4	0.4989	0.759	45.117

4f: (S)-2-methyl-2-((S)-1-(3-nitrophenyl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	10.595	2508.6	124.4	0.2993	0.807	6.653
2	11.092	3697.1	135.8	0.3831	0.56	9.804
3	13.013	15848.6	526.4	0.4284	0.6	42.029
4	15.715	15654.3	430.8	0.52	0.577	41.514

#	Time	Area	Height	Width	Symmetry	Area %
1	13.224	33000.5	1105.2	0.4976	0.708	95.137
2	15.961	1687	51.8	0.5433	0.646	4.863

4g: (S)-2-methyl-2-((S)-1-(4-nitrophenyl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	11.878	389.1	23.4	0.2496	1.099	6.862
2	12.208	414	23.4	0.2651	0.827	7.301
3	12.913	2377.6	124.8	0.2892	0.89	41.926
4	19.108	2490.2	84.8	0.4893	0.859	43.911

#	Time	Area	Height	Width	Symmetry	Area %
1	13.117	39308.2	1973.7	0.3319	1.518	95.031
2	19.277	2055.5	74.4	0.4603	0.884	4.969

4h: (S)-2-methyl-2-((S)-3-oxo-1-m-tolylbutyl)-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	5.674	217.5	17.2	0.1943	1.347	3.155
2	5.888	247.5	28.9	0.1261	1.02	3.591
3	6.222	3308.8	370.2	0.149	0.954	48.005
4	8.537	3118.9	264.8	0.1796	0.94	45.249

#	Time	Area	Height	Width	Symmetry	Area %
1	6.281	17492.4	2029	0.1437	0.881	94.559
2	8.565	1006.5	90.1	0.1861	0.957	5.441

4i:(S)-2-((S)-1-(3-methoxyphenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	8.609	29960.7	1583.5	0.3278	0.623	50.898
2	11.449	28903.2	1093.3	0.3655	0.87	49.102

4j: (S)-2-methyl-2-((S)-1-(naphthalen-2-yl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	8.415	2679.9	146.1	0.3056	0	4.842
2	9.036	3112.6	146.9	0.3533	0.64	5.624
3	10.188	24922.8	1008	0.4121	0.558	45.028
4	15.863	24634.4	633.8	0.6478	0.58	44.507

4k: (S)-2-((S)-1-(furan-2-yl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.269	1544.9	95.5	0.2295	0.614	4.721
2	7.976	1543.7	89.9	0.2455	0.686	4.717
3	8.714	14958.1	737.9	0.3379	0.538	45.707
4	16.088	14679.2	379.4	0.6449	0.567	44.855

4l: (S)-2-methyl-2-((R)-3-oxo-1-(thiophen-2-yl)butyl)-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.347	1508.8	106.4	0.2063	0.711	4.145
2	7.778	2006.1	108.3	0.2598	0.564	5.511
3	9.846	16398.4	719.7	0.3226	0.512	45.050
4	17.558	16487	390.1	0.7044	0.571	45.294

#	Time	Area	Height	Width	Symmetry	Area %
1	9.814	47427.1	2011	0.3334	0.496	93.834
2	17.525	3116.3	89.2	0.5821	0.711	6.166

4m: (S)-2-methyl-2-((S)-3-oxo-1-phenylhexyl)-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	6.296	1225	101.4	0.1744	0.863	2.803
2	6.636	1359.7	100.7	0.1925	0.774	3.111
3	7.359	20525.6	1264.6	0.2287	0.636	46.969
4	10.352	20590	902.6	0.3258	0.703	47.116

4n: (S)-2-ethyl-2-((S)-3-oxo-1-phenylbutyl)-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	6.164	2149	195.7	0.183	0	10.335
2	6.479	2582.2	200.4	0.2148	0	12.418
3	7.071	8102.8	552.7	0.2443	0.586	38.967
4	11.049	7960.1	351.1	0.3779	0.611	38.281

