Supporting Information

A Facile and Efficient [4 + 2] Cyclization Reaction of Sulfur Ylides: Access to

N-Fused Benzimidazoles

Hui Qin, ^{‡a} Yuanyuan Miao, ^{‡b} Jian Xu, ^a Qiri Bi, ^b Wei Qu, ^{ac} Wenyuan Liu, ^d Feng Feng, ^{*ace}, and Haopeng Sun, ^{*f}

- ^{a.} Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
- ^{b.} State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- ^{c.} Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
- ^{d.} Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
- e. Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
- f. Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.

^{*} Corresponding author.

E-mail: <u>fengfeng@cpu.edu.cn</u> (F. Feng), <u>sunhaopeng@163.com</u> (H. p. Sun)

[‡]These authors contributed equally to this work.

List of Contents

List of Contents		
1.	General information	S2
2.	General procedure for the synthesis of 1a-w	S2
3.	General procedure for the synthesis of 2	S2
4.	General procedure for the synthesis of 3a-w	S2-3
5.	Characterization of products	S3-16
6.	References	S16
7.	Copies of NMR and HR-ESI-MS Spectra	S17-93

1. General information

Unless stated otherwise, all reactions for preparing compound **1a-w** were carried out under an air atmosphere and all reactions for providing compound **3a-w** were performed under argon atmosphere at room temperature. All reagents and solvents were of commercial quality and were used without further purification. Purification was carried out according to standard laboratory methods¹. All reactions were monitored by TLC analysis with silica gel-coated plates with fluorescent indicator UV254. ¹H and ¹³C NMR spectra were obtained on either a Bruker AV 300 at 300 MHz and 75 MHz, respectively. Chemical shifts are reported in ppm and coupling constants are reported in Hz with TMS at 0.0 ppm (¹H and ¹³C) or CDCl₃ referenced at 7.26 (¹H) and 77.0 ppm (¹³C) and DMSO-*d*₆ referenced at 2.50 (1H) and 39.5 (¹³C). Mass spectra were measured with an Agilent Q-TOF 6520 mass spectrometer using ESI ionization.

2. General procedure for the synthesis of 1a-w

To a 50 mL round bottomed flask was added different substituted 1,2-phenylenediamine 1 (10 mmol, 1.0 equiv.), requisite acid 9 (15 mmol, 1.5 equiv.) and 4N hydrochloric acid (20 mL). The mixture was heated for 6 h under reflux. The reaction mixture was cooled to room temperature and ammonia solution was added and the mixture cooled in ice until precipitate formed. The resulting solid was recrystallised from aqueous ethanol to give compound **1a-w** as a solid².

3. General procedure for the synthesis of 2

A solution of 2-bromoethyl trifluoromethanesulfonate³ (4.12 g, 16.0 mmol) in anhydrous toluene (12 mL) was treated with phenyl sulfide (3.66 g, 19.2 mmol) at room temperature under argon with stirring. The reaction mixture was then heated at 100 °C under argon for 5 hours. The solution was allowed to cool to RT and diethyl ether (20 mL) was added to precipitate the product 9 which was isolated by filtration as a white to grey powder (3.22 g, 45%) after washing with Et₂O and used in the next step without further purification⁴.

4. General procedure for the synthesis of 3a-w

In a 25 mL round bottomed flask compound **1a-w** (0.4 mmol, 1.0 equiv.) and bromoethylsulfonium salt **2** (0.2 mmol, 2.0 equiv.) was dissolved with acetonitrile: water (ACN: H_2O)/2:1 and was treated with KOH (1.6 mmol, 4.0 equiv.) at 0 °C under N₂ for 30 minutes. Then mixture was warmed to room temperature and was stirred for 12 hours until the reaction completed. After that, reaction system was quenched with saturated ammonium chloride solution (5 mL), and was extracted with DCM (3 x 30 mL). The combined organic layer washed with H₂O (2 x 10 mL), dried with anhydrous sodium sulfate. After concentration, product was purified using column chromatography on silica gel with suitable eluent.

5. Characterization of products

1*H***-benzimidazol-2-methanol (1a)**⁵: White solid, 93% yield, mp 157-159 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.34 (brs, 1H), 7.48-7.51 (dd, J = 6.0, 3.2 Hz, 2H), 7.12-7.15 (dd, J = 6.0, 3.2 Hz, 2H), 5.76 (brs, 1H), 4.70 (s, 2H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 155.53, 138.95, 121.86, 115.26, 58.12. HRMS (ESI-TOF) calcd for C₈H₈N₂O [M+H] +: 149.0709; found: 149.0717.

(5-Methoxy-1*H*-benzimidazol-2-yl)-methanol (1b)⁶: bright brown solid, 66% yield, mp 197-199 °C.

¹H NMR (300 MHz, DMSO- d_6): δ 7.38 (d, J = 8.7 Hz, 1H), 7.00 (d, J = 2.3 Hz, 1H), 6.78 (dd, J = 8.7, 2.4 Hz, 1H), 5.56 (brs, 1H), 4.65 (s, 2H), 3.77 (s, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 155.71, 155.02, 111.08, 58.16, 55.84.

HRMS (ESI-TOF) calcd for $C_9H_{10}N_2O_2$ [M+H]⁺: 179.0815; found: 179.0819.

(5-Methyl-1*H*-benzimidazol-2-yl)-methanol (1c)⁶: pale creamy powdery solid, 68% yield, mp 176-178 °C.

¹H NMR (300 MHz, DMSO-*d*₆): δ 7.38 (d, *J* = 8.1 Hz, 1H), 7.28 (s, 1H), 6.99 (dd, *J* = 8.2, 1.1 Hz, 1H), 5.94 (brs, 1H), 4.67 (s, 2H), 2.39 (s, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 155.20, 138.59, 137.29, 131.01, 123.36, 115.16, 114.64, 58.04, 21.71.

HRMS (ESI-TOF) calcd for C₉H₁₀N₂O [M+H] ⁺: 163.0866; found: 163.0862.

(**4-Methyl-1***H***-benzimidazol-2-yl)-methanol (1d**)⁷: brown crystalline, 89% yield, mp 196-198 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.31 (d, *J* = 7.9 Hz, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 7.2 Hz, 1H), 5.66 (brs, 1H), 4.69 (s, 2H), 2.50 (s, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 154.81, 139.32, 137.77, 125.50, 122.18, 121.85, 112.10, 58.18, 17.23.

HRMS (ESI-TOF) calcd for $C_9H_{10}N_2O$ [M+H] ⁺: 163.0866; found: 163.0871.

(**5**, **6**-Dimethyl-1*H*-benzimidazol-2-yl)-methanol (1e)⁸: brick red solid, 60% yield, mp 243-246 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.26 (s, 2H), 5.74 (brs, 1H), 4.65 (s, 2H), 2.28 (s, 6H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 154.51, 137.50, 130.08, 115.37, 58.13, 20.41. HRMS (ESI-TOF) calcd for C₁₀H₁₂N₂O [M+H]⁺: 177.1022; found: 177.1020.