40: (S)-2-((S)-1-(4-bromophenyl)-3-oxobutyl)-2-ethyl-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	8.874	11728.4	622	0.3142	0.57	50.011
2	12.106	11723.1	457.5	0.4271	0.67	49.989

#	Time	Area	Height	Width	Symmetry	Area %
1	8.89	10644.8	555.2	0.3196	0.573	94.683
2	12.116	597.7	28.3	0.3522	0.793	5.317

4p: (S)-2-ethyl-2-((S)-1-(naphthalen-2-yl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.558	4485.1	293.8	0.2203	0.647	4.547
2	8.214	5068.7	272.6	0.2636	0.572	5.138
3	9.913	44645.4	2056.6	0.3101	0.531	45.259
4	13.729	44444.6	1451.2	0.5104	0.555	45.056

4q: (S)-2-ethyl-2-((R)-3-oxo-1-(thiophen-2-yl)butyl)-5-phenylfuran-3(2H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	6.859	1495	112.4	0.1915	0.628	3.721
2	7.466	1697.3	106	0.2262	0.592	4.225
3	8.841	18469.9	1009.1	0.2616	0.576	45.974
4	14.537	18512.1	609.9	0.5059	0.622	46.079

0 1.0	20 30	40 50 6	, , , , , , , , , , , , , , , , , , ,	* * · · · · · · · · · ·	11.0 12.0 13.0	14.0
	#	Time	Area	Height	Area %	
	1	6.971	8315867	789963	34.864	
	2	7.757	3511879	300854	14.723	
				0.50070	14506	
	3	8.956	3526795	259278	14.786	

#	Time	Area	Height	Area %
1	7.007	722395	65404	8.680
2	7.787	3713056	299237	44.616
3	8.997	3144677	225468	37.787
4	10.145	742074	48601	8.917

G: NMR Spectra of Asymmetric Addition Products

4a: (S)-2-methyl-2-((S)-3-oxo-1-phenylbutyl)-5-phenylfuran-3(2H)-one

4b:(S)-2-((S)-1-(2-fluorophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

4c: (S)-2-((S)-1-(4-chlorophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

4d: (S)-2-((S)-1-(3-bromophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

4e: (S)-2-((S)-1-(4-bromophenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

4f: (S)-2-methyl-2-((S)-1-(3-nitrophenyl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

4g: (S)-2-methyl-2-((S)-1-(4-nitrophenyl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

4h: (S)-2-methyl-2-((S)-3-oxo-1-m-tolylbutyl)-5-phenylfuran-3(2H)-one

4i:(S)-2-((S)-1-(3-methoxyphenyl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)one

4j: (S)-2-methyl-2-((S)-1-(naphthalen-2-yl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

4k: (S)-2-((S)-1-(furan-2-yl)-3-oxobutyl)-2-methyl-5-phenylfuran-3(2H)-one

4l: (S)-2-methyl-2-((R)-3-oxo-1-(thiophen-2-yl)butyl)-5-phenylfuran-3(2H)-one

4m: (S)-2-methyl-2-((S)-3-oxo-1-phenylhexyl)-5-phenylfuran-3(2H)-one

4n: (S)-2-ethyl-2-((S)-3-oxo-1-phenylbutyl)-5-phenylfuran-3(2H)-one

40: (S)-2-((S)-1-(4-bromophenyl)-3-oxobutyl)-2-ethyl-5-phenylfuran-3(2H)-one

4p: (S)-2-ethyl-2-((S)-1-(naphthalen-2-yl)-3-oxobutyl)-5-phenylfuran-3(2H)-one

4q: (S)-2-ethyl-2-((R)-3-oxo-1-(thiophen-2-yl)butyl)-5-phenylfuran-3(2H)-one

H: Crystallographic Information for Product 4e

Table 1. Crystal data and structure refinement for 4e.

4e		
$C_{21}H_{19}BrO_3$		
399.27		
293(2) K		
0.71073 Å		
Orthorhombic		
P2(1)2(1)2(1)		
$a = 10.687(8)$ Å $\alpha = 90^{\circ}$		
$b = 12.035(9) \text{ Å} \qquad \beta = 90^{\circ}$		
$c = 14.902(11) \text{ Å} \qquad \gamma = 90^{\circ}$		
1917(2) Å ³		
4		
1.384 Mg/m ³		
2.160 mm ⁻¹		
816		
$0.321 \times 0.225 \times 0.197 \text{ mm}^3$		
2.18 to 25.49°		
$-12 \le h \le 12, -14 \le k \le 7, -15 \le l \le 18$		
$9193 / 3560 [R_{int} = 0.0692]$		
100.0 %		
Empirical		
1.0000 and 0.0895		
Full-matrix least-squares on F ²		
3560 / 1 / 229		
1.008		
$R_1 = 0.0517, wR_2 = 0.1255$		
$R_1 = 0.0873, wR_2 = 0.1398$		
-0.006(13)		
0.042(3)		
0.526 and -0.560 e.Å ⁻³		

Table 2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **4e**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	у	Z	U(eq)
Br(1)	8994(1)	13054(1)	-761(1)	121(1)
O(1)	10324(3)	10361(3)	2937(2)	74(1)
O(2)	7610(2)	8884(2)	2388(2)	50(1)
O(3)	10869(4)	7404(3)	289(3)	96(1)
C(1)	8979(3)	8902(3)	2406(3)	46(1)

S52

C(2)	9264(4)	10007(4)	2824(3)	54(1)
C(3)	8100(4)	10506(4)	3063(3)	57(1)
C(4)	7201(4)	9818(4)	2798(3)	51(1)
C(5)	5849(4)	9926(4)	2863(3)	57(1)
C(6)	5093(4)	9100(6)	2576(4)	82(2)
C(7)	3805(5)	9186(8)	2645(5)	119(3)
C(8)	3308(6)	10152(8)	3023(5)	107(2)
C(9)	4060(6)	10950(7)	3337(5)	108(2)
C(10)	5313(5)	10848(5)	3259(4)	85(2)
C(11)	9412(5)	7995(4)	3058(3)	66(1)
C(12)	9477(3)	8750(3)	1471(3)	46(1)
C(13)	8925(4)	7722(3)	1010(3)	53(1)
C(14)	9776(7)	7152(4)	364(3)	74(2)
C(15)	9186(8)	6205(5)	-144(4)	112(2)
C(16)	9343(4)	9776(3)	891(3)	48(1)
C(17)	8192(5)	10197(4)	654(3)	66(1)
C(18)	8087(6)	11161(5)	159(4)	79(2)
C(19)	9115(7)	11699(4)	-99(3)	75(1)
C(20)	10291(6)	11310(4)	85(3)	72(1)
C(21)	10393(5)	10336(4)	598(3)	63(1)

Table 3. Bond lengths [Å] and angles $[\circ]$ for **4e**.

Br(1)-C(19)	1.911(5)	O(1)-C(2)	1.221(5)
O(2)-C(4)	1.352(5)	O(2)-C(1)	1.463(5)
O(3)-C(14)	1.212(7)	C(1)-C(2)	1.500(6)
C(1)-C(12)	1.503(6)	C(1)-C(11)	1.533(6)
C(2)-C(3)	1.427(6)	C(3)-C(4)	1.328(6)
C(3)-H(3)	0.9300	C(4)-C(5)	1.455(6)
C(5)-C(6)	1.351(7)	C(5)-C(10)	1.380(7)
C(6)-C(7)	1.384(8)	C(6)-H(6)	0.9300
C(7)-C(8)	1.397(10)	C(7)-H(7)	0.9300
C(8)-C(9)	1.337(10)	C(8)-H(8)	0.9300
C(9)-C(10)	1.350(8)	C(9)-H(9)	0.9300
C(10)-H(10)	0.9300	C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600	C(11)-H(11C)	0.9600
C(12)-C(16)	1.514(6)	C(12)-C(13)	1.533(6)
C(12)-H(12)	0.9800	C(13)-C(14)	1.490(7)
C(13)-H(13A)	0.9700	C(13)-H(13B)	0.9700
C(14)-C(15)	1.506(8)	C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600	C(15)-H(15C)	0.9600
C(16)-C(17)	1.376(6)	C(16)-C(21)	1.380(6)
C(17)-C(18)	1.379(7)	C(17)-H(17)	0.9300