(**5**, **6-Difluoro-1***H***-benzimidazol-2-yl**)-**methanol** (**1f**): black solid, 74% yield, mp 198-201 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.56 (brs, 1H), 7.51 (t, *J*_{H-F}= 9.2 Hz, 2H), 5.76 (s, 1H), 4.67 (s, 2H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 157.08, 145.11-148.50 (dd, $J_{C-F} = 16.9, 237.3$ Hz), 102.88, 58.02. HRMS (ESI-TOF) calcd for C₈H₆F₂N₂O [M+H] ⁺: 185.0521; found: 185.0522.

(5, 6-Dichloro-1*H*-benzimidazol-2-yl)-methanol (1g): red solid, 87% yield, mp 248-250 °C. ¹H NMR (300 MHz, DMSO- d_6): δ 7.77 (s, 2H), 6.43 (brs, 1H), 4.74 (s, 2H). ¹³C NMR (75 MHz, DMSO- d_6): δ 158.46, 137.55, 124.95, 116.48, 57.62. HRMS (ESI-TOF) calcd for C₈H₆Cl₂N₂O [M+H] ⁺: 216.9930; found: 216.9928.

(5, 6-Dibromo-1*H*-benzimidazol-2-yl)-methanol (1h): rufous crystalline, 91% yield, mp 260-262 °C.

¹H NMR (300 MHz, DMSO-*d*₆): δ 12.64 (brs, 1H), 7.87 (s, 2H), 5.83 (s, 1H), 4.71 (d, *J* = 4.7 Hz, 2H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 158.40, 115.90, 57.98.

HRMS (ESI-TOF) calcd for $C_8H_6Br_2N_2O$ [M+H] ⁺: 304.8920; found: 304.8929.

(1*H*-Naphth[2, 3-*d*]imidazol-2yl)-methanol (1i)⁹: pale brown crystalline, 57% yield, mp 257-259 °C.

¹H NMR (300 MHz, DMSO- d_6): δ 12.45 (brs, 1H), 7.96-8.01 (m, 4H), 7.32-7.38 (m, 2H), 5.88 (t, J = 5.9 Hz, 1H), 4.81 (d, J = 4.8 Hz, 2H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 160.41, 139.34, 130.04, 128.15, 123.69, 111.17, 58.40. HRMS (ESI-TOF) calcd for C₁₂H₁₀N₂O [M+H] ⁺: 199.0866; found: 199.0868.

(1*H*-benzimidazole-2-yl)-ethanol (1j)¹⁰: white powder, 93% yield, mp 170-173 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.48-7.51 (dd, *J* = 5.9, 3.2 Hz, 2H), 7.12-7.14 (dd, *J* = 5.9, 3.1 Hz, 2H), 5.81 (brs, 1H), 4.96 (q, *J* = 6.5 Hz, 1H), 1.52 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 159.01, 138.84, 121.82, 115.28, 64.09, 23.41. HRMS (ESI-TOF) calcd for C₉H₁₀N₂O [M+H] ⁺: 163.0866; found: 163.0874.

2-(**α-Hydroxyisopropyl)-benzimidazole** (**1k**)¹¹: colorless crystalline, 59% yield, mp 221-223 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.13 (brs, 1H), 7.48 (m, 2H), 7.12 (dd, *J* = 6.0, 3.2 Hz, 2H), 5.59 (s, 1H), 1.57 (s, 6H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 161.74, 121.58, 69.28, 30.47.

HRMS (ESI-TOF) calcd for $C_{10}H_{12}N_2O$ [M+H] ⁺: 177.1022; found: 177.1030.

α-(1-Methylethyl)-1*H***-benzimidazol-2-methanol (11)**: pale brown crystalline, 25% yield, mp 225-227 °C.

¹H NMR (300 MHz, DMSO-*d*₆): δ 12.18 (brs, 1H), 7.47-7.50 (m, 2H), 7.08-7.13 (m, 2H), 5.76 (d, *J* = 4.7 Hz, 1H), 4.54 (t, *J* = 5.2 Hz, 1H), 2.15 (dq, *J* = 13.3, 6.7 Hz, 1H), 0.89 (dd, *J* = 11.5, 6.8 Hz, 6H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 157.80, 121.56, 73.06, 34.08, 19.21, 18.05. HRMS (ESI-TOF) calcd for C₁₁H₁₄N₂O [M+H] ⁺: 191.1179; found: 191.1196.

(1*H*-benzimidazol-2-yl)-cyclohexanol (1m): pale creamy powder, 49% yield, mp 229-232 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.49 (dd, J = 5.9, 3.2 Hz, 2H), 7.13 (dd, J = 6.0, 3.2 Hz, 2H), 5.38 (s, 1H), 4.54 (t, J = 5.2 Hz, 1H), 1.96-2.04 (m, 2H), 1.51-1.82 (m, 7H), 1.29-1.33 (m, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 161.90, 121.69, 115.37, 70.31, 37.32, 25.62, 21.85. HRMS (ESI-TOF) calcd for C₁₃H₁₆N₂O [M+H] ⁺: 217.1335; found: 217.1340.

2-(**α-Hydroxybenzyl)-benzimidazole** (**1n**): pale creamy crystalline, 64% yield, mp 200-203 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.37 (brs, 1H), 7.47-7.52 (m, 4H), 7.32-7.37 (m, 2H), 7.23-7.28 (m, 1H), 7.13 (dd, J = 5.9, 3.1 Hz, 2H), 6.54 (d, J = 3.4 Hz, 1H), 5.94 (d, J = 2.5 Hz, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 157.44, 142.87, 128.62, 127.88, 126.88, 121.94, 70.43. HRMS (ESI-TOF) calcd for C₁₄H₁₂N₂O [M+H] ⁺: 225.1022; found: 225.1037.

2-(*a*-Hydroxy-p-fluorobenzyl)-benzimidazole (1o): pale brown solid, 58% yield, mp 160-162 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.47-7.56 (m, 4H), 7.13-7.20 (m, 4H), 6.60 (s, 1H), 5.95 (s, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 160.33-163.55 (d, *J*_{C-F} = 241.5 Hz), 157.22, 139.08-139.11 (d, *J*_{C-F} = 2.7 Hz), 128.85-128.96 (d, *J*_{C-F} = 8.2 Hz), 121.98, 115.22-115.50 (d, *J*_{C-F} = 41.2 Hz), 69.71. HRMS (ESI-TOF) calcd for C₁₄H₁₁FN₂O [M+H] ⁺: 243.0928; found: 243.0942.

2-(α-Hydroxy-p-chlorobenzyl)-benzimidazole (1p): pale yellow solid, 63% yield, mp 155-158 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.40 (brs, 1H), 7.39-7.53 (m, 6H), 7.13 (dd, *J* = 6.0, 3.2 Hz, 2H), 6.59-6.67 (m, 1H), 5.94 (d, *J* = 4.2 Hz, 1H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 156.97, 141.87, 132.41, 128.76, 128.58, 121.93, 69.69. HRMS (ESI-TOF) calcd for C₁₄H₁₁ClN₂O [M+H] ⁺: 259.0633; found: 259.0636.