C(18)-C(19)	1.332(8)	C(18)-H(18)	0.9300
C(19)-C(20)	1.368(8)	C(20)-C(21)	1.404(7)
C(20)-H(20)	0.9300	C(21)-H(21)	0.9300
C(4)-O(2)-C(1)	107.6(3)	O(2)-C(1)-C(2)	102.9(3)
O(2)-C(1)-C(12)	109.6(3)	C(2)-C(1)-C(12)	114.9(3)
O(2)-C(1)-C(11)	107.6(3)	C(2)-C(1)-C(11)	107.9(3)
C(12)-C(1)-C(11)	113.2(3)	O(1)-C(2)-C(3)	128.9(4)
O(1)-C(2)-C(1)	123.7(4)	C(3)-C(2)-C(1)	107.4(3)
C(4)-C(3)-C(2)	107.1(4)	C(4)-C(3)-H(3)	126.4
C(2)-C(3)-H(3)	126.4	C(3)-C(4)-O(2)	114.8(4)
C(3)-C(4)-C(5)	130.0(4)	O(2)-C(4)-C(5)	115.2(4)
C(6)-C(5)-C(10)	118.6(4)	C(6)-C(5)-C(4)	120.5(4)
C(10)-C(5)-C(4)	120.8(5)	C(5)-C(6)-C(7)	121.0(6)
C(5)-C(6)-H(6)	119.5	C(7)-C(6)-H(6)	119.5
C(6)-C(7)-C(8)	118.1(7)	C(6)-C(7)-H(7)	121.0
C(8)-C(7)-H(7)	121.0	C(9)-C(8)-C(7)	120.7(6)
C(9)-C(8)-H(8)	119.7	C(7)-C(8)-H(8)	119.7
C(8)-C(9)-C(10)	120.0(7)	C(8)-C(9)-H(9)	120.0
C(10)-C(9)-H(9)	120.0	C(9)-C(10)-C(5)	121.4(7)
C(9)-C(10)-H(10)	119.3	C(5)-C(10)-H(10)	119.3
C(1)-C(11)-H(11A)	109.5	C(1)-C(11)-H(11B)	109.5
H(11A)-C(11)-	109.5	C(1)-C(11)-H(11C)	109.5
H(11B)			
H(11A)-C(11)-	109.5	H(11B)-C(11)-H(11C)	109.5
H(11C)			
C(1)-C(12)-C(16)	113.3(3)	C(1)-C(12)-C(13)	112.2(3)
C(16)-C(12)-C(13)	111.5(3)	C(1)-C(12)-H(12)	106.4
C(16)-C(12)-H(12)	106.4	C(13)-C(12)-H(12)	106.4
C(14)-C(13)-C(12)	115.2(4)	C(14)-C(13)-H(13A)	108.5
C(12)-C(13)-H(13A)	108.5	C(14)-C(13)-H(13B)	108.5
C(12)-C(13)-H(13B)	108.5	H(13A)-C(13)-H(13B)	107.5
O(3)-C(14)-C(13)	122.2(5)	O(3)-C(14)-C(15)	123.1(6)
C(13)-C(14)-C(15)	114.7(5)	C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5	H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5	H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5	C(17)-C(16)-C(21)	117.7(4)
C(17)-C(16)-C(12)	122.1(4)	C(21)-C(16)-C(12)	120.1(4)
C(16)-C(17)-C(18)	121.3(5)	C(16)-C(17)-H(17)	119.3
C(18)-C(17)-H(17)	119.3	C(19)-C(18)-C(17)	119.8(5)
C(19)-C(18)-H(18)	120.1	C(17)-C(18)-H(18)	120.1
C(18)-C(19)-C(20)	122.2(5)	C(18)-C(19)-Br(1)	120.5(5)
C(20)-C(19)-Br(1)	117.3 (5)	C(19)-C(20)-C(21)	117.8(5)
C(19)-C(20)-H(20)	121.1	C(21)-C(20)-H(20)	121.1
C(16)-C(21)-C(20)	121.1(5)	C(16)-C(21)-H(21)	119.4

C(20)-C(21)-H(21)

Symmetry transformations used to generate equivalent atoms:

119.4

Table 4. Anisotropic displacement parameters (Å² × 10³) for **4e**. The anisotropic displacement factor exponent takes the form: -2 π^2 [h² a^{*2} U₁₁ + ... + 2 h ka^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br(1)	201(1)	65(1)	98(1)	29(1)	-22(1)	-10(1)
O(1)	47(2)	83(2)	91(3)	-6(2)	-14(2)	-10(2)
O(2)	45(2)	46(2)	58(2)	-4(1)	5(1)	0(1)
O(3)	94(3)	83(3)	112(3)	0(2)	53(2)	20(3)
C(1)	34(2)	48(2)	57(2)	4(2)	3(2)	3(2)
C(2)	50(3)	56(3)	54(3)	-1(2)	-11(2)	0(2)
C(3)	60(3)	48(3)	63(3)	-13(2)	-1(2)	5(2)
C(4)	48(2)	60(3)	44(2)	4(2)	4(2)	7(2)
C(5)	45(2)	79(3)	47(2)	3(2)	2(2)	8(3)
C(6)	46(3)	123(5)	78(4)	-30(4)	0(3)	2(3)
C(7)	57(3)	207(9)	94(5)	-39(5)	-11(3)	-7(5)
C(8)	62(3)	168(7)	89(5)	-19(5)	0(3)	24(5)
C(9)	75(4)	125(6)	123(5)	10(5)	27(4)	48(5)
C(10)	67(3)	84(4)	103(4)	-2(3)	13(3)	29(3)
C(11)	74(3)	58(3)	65(3)	12(2)	-3(2)	16(2)
C(12)	32(2)	49(2)	57(3)	2(2)	2(2)	3(2)
C(13)	48(2)	51(2)	59(3)	3(2)	-1(2)	4(2)
C(14)	113(5)	55(3)	54(3)	6(2)	17(3)	6(3)
C(15)	171(7)	87(4)	78(4)	-28(3)	17(4)	4(5)
C(16)	51(2)	47(2)	47(2)	1(2)	3(2)	2(2)
C(17)	62(3)	72(3)	65(3)	17(3)	1(3)	6(3)
C(18)	102(4)	70(4)	65(3)	19(3)	-11(3)	5(3)
C(19)	128(4)	49(3)	49(3)	4(2)	-20(3)	-5(3)
C(20)	100(3)	51(3)	64(3)	-2(2)	4(3)	-27(2)
C(21)	74(3)	52(3)	62(3)	1(2)	5(2)	-11(2)

Table 5. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters ($Å^2 \times 10^3$) for **4e**.

	Х	у	Z	U(eq)
H(3)	7991	11185	3351	68
H(6)	5444	8462	2329	99
H(7)	3286	8617	2446	143
H(8)	2445	10242	3056	128
H(9)	3720	11576	3610	129
H(10)	5827	11411	3476	102

H(11A)	9057	8129	3640	99
H(11B)	10308	8004	3099	99
H(11C)	9141	7282	2842	99
H(12)	10377	8613	1531	55
H(13A)	8682	7192	1469	63
H(13B)	8173	7942	693	63
H(15A)	8651	6495	-605	168
H(15B)	8703	5758	262	168
H(15C)	9830	5758	-412	168
H(17)	7471	9825	832	80
H(18)	7302	11434	7	95
H(20)	10998	11678	-124	86
H(21)	11182	10065	744	75

Table 6. Torsion angles [°] for 4e.