2-(α-Hydroxy-o-chlorobenzyl)-benzimidazole (1q): pale red powder, 46% yield, mp 211-214 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.43 (brs, 1H), 7.68 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.30-7.50 (m, 5H), 7.12-7.16 (dd, J = 6.8, 3.6 Hz, 2H), 6.62 (d, J = 4.9 Hz, 1H), 6.24 (d, J = 4.7 Hz, 1H). ¹³C NMR (75 MHz, DMSO- d_6): δ 155.87, 140.24, 129.67, 129.56, 129.43, 127.69, 122.01, 67.17. HRMS (ESI-TOF) calcd for C₁₄H₁₁ClN₂O [M+H] +: 259.0633; found: 259.0638.

2-(α-Hydroxy-p-bromobenzyl)-benzimidazole (1r): brown solid, 89% yield, mp 249-252 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.44-7.57 (m, 6H), 7.10-7.16 (m, 2H), 6.68 (s, 1H), 5.94 (s, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 156.89, 142.25, 131.50, 129.14, 122.04, 120.98, 69.64. HRMS (ESI-TOF) calcd for C₁₄H₁₁BrN₂O [M+H] ⁺: 303.0128; found: 303.0133.

(**1***H*-benzimidazol-2-yl)-phenylethanol (1s)¹²: pale red crystalline, 64% yield, mp 248-250 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.50 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.12-7.24 (m, 7H), 5.92 (d, *J* = 3.8 Hz, 1H), 5.00 (d, *J* = 3.7 Hz, 1H), 3.28 (dd, *J* = 13.7, 4.9 Hz, 1H), 3.07 (dd, *J* = 13.7, 8.2 Hz, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 157.79, 138.88, 129.89, 128.47, 126.53, 121.84, 115.29, 69.21, 42.91.

HRMS (ESI-TOF) calcd for C₁₅H₁₄N₂O [M+H] +: 239.1179; found: 239.1194.

(1*H*-benzimidazol-2-yl)-methanethiol (1t)¹³: white powder, 96% yield, mp 155-157 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.40 (brs, 1H), 7.50 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.15 (dd, *J* = 6.0, 3.2 Hz, 2H), 3.92 (s, 2H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 154.11, 122.29, 122.07, 115.25, 21.57. HRMS (ESI-TOF) calcd for C₈H₈N₂S [M+H] ⁺: 165.0481; found: 165.0476.

(**1H-benzimidazol-2-yl**)-**methanamine** (**1u**)¹⁴: brown solid, 79% yield, mp 101-103 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.51 (dd, *J* = 5.9, 3.2 Hz, 2H), 7.13 (dd, *J* = 6.0, 3.2 Hz, 2H), 5.53 (brs, 1H). 3.97 (s, 2H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 156.66, 139.07, 121.73, 115.11, 40.16. HRMS (ESI-TOF) calcd for C₈H₉N₃ [M+H] ⁺: 148.0869; found: 148.0865.

(**1***H***-benzimidazol-2-yl**)-*N***-methylmethanamine** (**1v**)¹⁵: pale brown oily solid, 43% yield, mp 120-123 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.56 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.23 (dd, *J* = 6.1, 3.2 Hz, 2H), 4.15 (s, 2H), 2.53 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 151.90, 138.31, 122.59, 115.07, 48.84, 35.66. HRMS (ESI-TOF) calcd for C₉H₁₁N₃ [M+H] ⁺: 162.1026; found: 162.1026.

$$\underset{H}{\overset{N}{\underset{H}{\overset{}}}} \overset{N}{\underset{H}{\overset{}}} \overset{NH_{2}}{\underset{H}{\overset{}}}$$

(1H-benzimidazol-2-yl)-ethylamine $(1w)^{16}$: pale yellow solid, 62% yield, mp 203-205 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.57 (dd, J = 6.0, 3.2 Hz, 2H), 7.23 (dd, J = 6.0, 3.2 Hz, 2H), 4.73 (brs, 2H), 4.46 (q, J = 6.7 Hz, 2H), 1.60 (d, J = 6.8 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 159.11, 151.62, 138.29, 122.58, 122.32, 114.98, 46.19, 23.74. HRMS (ESI-TOF) calcd for C₉H₁₁N₃ [M+H] ⁺: 162.1026; found: 162.1023.

Bromoethylsulfonium salt (2)^{3a}: grey powder, 45% yield, mp 85-87 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.06-8.12 (m, 4H), 7.71-7.77 (m, 6H), 4.92 (t, J = 5.9 Hz, 2H), 3.73 (t, J = 5.9 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 135.3, 131.9, 131.1, 122.9, 48.2, 23.8.

HRMS (ESI-TOF) calcd for C₁₅H₁₄BrF₃O₃S₂ [M-CF₃O₃S] ⁺: 292.9994; found: 293.0007.

3, 4-Dihydro-1*H***- [1, 4] oxazino [4,3-***a***] benzimidazole** (**3a**)¹⁷: pale yellow solid, 61 mg, 88% yield, mp 125-127 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.73-7.76 (m, 1H), 7.28-7.36 (m, 3H), 5.07 (s, 2H), 4.18-4.22 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ 147.86, 142.55, 134.00, 122.69, 122.41, 119.45, 108.78, 65.49, 63.97, 42.02.

HRMS (ESI-TOF) calcd for C₁₀H₁₀N₂O [M+H] ⁺: 175.0866; found: 175.0866.

0.

3, 4-Dihydro-8-methoxy-1*H***-[1, 4]oxazino[4,3-***a*]**benzimidazole** (**3b**₁): white solid, 34 mg, 41% yield.

¹H NMR (300 MHz, CDCl₃): δ 7.19-7.22 (m, 2H), 6.90 (m, 1H), 5.01 (s, 2H), 4.16-4.20 (m, 2H), 4.08-4.13 (m, 2H), 3.87 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 156.43, 148.04, 143.08, 128.49, 119.77, 112.30, 101.78, 65.28, 63.88, 55.86, 41.97.

HRMS (ESI-TOF) calcd for $C_{11}H_{12}N_2O_2$ [M+H] ⁺: 205.0972; found: 205.0971.

3, 4-Dihydro-7-methoxy-1*H***-[1, 4]oxazino[4,3-***a*]**benzimidazole** (**3b**₂): white solid, 39 mg, 46% yield.

¹H NMR (300 MHz, CDCl₃): δ 7.61 (d, J = 8.8 Hz, 1H), 6.92 (dd, J = 8.8, 2.3 Hz, 1H), 6.78 (d, J = 2.3 Hz, 1H), 5.00 (s, 2H), 4.16-4.20 (m, 2H), 4.08-4.13 (m, 2H), 3.87 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 156.58, 146.98, 136.72, 134.52, 111.61, 109.12, 92.78, 65.46, 63.97, 55.92, 42.03.

HRMS (ESI-TOF) calcd for C₁₁H₁₂N₂O₂ [M+H] ⁺: 205.0792; found: 205.0790.

3, **4-Dihydro-8-methyl-1***H***-[1, 4]oxazino**[**4**,**3***-a*]**benzimidazole** (**3c**₁): white solid, 27 mg, 33% yield.

¹H NMR (300 MHz, CDCl₃): δ 7.52 (m, 1H), 7.24 (d, *J* = 8.2 Hz, 1H), 7.09-7.13 (m, 1H), 5.03 (s, 2H), 4.18-4.21 (m, 2H), 4.12-4.15 (m, 2H), 2.50 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 147.41, 142.59, 134.18, 123.88, 119.17, 108.30, 65.39, 63.95, 41.99, 21.60.

HRMS (ESI-TOF) calcd for $C_{11}H_{12}N_2O$ [M+H] ⁺: 189.1022; found: 189.1021.

3, 4-Dihydro-7-methyl-1*H***-[1, 4]oxazino**[**4,3***-a*]**benzimidazole** (**3c**₂): white solid, 43 mg, 51% yield.

¹H NMR (300 MHz, CDCl₃): δ 7.63 (d, *J* = 8.8 Hz, 1H), 7.09-7.13 (m, 2H), 5.03 (s, 2H), 4.18-4.21 (m, 2H), 4.12-4.15 (m, 2H), 2.51 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 147.31, 140.41, 132.47, 124.25, 118.84, 108.78, 65.45, 63.99, 41.96, 21.74.

HRMS (ESI-TOF) calcd for $C_{11}H_{12}N_2O$ [M+H] ⁺: 189.1022; found: 189.1019.

3, 4-Dihydro-9-methyl-1H-[1, 4]oxazino[4,3-a]benzimidazole (3d1): pale yellow solid, 58 mg, 70%

yield.

¹H NMR (300 MHz, CDCl₃): δ 7.15-7.21 (m, 2H), 7.08-7.11 (m, 1H), 5.07 (s, 2H), 4.17-4.21 (m, 2H), 4.12-4.15 (m, 2H), 2.66 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 147.04, 141.77, 133.62, 129.41, 123.11, 122.32, 106.29, 65.59, 63.98, 42.08, 16.68.

HRMS (ESI-TOF) calcd for $C_{11}H_{12}N_2O$ [M+H] ⁺: 189.1022; found: 189.1020.

3, **4-Dihydro-6-methyl-1***H***-[1, 4]oxazino[4,3-***a***]benzimidazole** (**3d**₂): pale yellow solid, 6 mg, 7% yield.

¹H NMR (300 MHz, CDCl₃): δ 7.56 (d, *J* = 8.2 Hz, 1H), 7.14 (d, *J* = 3.5 Hz, 1H), 6.97 (d, *J* = 7.3 Hz, 1H), 5.03 (s, 2H), 4.17-4.21 (m, 2H), 4.12-4.15 (m, 2H), 2.69 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 147.66, 140.74, 131.34, 122.50, 117.35, 65.72, 64.25, 44.85, 18.16. HRMS (ESI-TOF) calcd for C₁₁H₁₂N₂O [M+H] ⁺: 189.1022; found: 189.1018.

3, 4-Dihydro-7, 8-dimethyl-1*H***-[1, 4]oxazino[4,3-***a***]benzimidazole** (**3e**): pale yellow solid, 59 mg, 73% yield, mp 185-187 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.47 (s, 1H), 7.08 (s, 1H), 4.99 (s, 2H), 4.14-4.18 (m, 2H), 4.07-4.10 (m, 2H), 2.38 (d, *J* = 3.9 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 131.45, 131.40, 119.53, 109.06, 65.56, 64.03, 42.01, 20.49, 20.33. HRMS (ESI-TOF) calcd for C₁₂H₁₄N₂O [M+H] ⁺: 203.1179; found: 203.1176.

3, 4-Dihydro-7, 8-difluoro-1*H***-[1, 4]oxazino[4,3-***a*]**benzimidazole** (**3f**): pale red crystalline, 73 mg, 85% yield, mp 155-158 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.49 (dd, $J_{\text{H-F}} = 10.5$, 7.2 Hz, 1H), 7.12 (dd, $J_{\text{H-F}} = 9.5$, 6.9 Hz, 1H), 5.01 (s, 2H), 4.19-4.23 (m, 2H), 4.10-4.13 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 149.40-149.66 (dd, $J_{C-F} = 1.1$, 14.3 Hz), 146.24-146.48 (dd, $J_{C-F} = 2.6$, 14.5 Hz), 137.64-137.79 (d, $J_{C-F} = 11.2$ Hz), 129.30-129.35 (d, $J_{C-F} = 3.3$ Hz), 106.78-107.06 (dd, $J_{C-F} = 0.9$, 20.0 Hz), 96.79-97.10 (dd, $J_{C-F} = 0.8$, 22.7 Hz), 65.37, 63.79, 42.22. HRMS (ESI-TOF) calcd for C₁₀H₈F₂N₂O [M+H] +: 211.0677; found: 211.0678.

3, 4-Dihydro-7, 8-dichloro-1*H***-[1, 4]oxazino[4,3-***a***]benzimidazole (3g): pale yellow solid, 77 mg, 78% yield, mp 190-193 °C.**

¹H NMR (300 MHz, CDCl₃): δ 7.78 (s, 1H), 7.42 (s, 1H), 5.00 (s, 2H), 4.18-4.22 (m, 2H), 4.10-4.13 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 149.92, 142.00, 133.31, 126.63, 126.43, 120.68, 110.26, 65.32, 63.75, 42.22.

HRMS (ESI-TOF) calcd for $C_{10}H_8Cl_2N_2O$ [M+H] ⁺: 243.0086; found: 243.0081.

R

3, 4-Dihydro-7, 8-dibromo-1*H***-[1, 4]oxazino**[**4,3-***a*]**benzimidazole** (**3g**): pale brown crystalline, 98 mg, 73% yield, mp 202-205 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.99 (s, 1H), 7.63 (s, 1H), 5.02 (s, 2H), 4.20-4.23 (m, 2H), 4.12-4.15 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 149.78, 142.81, 134.18, 123.90, 117.95, 117.68, 113.48, 65.26, 63.73, 42.23.

HRMS (ESI-TOF) calcd for C₁₀H₈Br₂N₂O [M+H] ⁺: 330.9076; found: 330.9077.

1*H*-naphth[2', 3': 4, 5]imidazo[2,1-*c*][1,4]oxazine (3i): sliver crystalline, 83 mg, 90% yield, mp 227-229 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.19 (s, 1H), 7.98-8.08 (m, 1H), 7.88-7.97 (m, 1H), 7.63 (s, 1H), 7.38-7.51 (M, 2H), 5.06 (s, 2H), 4.17-4.20 (m, 2H), 4.10-4.14 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 152.06, 142.54, 134.76, 130.56, 130.16, 128.51, 127.45, 124.45, 123.68, 116.22, 104.58, 65.57, 63.97, 42.05.

HRMS (ESI-TOF) calcd for $C_{14}H_{12}N_2O$ [M+H] ⁺: 225.1022; found: 225.1016.

3, 4-Dihydro-1-methyl-1*H***-[1, 4]oxazino[4,3-***a***]benzimidazole** (**3j**): pale yellow oily solid, 73 mg, 88% yield.

¹H NMR (300 MHz, CDCl₃): δ 7.70-7.80 (m, 1H), 7.22-7.35 (m, 3H), 5.00 (q, *J* = 6.5 Hz, 1H), 4.38 (ddd, *J* = 11.6, 4.5, 1.8 Hz, 1H), 4.14-4.27 (m, 1H), 3.99-4.09 ((m, 2H), 1.76 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 151.93, 142.45, 134.15, 122.60, 122.47, 119.51, 108.93, 71.79, 63.06, 42.24, 19.22.

HRMS (ESI-TOF) calcd for C₁₁H₁₂N₂O [M+H] ⁺: 189.1022; found: 189.1025.

3, 4-Dihydro-1-dimethyl-1*H***-[1, 4]oxazino**[**4,3-***a*]**benzimidazole** (**3k**): colorless oil, 49 mg, 60% yield.

¹H NMR (300 MHz, CDCl₃): δ 7.75-7.78 (m, 1H), 7.24-7.41 (m, 3H), 4.11-4.27 (m, 4H), 1.75 (s, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 154.94, 142.50, 133.96, 122.58, 122.28, 119.49, 108.99, 74.69, 58.39, 42.46, 27.46

HRMS (ESI-TOF) calcd for $C_{12}H_{14}N_2O$ [M+H] ⁺: 203.1179; found: 203.1195.

3, **4**-Dihydro-1-isopropyl-1*H*-[1, 4]oxazino[4,3-*a*]benzimidazole (3l): pale yellow oil, 64 mg, 74% yield.

¹H NMR (300 MHz, CDCl₃): δ 7.77-7.80 (m, 1H), 7.25-7.40 (m, 3H), 4.83 (d, *J* = 2.7 Hz, 1H), 4.43 (dd, *J* = 11.7, 4.4 Hz, 1H), 4.23 (td, *J* = 11.4, 4.5 Hz, 1H), 4.10 (dd, *J* = 11.7, 3.2 Hz, 1H), 3.98 (td, *J* = 11.4, 3.5 Hz, 1H), 2.73 (dtd, *J* = 13.9, 6.9, 2.8 Hz, 1H), 1.22 (d, *J* = 7.0 Hz, 3H), 0.92 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 150.91, 142.75, 134.18, 122.46, 122.22, 119.59, 108.78, 79.81, 63.17, 42.27, 31.85, 19.04, 16.05.

HRMS (ESI-TOF) calcd for $C_{13}H_{16}N_2O$ [M+H] ⁺: 217.1335; found: 217.1349.

3, 4-Dihydro-1-spirocyclohexyl-1*H***-[1, 4]oxazino[4,3-***a***]benzimidazole** (**3m**): red oil, 55 mg, 56% yield.

¹H NMR (300 MHz, CDCl₃): δ 7.72-7.84 (m, 1H), 7.22-7.41 (m, 3H), 4.04-4.26 (m, 4H), 2.08-2.13 (m, 4H), 1.63-1.84 (m, 5H), 1.40-1.52 m, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 155.37, 142.49, 134.02, 122.47, 122.16, 119.48, 108.92, 75.49, 57.70, 42.41, 34.72, 25.12, 21.02.

HRMS (ESI-TOF) calcd for $C_{15}H_{18}N_2O$ [M+H] ⁺: 243.1492; found: 243.1516.

3, 4-Dihydro-1-phenyl-1*H***-[1, 4]oxazino[4,3-***a***]benzimidazole (3n**): pale yellow solid, 86 mg, 86% yield, mp 156-158 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.75-7.83 (m, 1H), 7.47-7.54 (m, 2H), 7.37-7.46 (m, 4H), 7.28-7.35 (m, 2H), 6.06 (s, 1H), 4.14-4.44 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ 149.62, 142.38, 137.55, 128.93, 128.70, 128.28, 122.82, 122.72, 119.86, 109.00, 77.21, 61.89, 42.35.

HRMS (ESI-TOF) calcd for $C_{16}H_{14}N_2O$ [M+H] ⁺: 251.1179; found: 251.1186.

3, 4-Dihydro-1-(4-fluorophenyl)-1*H***-[1, 4]oxazino[4,3-***a*]**benzimidazole (30)**: grey solid, 93 mg, 86% yield, mp 144-147 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.75-7.82 (m, 1H), 7.44-7.54 (m, 2H), 7.37-7.43 (m, 1H), 7.28-7.34 (m, 2H), 7.06-7.14 (m, 2H), 6.02 (s, 1H), 4.14-4.45 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ 161.37-164.65 (d, $J_{C-F} = 246.0$ Hz), 149.93, 142.64, 134.05, 133.55-133.59 (d, $J_{C-F} = 3.1$ Hz), 130.10, 122.78, 122.74, 120.00, 115.48-115.77 (d, $J_{C-F} = 21.5$ Hz), 108.99, 76.69, 62.15, 42.33.

HRMS (ESI-TOF) calcd for $C_{16}H_{13}FN_2O$ [M+H] ⁺: 269.1085; found: 269.1093.

3, 4-Dihydro-1-(4-chlorophenyl)-1*H***-[1, 4]oxazino[4,3-***a***]benzimidazole (3p)**: colorless crystal, 104 mg, 92% yield, mp 108-111 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.72-7.80 (m, 1H), 7.27-7.52 (m, 8H), 6.02 (s, 1H), 4.15-4.46 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ 149.16, 142.62, 136.14, 134.78, 134.02, 129.58, 128.87, 122.81, 122.78, 120.00, 108.99, 76.56, 62.14, 42.31.

HRMS (ESI-TOF) calcd for $C_{16}H_{13}CIN_2O$ [M+H] ⁺: 285.0789; found: 285.0790.

3, 4-Dihydro-1-(2-chlorophenyl)-1*H***-[1, 4]oxazino[4,3-***a***]benzimidazole** (**3q**): pale yellow oil, 106 mg, 94% yield.

¹H NMR (300 MHz, CDCl₃): δ 7.75-7.81 (m, 1H), 7.25-7.52 (m, 8H), 6.43 (s, 1H), 4.20-4.51 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ 149.06, 142.74, 135.03, 134.60, 134.02, 130.87, 130.44, 130.25,

127.02, 122.73, 122.67, 120.05, 108.93, 75.06, 62.66, 42.27. HRMS (ESI-TOF) calcd for $C_{16}H_{13}ClN_2O$ [M+H] ⁺: 285.0789; found: 285.0799.

3, 4-Dihydro-1-(4-bromophenyl)-1*H***-[1, 4]oxazino[4,3-***a***]benzimidazole** (**3r**): pale brown solid, 110 mg, 82% yield, mp 113-116 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.75-7.80 (m, 1H), 7.52-7.55 (m, 2H), 7.30-7.45 (m, 5H), 6.00 (s, 1H), 4.15-4.44 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ 149.08, 142.64, 136.66, 134.03, 134.02, 131.82, 129.87, 123.03, 122.81, 122.78, 120.02, 108.99, 76.60, 62.15, 42.31.

HRMS (ESI-TOF) calcd for $C_{16}H_{13}BrN_2O$ [M+H] ⁺: 329.0284; found: 329.0292.

3, 4-Dihydro-1-benzyl-1*H***-[1, 4]oxazino[4,3-***a*]**benzimidazole (3s**): bright white solid, 88 mg, 84% yield, mp 115-117 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.80-7.85 (m, 1H), 7.26-7.44 (m, 8H), 5.17 (dd, J = 9.6, 2.7 Hz, 1H), 4.34-4.44 (m, 1H), 4.15-4.27 (m, 1H), 4.06-4.13 (m, 1H), 3.93-4.05 (m, 1H), 3.79 (dd, J = 14.6, 2.7 Hz, 1H), 3.22 (dd, J = 14.6, 9.7 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 150.62, 142.58, 137.71, 134.30, 129.62, 128.34, 126.47, 122.68, 122.53, 119.64, 108.96, 76.28, 63.07, 42.23, 39.75.

HRMS (ESI-TOF) calcd for $C_{17}H_{16}N_2O$ [M+H] ⁺: 265.1335; found: 265.1359.

3, 4-Dihydro-1*H***-[1, 4]thiazino[4,3-***a***]benzimidazole (3t)¹⁸: yellow solid, 25 mg, 33% yield, mp 146-148 °C.**

¹H NMR (300 MHz, CDCl₃): δ 7.59-7.64 (m, 1H), 7.15-7.22 (m, 3H), 4.14-4.24 (m, 2H), 3.99 (s, 2H), 2.99-3.08 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 146.76, 141.53, 134.84, 122.76, 122.46, 119.25, 108.81, 44.77, 26.66, 26.05.

HRMS (ESI-TOF) calcd for $C_{10}H_{10}N_2S$ [M+H] ⁺: 191.0637; found: 191.0632.

1, 2, 3, 4-Tetrahydropyrazino[**1,2***-a*]**benzimidazole** (**3u**)¹⁹: pale yellow solid, 14 mg, 20% yield, mp 129-132 °C.

¹H NMR (300 MHz, DMSO-*d*₆): δ 7.53-7.58 (m, 1H), 7.42-7.50 (m, 1H), 7.15-7.21 (m, 2H), 3.97-4.08 (m, 4H), 3.19 (t, *J* = 5.6 Hz, 2H), 1.67 (s, 1H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 150.58, 142.60, 134.80, 122.10, 121.71, 118.70, 109.86, 44.89, 43.16, 42.59.

HRMS (ESI-TOF) calcd for $C_{10}H_{11}N_3$ [M+H] ⁺: 174.1026; found: 174.1018.

1, 2, 3, 4-Tetrahydro-2-methyl-pyrazino[**1,2***-a*]**benzimidazole** (**3v**): white solid, 21 mg, 28% yield, mp 144-146 °C.

¹H NMR (300 MHz, DMSO- d_6): δ 7.53-7.62 (m, 1H), 7.45-7.51 (m, 1H), 7.14-7.27 (m, 2H), 4.13 (t, J = 5.6 Hz, 2H), 3.76 (s, 2H), 2.93 (t, J = 5.6 Hz, 2H), 2.45 (s, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 149.64, 142.94, 134.47, 122.19, 121.92, 118.87, 110.09, 53.77, 51.26, 45.36, 41.92.

HRMS (ESI-TOF) calcd for $C_{11}H_{13}N_3$ [M+H] ⁺: 188.1182; found: 188.1173.

1, 2, 3, 4-Tetrahydro-1-methyl-pyrazino[**1,2***-a*]**benzimidazole** (**3v**): white solid, 27 mg, 36% yield, mp 153-155 °C.

¹H NMR (300 MHz, DMSO- d_6): δ 7.55-7.60 (m, 1H), 7.38-7.49 (m, 1H), 7.12-7.26 (m, 2H), 4.07-4.19 (m, 2H), 3.89-4.05 (m, 1H), 3.30-3.40 (m, 1H), 3.04-3.20 (m, 1H), 1.50 (d, J = 6.7 Hz, 3H), 1.29-1.38 (m, 1H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 154.28, 142.63, 134.91, 122.05, 121.83, 118.90, 110.02, 50.54, 43.27, 41.81, 19.80.

HRMS (ESI-TOF) calcd for $C_{11}H_{13}N_3$ [M+H] ⁺: 188.1182; found: 188.1176.

1-Ethenyl-1*H***-benzimidazole-2-methanol (4a**): pale white solid, 32 mg, 45% yield, mp 110-112 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.64-7.76 (m, 1H), 7.47-7.60 (m, 1H), 7.26-7.37 (m, 2H), 7.12-7.26 (m, 1H), 6.12 (s, 1H), 5.66 (d, *J* = 15.8 Hz, 1H), 5.33 (d, *J* = 8.9 Hz, 1H), 4.92 (s,2H). ¹³C NMR (75 MHz, CDCl₃): δ 153.30, 141.58, 133.81, 128.34, 123.87, 123.19, 119.52, 111.25, 107.92, 56.96.

HRMS (ESI-TOF) calcd for $C_{10}H_{10}N_2O$ [M+H] ⁺: 175.0866; found: 175.0869.

6. Reference

- 1. W. L. F. Armarego and C. Chai, in *Purification of Laboratory Chemicals (Seventh Edition)*, Butterworth-Heinemann, Boston, 2013, pp. 103-554.
- 2. M. A. Phillips, J. Chem. Soc. (Resumed), 1928, 2393-2399.
- (a) M. Yar, E. M. McGarrigle and V. K. Aggarwal, *Angew. Chem. Int. Ed.*, 2008, 47, 3784-3786;
 (b) M. Yar, E. M. McGarrigle and V. K. Aggarwal, *Org. Lett.*, 2009, 11, 257-260.
- 4. M. G. Unthank, N. Hussain and V. K. Aggarwal, *Angew. Chem. Int. Ed.*, 2006, **45**, 7066-7069.
- B.-T. Chen, N. Morlanés, E. Adogla, K. Takanabe and V. O. Rodionov, ACS Catal., 2016, 6, 4647-4652.
- F. Alasmary, A. Snelling, M. Zain, A. Alafeefy, A. Awaad and N. Karodia, *Molecules*, 2015, 20, 15206.
- 7. M. Rezaul Haque and M. Rasmussen, *Tetrahedron*, 1997, **53**, 6937-6958.
- 8. S. Hehir, L. O'Donovan, M. P. Carty and F. Aldabbagh, *Tetrahedron*, 2008, 64, 4196-4203.
- 9. L. J. Patalag, P. G. Jones and D. B. Werz, Angew. Chem. Int. Ed., 2016, 55, 13340-13344.
- 10. V. M. Reddy and K. R. Reddy, *Chin. Chem. Lett.*, 2010, **21**, 1145-1148.
- 11. H. Skolnik, J. G. Miller and A. R. Day, J. Am. Chem. Soc., 1943, 65, 1854-1858.
- 12. G. Giorgioni, B. Accorroni, A. Di Stefano, G. Marucci, A. Siniscalchi and F. Claudi, *Med. Chem. Res.*, 2005, **14**, 57-73.
- 13. O. Algul, N. Duran and G. Gulbol, Asian J. Chem., 2007, **19**, 3085-3092.
- 14. Y. Li, K. Ding and C. A. Sandoval, Org. Lett., 2009, 11, 907-910.
- 15. G. Kaupp and K. Sailer, *Angew. Chem.*, 1990, **102**, 917-919.
- S. Alatorre-Santamaría, V. Gotor-Fernández and V. Gotor, *Eur. J. Org. Chem.*, 2009, 2009, 2533-2538.
- 17. Á. M. Martínez, N. Rodríguez, R. G. Arrayás and J. C. Carretero, *Chem. Commun.*, 2014, **50**, 2801-2803.
- 18. A. Chimirri, A. M. Monforte, P. Monforte, F. Nicolo, A. Rao and M. Zappala, *Heterocycles*, 2000, **53**, 613-620.
- 19. J. Bergman and H. Vallberg, Acta Chem. Scand., 1997, **51**, 742-752.

7. Copies of ¹H NMR and ¹³C NMR Spectra

Figure S1. The ¹H NMR Spectrum of Compound 1a in DMSO-d₆

Figure S2. The ¹³C NMR Spectrum of Compound 1a in DMSO-d₆

Figure S3. The HR-ESI-MS Spectrum of Compound 1a

Figure S4. The ¹H NMR Spectrum of Compound 1b in DMSO-*d*₆

Figure S5. The ¹³C NMR Spectrum of Compound 1b in DMSO-*d*₆

Figure S6. The HR-ESI-MS Spectrum of Compound 1b

Figure S7. The ¹H NMR Spectrum of Compound 1c in DMSO-*d*₆

Figure S8. The ¹³C NMR Spectrum of Compound 1c in DMSO-d₆

Figure S9. The HR-ESI-MS Spectrum of Compound 1c

Figure S10. The ¹H NMR Spectrum of Compound 1d in DMSO-d₆

Figure S11. The ¹³C NMR Spectrum of Compound 1d in DMSO-d₆

Figure S12. The HR-ESI-MS Spectrum of Compound 1d

Figure S13. The ¹H NMR Spectrum of Compound 1e in DMSO-d₆

Figure S14. The ¹³C NMR Spectrum of Compound 1e in DMSO-d₆

Figure S15. The HR-ESI-MS Spectrum of Compound 1e

Figure S16. The ¹H NMR Spectrum of Compound 1f in DMSO-d₆

Figure S17. The ¹³C NMR Spectrum of Compound 1f in DMSO-*d*₆

Figure S18. The HR-ESI-MS Spectrum of Compound 1f

Figure S19. The ¹H NMR Spectrum of Compound 1g in DMSO-d₆

Figure S20. The ¹³C NMR Spectrum of Compound 1g in DMSO-d₆

Figure S21. The HR-ESI-MS Spectrum of Compound 1g

Figure S22. The ¹H NMR Spectrum of Compound 1h in DMSO-d₆

Figure S23. The 13 C NMR Spectrum of Compound 1h in DMSO- d_6

Figure S24. The HR-ESI-MS Spectrum of Compound 1h

Figure S25. The ¹H NMR Spectrum of Compound 1i in DMSO-d₆

Figure S26. The ¹³C NMR Spectrum of Compound 1i in DMSO-*d*₆

Figure S27. The HR-ESI-MS Spectrum of Compound 1i

Figure S28. The ¹H NMR Spectrum of Compound 1j in DMSO-d₆

Figure S29. The ¹³C NMR Spectrum of Compound 1j in DMSO-*d*₆

Figure S30. The HR-ESI-MS Spectrum of Compound 1j

Figure S31. The ¹H NMR Spectrum of Compound 1k in DMSO-d₆

Figure S32. The ¹³C NMR Spectrum of Compound 1k in DMSO-d₆

Figure S33. The HR-ESI-MS Spectrum of Compound 1k

Figure S34. The ¹H NMR Spectrum of Compound 11 in DMSO-*d*₆

Figure S35. The ¹³C NMR Spectrum of Compound 11 in DMSO-*d*₆

Figure S36. The HR-ESI-MS Spectrum of Compound 11

Figure S37. The ¹H NMR Spectrum of Compound 1m in DMSO-d₆

Figure S38. The ¹³C NMR Spectrum of Compound 1m in DMSO-d₆

Figure S39. The HR-ESI-MS Spectrum of Compound 1m

Figure S40. The ¹H NMR Spectrum of Compound 1n in DMSO-d₆

Figure S41. The ¹³C NMR Spectrum of Compound 1n in DMSO-d₆

Figure S42. The HR-ESI-MS Spectrum of Compound 1n

Figure S43. The ¹H NMR Spectrum of Compound 10 in DMSO-d₆

Figure S44. The ¹³C NMR Spectrum of Compound 10 in DMSO-d₆

Figure S45. The HR-ESI-MS Spectrum of Compound 10

Figure S46. The ¹H NMR Spectrum of Compound 1p in DMSO-d₆

Figure S47. The ¹³C NMR Spectrum of Compound 1p in DMSO-*d*₆

Figure S48. The HR-ESI-MS Spectrum of Compound 1p

Figure S49. The ¹H NMR Spectrum of Compound 1q in DMSO-d₆

Figure S50. The ¹³C NMR Spectrum of Compound 1q in DMSO-d₆

Figure S51. The HR-ESI-MS Spectrum of Compound 1q

Figure S52. The ¹H NMR Spectrum of Compound 1r in DMSO-d₆

Figure S53. The ¹³C NMR Spectrum of Compound 1r in DMSO-d₆

Figure S54. The HR-ESI-MS Spectrum of Compound 1r

Figure S55. The ¹H NMR Spectrum of Compound 1s in DMSO-d₆

Figure S56. The ¹³C NMR Spectrum of Compound 1s in DMSO-d₆

Figure S57. The HR-ESI-MS Spectrum of Compound 1s

Figure S58. The ¹H NMR Spectrum of Compound 1t in DMSO-d₆

Figure S59. The ¹³C NMR Spectrum of Compound 1t in DMSO-d₆

Figure S60. The HR-ESI-MS Spectrum of Compound 1t

Figure S61. The ¹H NMR Spectrum of Compound 1u in DMSO-d₆

Figure S62. The 13 C NMR Spectrum of Compound 1u in DMSO- d_6

Figure S63. The HR-ESI-MS Spectrum of Compound 1u

Figure S64. The ¹H NMR Spectrum of Compound 1v in CDCl₃

Figure S65. The ¹³C NMR Spectrum of Compound 1v in CDCl₃

Figure S66. The HR-ESI-MS Spectrum of Compound 1v

Figure S67. The ¹H NMR Spectrum of Compound 1w in CDCl₃

Figure S68. The $^{13}\mathrm{C}$ NMR Spectrum of Compound 1w in CDCl_3

Figure S69. The HR-ESI-MS Spectrum of Compound 1w

Figure S70. The ¹H NMR Spectrum of Compound 2 in CDCl₃

Figure S71. The ¹³C NMR Spectrum of Compound 2 in CDCl₃

Figure S72. The HR-ESI-MS Spectrum of Compound 2

Figure S73. The ¹H NMR Spectrum of Compound 3a in CDCl₃

Figure S74. The ¹³C NMR Spectrum of Compound 3a in CDCl₃

Figure S75. The HR-ESI-MS Spectrum of Compound 3a

Figure S76. The ¹H NMR Spectrum of Compound 3b₁ in CDCl₃

Figure S77. The ¹³C NMR Spectrum of Compound **3b**₁ in CDCl₃

Figure S78. The HR-ESI-MS Spectrum of Compound 3b1

Figure S79. The ¹H NMR Spectrum of Compound 3b₂ in CDCl₃

Figure S80. The ${}^{13}C$ NMR Spectrum of Compound $3b_2$ in CDCl₃

Figure S81. The HR-ESI-MS Spectrum of Compound 3b2

Figure S82. The ¹H NMR Spectrum of Compound 3c₁ in CDCl₃

Figure S83. The ¹³C NMR Spectrum of Compound 3c₁ in CDCl₃

Figure S84. The HR-ESI-MS Spectrum of Compound 3c1

Figure S85. The ¹H NMR Spectrum of Compound 3c₂ in CDCl₃

Figure S86. The ¹³C NMR Spectrum of Compound 3c₂ in CDCl₃

Figure S87. The HR-ESI-MS Spectrum of Compound 3c2

Figure S88. The ¹H NMR Spectrum of Compound 3d₁ in CDCl₃

Figure S89. The ¹³C NMR Spectrum of Compound 3d₁ in CDCl₃

1.1-	189,1020 (X+E) +
1	
0.9-	
0.7	
0.6-	
0.4-	
0.3-	
0. 1-	
	I I

Figure S90. The HR-ESI-MS Spectrum of Compound 3d1

Figure S91. The ¹H NMR Spectrum of Compound 3d₂ in CDCl₃

Figure S92. The ^{13}C NMR Spectrum of Compound $3d_2$ in CDCl_3

Figure S93. The HR-ESI-MS Spectrum of Compound 3d2

Figure S94. The ¹H NMR Spectrum of Compound 3e in CDCl₃

Figure S95. The ¹³C NMR Spectrum of Compound 3e in CDCl₃

203,1176 (M+H)+

Figure S96. The HR-ESI-MS Spectrum of Compound 3e

Figure S97. The ¹H NMR Spectrum of Compound 3f in CDCl₃

Figure S98. The 13 C NMR Spectrum of Compound 3f in CDCl₃

Figure S99. The HR-ESI-MS Spectrum of Compound 3f

Figure S100. The ¹H NMR Spectrum of Compound 3g in CDCl₃

Figure S101. The ¹³C NMR Spectrum of Compound 3g in CDCl₃

Figure S102. The HR-ESI-MS Spectrum of Compound 3g

Figure S103. The ¹H NMR Spectrum of Compound 3h in CDCl₃

Figure S104. The ¹³C NMR Spectrum of Compound 3h in CDCl₃

Figure S105. The HR-ESI-MS Spectrum of Compound 3h

Figure S106. The ¹H NMR Spectrum of Compound 3i in CDCl₃

Figure S107. The ¹³C NMR Spectrum of Compound 3i in CDCl₃

Figure S108. The HR-ESI-MS Spectrum of Compound 3i

Figure S109. The ¹H NMR Spectrum of Compound 3j in CDCl₃

Figure S110. The ¹³C NMR Spectrum of Compound 3j in CDCl₃

Figure S111. The HR-ESI-MS Spectrum of Compound 3j

Figure S112. The ¹H NMR Spectrum of Compound 3k in CDCl₃

Figure S114. The HR-ESI-MS Spectrum of Compound 3k

Figure S115. The ¹H NMR Spectrum of Compound 3l in CDCl₃

Figure S116. The ¹³C NMR Spectrum of Compound 31 in CDCl₃

Figure S117. The HR-ESI-MS Spectrum of Compound 31

Figure S118. The ¹H NMR Spectrum of Compound 3m in CDCl₃

Figure S119. The ¹³C NMR Spectrum of Compound 3m in CDCl₃

Figure S120. The HR-ESI-MS Spectrum of Compound 3m

Figure S121. The ¹H NMR Spectrum of Compound **3n** in CDCl₃

Figure S122. The ¹³C NMR Spectrum of Compound 3n in CDCl₃

Figure S123. The HR-ESI-MS Spectrum of Compound 3n

Figure S124. The ¹H NMR Spectrum of Compound 30 in CDCl₃

Figure S125. The ¹³C NMR Spectrum of Compound 30 in CDCl₃

Figure S126. The HR-ESI-MS Spectrum of Compound 30

Figure S127. The ¹H NMR Spectrum of Compound 3p in CDCl₃

Figure S128. The ¹³C NMR Spectrum of Compound 3p in CDCl₃

Figure S129. The HR-ESI-MS Spectrum of Compound 3p

Figure S130. The ¹H NMR Spectrum of Compound 3q in CDCl₃

Figure S131. The ¹³C NMR Spectrum of Compound 3q in CDCl₃

Figure S132. The HR-ESI-MS Spectrum of Compound 3q

Figure S133. The ¹H NMR Spectrum of Compound 3r in CDCl₃

Figure S134. The ¹³C NMR Spectrum of Compound 3r in CDCl₃

Figure S135. The HR-ESI-MS Spectrum of Compound 3r

Figure S136. The ¹H NMR Spectrum of Compound 3s in CDCl₃

Figure S137. The ¹³C NMR Spectrum of Compound 3s in CDCl₃

Figure S138. The HR-ESI-MS Spectrum of Compound 3s

Figure S139. The ¹H NMR Spectrum of Compound 3t in CDCl₃

Figure S140. The ¹³C NMR Spectrum of Compound 3t in CDCl₃

Figure S141. The HR-ESI-MS Spectrum of Compound 3t

Figure S142. The ¹H NMR Spectrum of Compound 3u in DMSO-*d*₆

Figure S143. The ¹³C NMR Spectrum of Compound 3u in DMSO-d₆

Figure S144. The HR-ESI-MS Spectrum of Compound 3u

Figure S145. The ¹H NMR Spectrum of Compound 3v in DMSO-*d*₆

Figure S146. The ¹³C NMR Spectrum of Compound 3v in DMSO-*d*₆

Figure S147. The HR-ESI-MS Spectrum of Compound 3v

Figure S148. The ¹H NMR Spectrum of Compound 3w in DMSO-*d*₆

Figure S149. The ¹³C NMR Spectrum of Compound 3w in DMSO-*d*₆

Figure S150. The HR-ESI-MS Spectrum of Compound 3w

Figure S151. The ¹H NMR Spectrum of Compound 4a in CDCl₃

Figure S152. The ¹³C NMR Spectrum of Compound 4a in CDCl₃

Figure S153. The HR-ESI-MS Spectrum of Compound 4a