C(4)-O(2)-C(1)-C(2)	-3.8(4)	C(4)-O(2)-C(1)-C(12)	-126.5(3)
C(4)-O(2)-C(1)-C(11)	110.1(4)	O(2)-C(1)-C(2)-O(1)	-177.9(4)
C(12)-C(1)-C(2)-O(1)	-58.8(6)	C(11)-C(1)-C(2)-O(1)	68.5(5)
O(2)-C(1)-C(2)-C(3)	3.5(4)	C(12)-C(1)-C(2)-C(3)	122.6(4)
C(11)-C(1)-C(2)-C(3)	-110.1(4)	O(1)-C(2)-C(3)-C(4)	179.4(5)
C(1)-C(2)-C(3)-C(4)	-2.0(5)	C(2)-C(3)-C(4)-O(2)	-0.5(5)
C(2)-C(3)-C(4)-C(5)	-178.9(4)	C(1)-O(2)-C(4)-C(3)	2.9(5)
C(1)-O(2)-C(4)-C(5)	-178.5(4)	C(3)-C(4)-C(5)-C(6)	-177.6(5)
O(2)-C(4)-C(5)-C(6)	4.0(6)	C(3)-C(4)-C(5)-C(10)	-0.9(8)
O(2)-C(4)-C(5)-C(10)	-179.3(4)	C(10)-C(5)-C(6)-C(7)	2.3(9)
C(4)-C(5)-C(6)-C(7)	179.1(6)	C(5)-C(6)-C(7)-C(8)	-0.2(10)
C(6)-C(7)-C(8)-C(9)	-2.4(11)	C(7)-C(8)-C(9)-C(10)	2.7(11)
C(8)-C(9)-C(10)-C(5)	-0.5(11)	C(6)-C(5)-C(10)-C(9)	-2.0(9)
C(4)-C(5)-C(10)-C(9)	-178.9(5)	O(2)-C(1)-C(12)-C(16)	74.8(4)
C(2)-C(1)-C(12)-C(16)	-40.5(4)	C(11)-C(1)-C(12)-C(16)	-165.0(3)
O(2)-C(1)-C(12)-C(13)	-52.5(4)	C(2)-C(1)-C(12)-C(13)	-167.8(3)
C(11)-C(1)-C(12)-C(13)	67.7(4)	C(1)-C(12)-C(13)-C(14)	-147.9(4)
C(16)-C(12)-C(13)-C(14)	83.8(4)	C(12)-C(13)-C(14)-O(3)	8.4(7)
C(12)-C(13)-C(14)-C(15)	-174.9(4)	C(1)-C(12)-C(16)-C(17)	-64.5(6)
C(13)-C(12)-C(16)-C(17)	63.2(6)	C(1)-C(12)-C(16)-C(21)	114.0(4)
C(13)-C(12)-C(16)-C(21)	-118.3(4)	C(21)-C(16)-C(17)-C(18)	-1.5(7)
C(12)-C(16)-C(17)-C(18)	177.1(4)	C(16)-C(17)-C(18)-C(19)	0.1(8)
C(17)-C(18)-C(19)-C(20)	2.2(8)	C(17)-C(18)-C(19)-Br(1)	-178.5(4)
C(18)-C(19)-C(20)-C(21)	-2.9(8)	Br(1)-C(19)-C(20)-C(21)	177.7(3)
C(17)-C(16)-C(21)-C(20)	0.7(7)	C(12)-C(16)-C(21)-C(20)	-177.9(4)
C(19)-C(20)-C(21)-C(16)	1.5(7)		

Symmetry transformations used to generate equivalent atoms: