Direct Conjugate Additions Using Aryl and Alkyl Organic Halides in Air and

Water

Feng Zhou ^{[+]1}, Xiaoyun Hu ^{[+]1,2}, Wanying Zhang¹ and Chao-Jun Li^{1*}

¹Department of Chemistry and FQRNT Center for Green Chemistry and Catalysis, McGill

University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada. [+]These

authors contributed equally to this work. *Correspondence: cj.li@mcgill.ca

²College of Chemistry and Materials Science, South Central University for Nationalities,

Wuhan, 430074, P.R. China

Supplmentary Information

Contents

I	General Comments and Materials					
II	Supplementary Results of Condition Optimization					
	Typical Procedure for Copper-Catalyzed, Zinc-Mediated					
ш	Intermolecular Arylation and Alkylation of Electron-Deficient					
	Alkenes Using Organohalides in Air and Water					
IV	Typical Procedure for Copper-Catalyzed, Zinc-Mediated	\$5				
	Intermolecular Conjugate Addition of Iodobenzene to Butyl					
	Acrylate in Air and Water Using L-2 as Ligand					
v	The Gram-Scale Synthesis					
VI	The Spectroscopic Data of Products					
VII	References	S15				
VIII	Copies of ¹ H, ¹³ C NMR Spectra of products					

I. General Comments and Materials

All commercially available compounds were purchased from Sigma-Aldrich, Strem and Acros used as received. Unless otherwise noted, all reagents were weighed and handled in air and deionized water was used. For the optimization of reaction condition, the degassed water was used; for the reactions in substrate scope and scale-up reactions, there is no need to use degassed water. NMR spectra were recorded on Varian Mercury plus-300 spectrometer, Varian MERCURY plus-400 spectrometer, Varian VNMRS 500 spectrometer with proton resonances at 300/400/500 MHz and carbon resonances at 75/100/125 MHz, respectively. Chemical shifts are reported in parts per million (ppm). The solvent residual peaks, e.g., of chloroform (CDCl₃: δ 7.26 ppm and δ 77.26 ppm), were used as references. Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, br = broad signal) and integration. Flash column chromatography was performed with Biotage Isolera with cartridge. Analytical thin layer chromatography (TLC) was performed using Merck silica gel 60 F254 pre-coated plates (0.25 mm). HRMS were conducted through atmospheric pressure chemical ionization (APCI) or electro-spraying ionization (ESI), and was performed by McGill University on a Thermo-Scientific Exactive Orbitrap. GC-MS were recorded on an Agilent 5975 GC-MS instrument (EI). Zinc dust was treated by the standard procedure (Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals; Elsevier Science, 2003) and other chemicals used as received. The complex I'PrS-CuCl was prepared according to this reference¹.

II. Supplementary Results of Condition Optimization

Table S1. Survey of copper catalysts

	1a + OBu OBu	Cu Cat CTAS/H	:./Zn dust O (1 %, 0.5 mL) 0 ∘C, Ar	OBu OBu 3aa	
Entry	Cu Cat. (mol%)	Yield (%) ¹	Entry	Cu Cat. (mol%)	Yield (%) ¹
1	Cu(acac) ₂ (5)	41	12	Cu(BF) 2 (10)	30
2.	Cu(acac) ₂ (20)	50	13	Cu (acac) , (10), hv(S)	25
3.	Cu(OAc) (10)	34	14	Cu (acac) (10), rt, hv(W)	23
4	CuCl 2 (10)	29	15	CuCl (10)	33
5	Cu(OTf) , toluene(10)	32	16	Cu ₂ (CN) ₂ .H ₂ O (10)	28
6	Cu(C _H _CO _) _ (10)	38	17	Cul (10)	37
7	CuO (10)	41	18	CuBr (10)	21
8	CuSO (10)	29	19	[Cu(MeCN) ₄]PF ₆ (10)	33
9	Cu(OTf) (10)	50	20	Cu ₂ Se (10)	31
10	$Cu(CF_CO_1)$ H_O (10)	36	21	Cu ₂ O (10)	28
11	CuBr , (10)	35	22	Cu(ClO ₄) ₂ .6H ₂ O (10)	23

Conditions: lodobenzene (1a) (0.6 mmol), butyl acrylate (2a) (0.2 mmol), Cu Cat. Zn dust (0.78 mmol), CTAS (1%,W/V) /H 20 (0.5 mL), 70 °C , 24 h under argon. 1The yields were determined by crude 1H NMR by using the trimethoxybenzene as an internal standard. CTAS = Cetyltrimethylammonium hydrogensulfate

Table S2. Influence of halide salts as additive

Conditions: lodobenzene (**1a**) (0.6 mmol), butyl acrylate (**2a**) (0.2 mmol), Cu(acac) $_2$ (10 mol%). Zn dust (0.78 mmol), CTAS (1%,W/V) /H $_2$ O (0.5 mL), 70 °C , 24 h under argon. ¹The yields were determined by crude ¹H NMR by using the trimethoxybenzene as an internal standard.

Table S3. Bases screening

Conditions: lodobenzene (1a) (0.6 mmol), butyl acrylate (2a) (0.2 mmol), Cu(acac) $_2$ (10 mol%). Zn dust (0.78 mmol), CTAS (1%,W/V) /H $_2$ O (0.5 mL), 70 °C , 24 h under argon. ¹The yields were determined by crude ¹H NMR by using the trimethoxybenzene as an internal standard. *Pre-mix Cu(acac) $_2$ and DMAP.

Table S4. Survey of ligands

Conditions: lodobenzene (**1a**) (0.6 mmol), butyl acrylate (**2a**) (0.2 mmol), Cu(acac) $_2$ (10 mol%), Zn dust (0.78 mmol), CTAS (1%,W/V) /H $_2$ O (0.5 mL), 70 °C , 24 h under argon. ¹The yields were determined by crude ¹H NMR by using the trimethoxybenzene as an internal standard.

Table S5. Test o	f reaction	temperature	and time
------------------	------------	-------------	----------

Conditions: lodobenzene (**1a**) (0.6 mmol), butyl acrylate (**2a**) (0.2 mmol), Cu(acac) $_2$ (10 mol%), *p*-anisidine (20 mol%), Zn dust (0.78 mmol), CTAS (1%,W/V) /H $_2$ O (0.5 mL), temperature and time, under argon. ¹The yields were determined by crude ¹H NMR by using the trimethoxybenzene as an internal standard. ² lodobenzene (0.3 mmol, 1.5 equiv.) was used.

III. Typical Procedure for the Copper-Catalyzed, Zinc-Mediated Intermolecular Arylation and Alkylation of Electron-Deficient Alkenes Using Organohalides in Air and Water

To a microwave tube was charged with $Cu(acac)_2$ (0.02 mmol, 5.2 mg), 3,4-dimethoxyaniline (0.04 mmol, 6.1 mg), Zinc dust (0.78 mmol, 50.7 mg). [Organoiodide (0.40 mmol) or electron-deficient alkene (0.20 mmol) was added at this point if the compound is solid]. Then the solvent CTAS in H₂O (1% w/v) was injected via syringe, followed by the addition of iodobenzene (**1a**, 0.40 mmol, 81.6 mg, 45.0 µL) and butyl acrylate (**2a**, 0.20 mmol, 25.6 mg, 29.0 µL). The tube was then sealed. The reaction mixture was heated to 70 °C and stirred vigorously (1400 rpm) for 16 h. After cooling to room temperature, the mixture was diluted with EtOAc (8 mL) and filtered through a short silica gel pad. The filter cake was further flushed with EtOAc (6 x 4 mL). The combined solution was concentrated under vacuum, and the residue was purified by flash chromatography on silica gel to afford the analytically pure product **3aa** (32.2 mg, 78%)

Preparation of 1% of CTAS/H₂O solution: A 20 mL vial was charged with CTAS (Cetyltrimethylammonium hydrogensulfate) (100 mg). Then degassed water (10 mL) was added via syringe. The mixture was placed in a sonicator and oscillated for 10 min. Occasional vigorous shaking was essential for the formation of well-distributed emulsion. The emulsion was stored under argon. Before injecting it (1% w/v, 0.5 mL) into the reaction tube, shake it vigorously.

IV. Typical Procedure for Copper-Catalyzed, Zinc-Mediated Intermolecular

Conjugate Addition of Iodobenzene to Butyl Acrylate in Air and Water Using

L-2 as Ligand

Preparation of ligand **L-1** and **L-2** according to the reference²: a mixture of acetylacetone (5.0 mmol, 0.5 mL), aniline (5.0 mmol, 0.62 g) and formic acid (1.0 mol%) in methanol (20 mL) was heated at 85 °C for 4 h. After cooling to room temperature, the product was precipitated out and collected as a solid. Then it was further recrystallized from a mixture of

methanol/ether (6/4) to afford β -enaminone L-2 (0.856 g, 78%).

L-1: ¹H NMR (500 MHz, CDCl₃) δ 12.3 (s, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 6.69–6.64 (m, 2H), 5.16 (s, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 2.09 (s, 3H), 1.93 (s, 3H).

L-2: ¹H NMR (500 MHz, CDCl₃) δ 12.29 (s, 1H), 7.04 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* = 8.9 Hz, 2H), 5.15 (s, 1H), 3.80 (s, 3H), 2.08 (s, 3H), 1.90 (s, 3H).

To a Biotage microwave tube was charged with Cu(acac)₂ (0.02 mmol, 5.2 mg), L-2 (0.02 mmol, 4.1 mg), Zinc dust (0.78 mmol, 50.7 mg), followed by the addition of solvent CTAS in H₂O (1% w/v, 1.0 mL). The mixture was stirred at room temperature for 15 minutes. Then iodobenzene (**1a**, 0.40 mmol, 81.6 mg, 45 μ L) and butyl acrylate (**2a**, 0.20 mmol, 25.6 mg, 30.0 μ L) were injected. The reaction mixture was heated to 70 °C and stirred vigorously (1200 rpm) for 4 h. After cooling to room temperature, the mixture was diluted with EtOAc (6 mL) and filtered through a short silica gel pad. The filter cake was further flushed with EtOAc (6 x 4 mL). The combined solution was concentrated under vacuum, and the residue was purified by flash chromatography on silica gel to afford the analytically pure product **3aa** (20.3 mg, yield 49%).

V. The Gram-Scale Synthesis

To a round-bottom flask was charged with $Cu(acac)_2$ (0.20 mmol, 52.0 mg), 3,4-dimethoxyaniline (0.40 mmol, 61.0 mg), Zinc dust (7.8 mmol, 507 mg). The flask was plugged with a rubber stopper. The deionized water (5.0 mL) was injected via syringe, followed by the addition of iodobenzene (**1a**, 2.40 mmol, 490 mg, 0.274 mL) and butyl acrylate (**2a**, 2.00 mmol, 256 mg, 0.290 mL). The reaction mixture was heated to 70 °C and stirred vigorously (1200 rpm) for 4 h. After cooling to room temperature, water (15 mL) and EtOAc (15 mL) were added. The organic layer was separated and the aqueous phase was extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the product **3aa** (182 mg, 44%).

To a round-bottom flask was charged with $Cu(acac)_2$ (1.00 mmol, 262 mg), 3,4-dimethoxyaniline (2.00mmol, 306 mg), Zinc dust (39.0 mmol, 2.54 g). The flask was plugged with a rubber stopper. Under an air atmosphere, 1% of CTAS/H₂O (15.0 mL) was injected via syringe, followed by the addition of iodobenzene (**1a**, 30.0 mmol, 6.13 g, 3.50 mL) and butyl acrylate (**2a**, 10.0 mmol, 1.28 g, 1.50 mL). The reaction mixture was heated to 70 °C and stirred vigorously (1200 rpm) for 16 h. After cooling to room temperature, EtOAc (15 mL) were added. The organic layer was separated and the aqueous phase was extracted with EtOAc (3 x 15 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the product **3aa** (1.191 g, 58%).

VI. The Spectroscopic Data of Products

For the known compounds, ¹H-NMR and ¹³C-NMR data and spectra, as well as MS data are provided. Full characterization data are provided for compounds **3ka**, **3ja**, **3ha**, **3cc**, **3ib**, **3la**, **3ae**, **3kd**, **3cf**, **3ee**, **3ad**, **3cd**, **3ce**, **3ec**, **3ed**, **3ic** and **3ke**.

Butyl 3-phenylpropanoate (3aa)³: 32.2 mg, 78% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.27 (m, 2H), 7.21–7.19 (m, 3H), 4.08 (t, *J* = 6.7 Hz, 2H), 2.96 (t, *J* = 6.7 Hz, 2H), 2.63 (t, *J* = 6.7 Hz, 2H), 1.60-1.57 (m, 2H), 1.38-1.31 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 140.8, 128.7, 128.5, 126.5, 64.6, 36.2, 31.3, 30.9, 19.3, 13.9. MS (EI) m/z: 206.1

Butyl 3-(*p*-tolyl)propanoate (**3ba**)⁴: 38.3 mg, 78% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.10 (s, 4H), 4.08 (t, J = 6.7 Hz, 2H), 2.92 (t, J = 6.7 Hz, 2H), 2.61 (t, J = 6.7 Hz, 2H), 2.32 (s, 3H), 1.62-1.56 (m, 2H), 1.37-1.33 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 137.7, 135.9, 129.4, 128.4, 64.5, 36.3, 30.9, 30.8, 21.2, 19.3, 13.9. MS (EI)

Butyl 3-(*m*-tolyl)propanoate (3ca)⁵: 25.5 mg, 58% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.20-7.17 (m, 1H), 7.03–7.00 (m, 3H), 4.08 (t, J = 6.7 Hz, 2H), 2.92 (t, J = 6.7 Hz, 2H), 2.62 (t, J = 6.7 Hz, 2H), 2.33 (s, 3H), 1.62-1.57 (m, 2H),1.38-1.33 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 140.7, 138.2, 129.3, 128.6, 127.2, 125.5, 64.5, 36.2, 31.2, 30.9, 21.6, 19.3, 13.9. MS (EI) m/z: 220.1

Butyl 3-(4-methoxyphenyl)propanoate (3da)⁵: 22.7 mg, 48% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.13-7.10 (m, 2H), 6.84–6.81 (m, 2H), 4.06 (t, *J* = 6.7 Hz, 2H), 3.78 (s, 3H), 2.89 (t, *J* = 7.8 Hz, 2H), 2.59 (t, *J* = 7.8 Hz, 2H), 1.59-1.56 (m, 2H), 1.36-1.32 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 158.3, 132.9, 129.5, 114.1, 64.6, 55.5, 36.5, 30.9, 30.4, 19.4, 14.0. MS (EI) m/z: 236.1

Butyl 3-(3-methoxyphenyl)propanoate (3ea)⁶: 19.8 mg, 42% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.22-7.18 (m, 1H), 6.80–6.74 (m, 3H), 4.08 (t, J = 6.7 Hz, 2H), 3.79 (s, 3H), 2.93 (t, J = 6.7 Hz, 2H), 2.62 (t, J = 6.7 Hz, 2H), 1.60–1.57 (m, 2H), 1.37–1.33 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 159.9, 142.4, 129.7, 120.9, 114.3, 111.8, 64.6, 55.4, 36.1, 31.3, 30.9, 19.4, 13.9. MS (EI) m/z: 236.1

Butyl 3-(2-methoxyphenyl)propanoate (3fa)⁶: 12.3 mg, 26% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.21-7.14 (m, 2H), 6.89–6.83 (m, 2H), 4.07 (t, J = 6.7 Hz, 2H), 3.82 (s, 3H), 2.94 (t, J = 7.8 Hz, 2H), 2.60 (t, J = 7.8 Hz, 2H), 1.62-1.57 (m, 2H), 1.39-1.32 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 157.7, 130.2, 129.1, 127.8, 120.6, 110.4, 64.5, 55.4, 34.5, 30.9, 26.4, 19.4, 14.0. MS (EI) m/z: 236.1

Butyl 3-(4-fluorophenyl)propanoate (3ga)⁵: 16.6 mg, 37% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.17-7.14 (m, 2H), 6.98–6.95 (m, 2H), 4.06 (t, J = 6.7 Hz, 2H), 2.92 (t, J = 7.7 Hz, 2H), 2.60 (t, J = 7.7 Hz, 2H), 1.59-1.54 (m, 2H),1.36-1.31 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 162.7, 160.7, 136.4 (d, J = 3.2 Hz), 129.9 (d, J = 7.8 Hz), 115.5 (d, J = 21.2 Hz), 64.6, 36.3, 30.9, 30.4, 19.3, 13.9. MS (EI) m/z: 224.1

Butyl 3-(3-fluorophenyl)propanoate (3ha): 17.0 mg, 38% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.24-7.22 (m, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.91-6.87 (m, 2H), 4.07 (t, *J* = 6.7 Hz, 2H), 2.95 (t, *J* = 7.7 Hz, 2H), 2.62 (t, *J* = 7.7 Hz, 2H), 1.60-1.55 (m, 2H),1.36-1.32 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 164.1, 162.2, 143.3 (d, *J* = 7.3 Hz), 130.1 (d, *J* = 8.3 Hz), 124.2 (d, *J* = 2.8 Hz), 115.4 (d, *J* = 21.1 Hz), 113.4 (d, *J* = 21.0 Hz), 64.7, 35.8, 30.92 (d, *J* = 1.7 Hz), 30.88, 19.3, 13.9. HRMS calcd $C_{13}H_{17}FO_2Na$ [M+Na]⁺: 247.1105. Found: 247.1105

Butyl 3-(3-(trifluoromethyl)phenyl)propanoate (3ia)⁷: 14.2 mg, 26% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.39 (m, 4H), 4.07 (t, J = 6.7 Hz, 2H), 3.01 (t, J = 7.7 Hz, 2H), 2.65 (t, J = 7.7 Hz, 2H), 1.59-1.56 (m, 2H), 1.35-1.29 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 141.4, 131.8, 130.8 (q, J = 32.0 Hz), 128.9, 125.1 (q, J = 3.8 Hz), 124.1 (q, J = 270 Hz), 123.2 (q, J = 3.8 Hz), 64.5, 35.6, 30.7, 30.6, 19.1, 13.7. MS (EI) m/z: 274.1

Butyl 3-(3-aminophenyl)propanoate (3ja): 5.3 mg, 12% yield, yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.08-7.05 (m, 1H), 6.61-6.52 (m, 3H), 4.07 (t, J = 6.7 Hz, 2H), 3.69 (brs, 2H),

2.87-2.84 (m, 2H), 2.61-2.58 (m, 2H), 1.62-1.58 (m, 2H), 1.38-1.33 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 146.7, 142.1, 129.6, 118.8, 115.3, 113.3, 64.6, 36.1, 31.2, 30.9, 19.4, 14.0. HRMS calcd C₁₃H₂₀NO₂ [M+H]⁺: 222.1488. Found: 222.1488

Butyl 3-(pyridin-2-yl)propanoate (3ka): 27.7 mg, 67% yield, yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.52 (d, *J* = 4.3 Hz, 1H), 7.58 (td, *J* = 7.7, 1.8 Hz, 1H), 7.19-7.09 (m, 2H), 4.06 (t, *J* = 6.7 Hz, 2H), 3.11 (t, *J* = 7.5 Hz, 2H), 2.80 (t, *J* = 7.5 Hz, 2H), 1.60-1.54 (m, 2H), 1.35-1.31 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 160.4, 149.5, 136.6, 123.2, 121.6, 64.6, 33.7, 33.2, 30.9, 19.3, 13.9. HRMS calcd $C_{12}H_{18}NO_2$ [M+H]⁺: 208.1332. Found: 208.1331

Butyl 3-(4-(trifluoromethyl)pyridin-2-yl)propanoate (3la): 30.8 mg, 56% yield, yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, J = 5.1 Hz, 1H), 7.41 (s, 1H), 7.34 (d, J = 5.0 Hz, 1H), 4.07 (t, J = 6.7 Hz, 2H), 3.19 (t, J = 7.3 Hz, 2H), 2.84 (t, J = 7.3 Hz, 2H), 1.59-1.54 (m, 2H), 1.36-1.30 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 162.0, 150.5, 138.8 (q, J = 33.9 Hz), 123.1 (q, J = 273.2 Hz), 118.9 (q, J = 3.6 Hz), 117.2 (q, J = 3.5 Hz), 64.7, 33.2, 33.1, 30.9, 19.3, 13.9. HRMS calcd C₁₃H₁₇F₃NO₂ [M+H]⁺: 276.1206. Found: 276.1205

Ethyl 2-methyl-3-phenylpropanoate (3ab)⁸: 23.0 mg, 60% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.27 (m, 2H), 7.21–7.16 (m, 3H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.02 (dd, *J* = 13.0, 6.6 Hz, 1H), 2.74-2.64 (m, 2H), 1.19 (t, *J* = 7.1 Hz, 3H), 1.15 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.4, 139.7, 129.2, 128.6, 126.5, 60.5, 41.8, 40.0, 17.0, 14.4. MS (EI) m/z: 192.1

Ethyl 2-methyl-3-(3-methylphenyl)propanoate (3cb)⁹: 24.7 mg, 60% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.18-7.15 (m, 1H), 7.02-6.96 (m, 3H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.99 (dd, *J* = 13.3, 6.8 Hz, 1H), 2.72-2.60 (m, 2H), 2.32 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H), 1.15 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.4, 139.6, 138.1, 130.0, 128.4, 127.2, 126.2, 60.5, 41.7, 39.9, 21.6, 17.0, 14.4. MS (EI) m/z: 206.1

Ethyl 2-methyl-3-(3-methoxylphenyl)propanoate (3db)¹⁰: 9.32 mg, 21% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.08 (d, *J* = 8.6 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 2.95 (dd, *J* = 13.2, 6.7 Hz, 1H), 2.68-2.59 (m, 2H), 1.20 (t, *J* = 7.1 Hz, 3H), 1.14 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.4, 158.3, 131.7, 130.2, 114.0, 60.5, 55.5, 42.0, 39.1, 17.0, 14.4. MS (EI) m/z: 222.1

Ethyl 2-methyl-3-(3-(trifluoromethyl)phenyl)propanoate (3ib): 17.7 mg, 34% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.35 (m, 4H), 4.08 (q, *J* = 7.1 Hz, 2H), 3.08-3.03 (m, 1H), 2.77-2.71 (m, 2H), 1.19-1.16 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 175.8, 140.6, 132.7, 130.9 (q, *J* = 32.0 Hz), 129.0, 125.9 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 270 Hz), 123.5 (q, *J* = 3.8 Hz), 60.7, 41.6, 39.7, 17.2, 14.3. MS (EI) m/z: 260.1. HRMS calcd C₁₃H₁₆F₃O₂ [M+H]⁺: 261.1097. Found: 261.1095

3ma

Butyl heptanoate (3ma)¹¹: 26.0 mg, 70% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 4.06 (t, *J* = 6.7 Hz, 2H), 2.29 (t, *J* = 7.5 Hz, 2H), 1.62-1.59 (m, 4H), 1.31-1.25 (m, 8H), 0.93 (t, *J* = 7.4 Hz, 3H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 64.3, 34.7, 31.7, 31.0, 29.1, 25.2, 22.7, 19.4, 14.3, 14.0. MS (EI) m/z: 186.1

Butyl 3-cyclohexylpropanoate (3na)¹²: 37.3 mg, 88% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 4.06 (t, *J* = 6.7 Hz, 2H), 2.31-2.28 (m, 2H), 1.71-1.57 (m, 7H), 1.52 (dd, *J* = 15.4, 7.1

Hz, 2H), 1.40-1.35 (m, 2H), 1.22-1.20 (m, 4H), 0.95-0.84 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 64.1, 37.3, 33.0, 32.4, 30.0, 30.7, 26.6, 26.2, 19.2, 13.7. MS (EI) m/z: 212.1

Benzyl 3-phenylpropanoate (3ac)¹³: 34.6 mg, 72% yield, colorless oil, ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.28 (m, 7H), 7.23-7.19 (m, 3H), 5.13 (s, 2H), 2.99 (t, *J* = 7.8 Hz, 2H), 2.70 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 140.6, 136.2, 128.8, 128.7, 128.5, 128.4, 126.5, 66.5, 36.1, 31.2. MS (EI) m/z: 240.1

Benzyl 3-(m-tolyl)propanoate (3cc)¹⁴: 31.0 mg, 61% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.31 (m, 5H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.04-6.99 (m, 3H), 5.13 (s, 2H), 2.95 (t, *J* = 7.8 Hz, 2H), 2.69 (t, *J* = 7.8 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 140.6, 138.3, 136.2, 129.3, 128.8, 128.6, 128.4, 127.2, 125.5, 66.5, 36.2, 31.1, 21.6. HRMS calcd $C_{17}H_{18}O_2Na$ [M+Na]⁺: 277.1199. Found: 277.1201

Benzyl 3-(3-methoxyphenyl)propanoate (3ec): 23.2 mg, 43% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.31 (m, 5H), 7.22-7.18 (m, 1H), 6.80-6.75 (m, 3H), 5.13 (s, 2H), 3.78 (s, 3H), 2.96 (t, *J* = 7.8 Hz, 2H), 2.69 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 159.9, 142.3, 136.2, 129.7, 128.8, 128.4, 120.9, 114.2, 111.9, 66.5, 55.4, 36.0, 31.2. HRMS calcd C₁₇H₁₈O₃Na [M+Na]⁺: 277.1148. Found: 277.1144

Benzyl 3-(3-(trifluoromethyl)phenyl)propanoate (3ic): 17.2 mg, 28% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.46 (m, 2H), 7.40-7.29 (m, 7H), 5.11 (s, 2H), 3.03 (t, *J* = 7.7 Hz, 2H), 2.71 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 141.5, 136.0, 132.0, 131.1 (q, *J* = 32.0 Hz), 128.8, 128.6, 128.5, 125.3 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 270.0 Hz), 123.5 (q, *J* = 3.8 Hz), 66.7, 35.8, 30.9. HRMS calcd C₁₇H₁₅F₃O₂Na [M+Na]⁺: 331.0916. Found: 331.0908

3,4-Dichlorobenzyl 3-phenylpropanoate (3ad): 43.3 mg, 70% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ7.41-7.38 (m, 2H), 7.29-7.27 (m, 2H), 7.23-7.17 (m, 3H), 7.11-7.09 (m, 1H), 5.04 (s, 2H), 2.97 (t, *J* = 7.7 Hz, 2H), 2.70 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.7, 140.4, 136.4, 132.9, 132.5, 130.8, 130.3, 128.8, 128.5, 127.6, 126.6, 64.9, 36.0, 31.1. HRMS calcd C₁₆H₁₄Cl₂O₂Na [M+Na]⁺: 331.0263. Found: 331.0254

3,4-Dichlorobenzyl 3-(m-tolyl)propanoate (3cd): 32.9 mg, 51% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.38 (m, 2H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.11 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.03-6.97 (m, 3H), 5.04 (s, 2H), 2.93 (t, *J* = 7.7 Hz, 2H), 2.69 (t, *J* = 7.8 Hz, 2H), 2.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 140.3, 138.4, 136.4, 132.9, 132.5, 130.8, 130.3, 129.3, 128.7, 127.6, 127.4, 125.5, 64.9, 36.0, 31.1, 21.6. HRMS calcd C₁₇H₁₆Cl₂O₂Na [M+Na]⁺: 345.0420. Found: 345.0412

3,4-dichlorobenzyl 3-(3-methoxyphenyl)propanoate (3ed): 30.5 mg, 45% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.39 (m, 2H), 7.20 (t, *J* = 7.8 Hz, 1H), 7.11 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.78-6.73 (m, 3H), 5.04 (s, 2H), 3.78 (s, 3H), 2.95 (t, *J* = 7.7 Hz, 2H), 2.70 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.7, 159.9, 142.0, 136.3, 132.9, 132.5, 130.7, 130.3, 129.7, 127.6, 120.8, 114.3, 111.9, 64.9, 55.4, 35.9, 31.1. HRMS calcd C₁₇H₁₆O₃Na [M+Na]⁺: 361.0369. Found: 361.0361

4-(Methylthio)benzyl 3-phenylpropanoate (3ae): 37.8 mg, 66% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.28 (t, *J* = 7.4 Hz, 2H), 7.23 (s, 4H), 7.20 (dd, *J* = 14.6, 7.4 Hz, 3H), 5.07 (s, 2H), 2.97 (t, *J* = 7.8 Hz, 2H), 2.68 (t, *J* = 7.8 Hz, 2H), 2.49 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 140.6, 139.0, 132.9, 129.1, 128.7, 128.5, 126.8, 126.5, 66.1, 36.1, 31.2, 16.0. HRMS calcd C₁₇H₁₈NaSO₂ [M+Na]⁺: 309.0920. Found: 309.0918

4-(Methylthio)benzyl 3-(*m***-tolyl)propanoate (3ce)**: 34.2 mg, 57% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.29 (dd, *J* = 13.6, 8.4 Hz, 1H), 7.23 (s, 3H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.02-6.97 (m, 3H), 5.06 (s, 2H), 2.92 (t, *J* = 7.8 Hz, 2H), 2.66 (t, *J* = 7.8 Hz, 2H), 2.48 (s, 3H), 2.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 140.6, 139.0, 138.3, 132.9, 129.3, 129.14, 128.6, 127.2, 126.8, 125.5, 66.1, 36.2, 31.1, 21.6, 16.0. HRMS calcd C₁₈H₂₀NaSO₂ [M+Na]⁺: 323.1076. Found: 323.1076

4-(Methylthio)benzyl 3-(3-methoxyphenyl)propanoate (3ee): 36.0 mg, 57% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.23 (s, 4H), 7.19 (t, *J* = 7.8 Hz, 1H), 6.78-6.74 (m, 3H), 5.07 (s, 2H), 3.78 (s, 3H), 2.94 (t, *J* = 7.8 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H), 2.49 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 159.9, 142.2, 139.0, 132.9, 129.7, 129.1, 126.7, 120.8, 114.2, 111.9, 66.2, 55.4, 36.0, 31.2, 16.0. HRMS calcd C₁₈H₂₀O₃NaS [M+Na]⁺: 339.1025. Found: 339.1025

3,4-Dimethoxybenzyl 3-(*m***-tolyl)propanoate (3cf**): 38.9 mg, 62% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.18-7.14 (m, 1H), 7.02-6.97 (m, 3H), 6.91-6.89 (m, 1H), 6.86-6.83 (m, 2H), 5.05 (s, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 2.93 (t, *J* = 7.8 Hz, 2H), 2.66 (t, *J* = 7.8 Hz, 2H), 2.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 149.3, 149.2, 140.6, 138.3, 129.3, 128.7, 128.6, 127.2, 125.5, 121.5, 112.0, 111.2, 66.6, 56.2, 56.1, 36.2, 31.1, 21.6. HRMS calcd C₁₉H₂₂O₄Na [M+Na]⁺: 337.1410. Found: 337.1412

3-Chloro-4-(methylthio)benzyl 3-(pyridin-2-yl)propanoate (3kd): 39.1 mg, 63% yield, light yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, *J* = 4.3 Hz, 1H), 7.57 (td, *J* = 7.7, 1.8 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.16-7.10 (m, 3H), 5.04 (s, 2H), 3.13 (t, *J* = 7.3 Hz, 2H), 2.87 (t, *J* = 7.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 159.8, 149.5, 136.6, 136.5, 132.8, 132.4, 130.7, 130.2, 127.5, 123.2, 121.7, 64.8, 33.4, 32.9. HRMS calcd C₁₅H₁₄Cl₂NO₂ [M+H]⁺: 310.0396. Found: 310.0398

4-(Methylthio)benzyl 3-(pyridin-2-yl)propanoate (3ke): 37.3 mg, 65% yield, light yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, *J* = 4.3 Hz, 1H), 7.56 (td, *J* = 7.7, 1.8 Hz, 1H), 7.24-7.20 (m, 4H), 7.15-7.09 (m, 2H), 5.06 (s, 2H), 3.12 (t, *J* = 7.4 Hz, 2H), 2.85 (t, *J* = 7.4 Hz, 2H), 2.47 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 160.1, 149.5, 138.9, 136.6, 133.0, 129.1, 126.8, 123.2, 121.6, 66.1, 33.6, 33.1, 16.0. HRMS calcd C₁₆H₁₇NSO₂Na [M+Na]⁺: 310.0872. Found: 310.0868

3-Phenylpropanenitrile (3ag)¹⁵: 15.7 mg, 60% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.36 (m, 2H), 7.23–7.29 (m, 3H), 2.96 (t, *J* = 7.4 Hz, 2H), 2.62 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 129.1, 128.5, 127.5, 119.4, 31.8, 19.6. MS (EI) m/z: 131.1

3-(*P***-tolyl)propanenitrile (3bg)**¹⁶: 13.1 mg, 45% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.14 (q, *J* = 8.1 Hz, 4H), 2.92 (t, *J* = 7.4 Hz, 2H), 2.60 (t, *J* = 7.4 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 137.1, 135.3, 129.8, 128.4, 119.5, 31.4, 21.3, 19.7. MS (EI) m/z: 145.1

3-(M-tolyl)propanenitrile (3cg)¹⁷: 18.0 mg, 62% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.23 (t, *J* = 7.5 Hz, 1H), 7.10 – 7.02 (m, 3H), 2.93 (t, *J* = 7.5 Hz, 2H), 2.61 (t, *J* = 7.5 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.8, 138.2, 129.3, 129.0, 128.2, 125.5, 119.4, 31.8, 21.6, 19.6. MS (EI) m/z: 145.1

3-(4-Methoxyphenyl)propanenitrile (3dg)¹⁶: 6.76 mg, 21% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.16-7.14 (m, 2H), 6.88-6.86 (m, 2H), 3.80 (s, 3H), 2.90 (t, *J* = 7.4 Hz, 2H), 2.58 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 159.0, 130.4, 129.6, 119.5, 114.5, 55.5, 31.0, 20.0. MS (EI) m/z: 161.1

3-(3-Methoxyphenyl)propanenitrile (3eg)¹⁶: 19.3 mg, 60% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.27-7.24 (m, 1H), 6.83-6.77 (m, 3H), 3.81 (s, 3H), 2.94 (t, *J* = 7.5 Hz, 2H), 2.62 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 160.2, 139.8, 130.2, 120.7, 119.3, 114.3, 112.7, 55.5, 31.9, 19.5. MS (EI) m/z: 161.1

3-(2-Methoxyphenyl)propanenitrile (3fg)¹⁸: 17.1 mg, 53% yield, yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (dd, *J* = 15.7, 1.7 Hz, 1H), 7.18 (dd, *J* = 7.4, 1.6 Hz, 1H), 6.94-6.86 (m, 2H), 3.84 (s, 3H), 2.96 (t, *J* = 7.4 Hz, 2H), 2.62 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 157.5, 130.5, 128.90, 126.6, 120.9, 119.9, 110.6, 55.5, 27.3, 17.7. MS (EI) m/z: 161.1

3-(4-Fluorophenyl)propanenitrile (3gg)¹⁶: 12.5 mg, 42% yield, yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.21-7.19 (m, 2H), 7.05-7.01 (m, 2H), 2.94 (t, *J* = 7.3 Hz, 2H), 2.61 (t, *J* = 7.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 163.3, 161.3, 133.9 (d, *J* = 3.3 Hz), 130.1 (d, *J* = 8.1 Hz), 119.1, 116.1, 115.9, 31.0, 19.8. MS (EI) m/z: 149.1

3-(3-(Trifluoromethyl)phenyl)propanenitrile (3ig)¹⁹: 14.3 mg, 36% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 7.1 Hz, 1H), 7.50-7.44 (m, 3H), 3.03 (t, *J* = 7.4 Hz, 2H), 2.66 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 139.0, 132.0, 131.7, 131.4, 129.7, 129.2, 129.0, 127.8, 127.5, 125.3 (q, *J* = 3.8 Hz), 124.51 (q, *J* = 3.8 Hz), 118.8, 31.6, 19.4. MS (EI) m/z: 199.1

3-(Pyridin-2-yl)propanenitrile (3kg)²⁰: 12.9 mg, 49% yield, yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, *J* = 4.3 Hz, 1H), 7.65 (td, *J* = 7.7, 1.8 Hz, 1H), 7.23 – 7.18 (m, 2H), 3.12 (t, *J* = 7.3 Hz, 2H), 2.85 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 157.4, 149.9, 137.0, 123.4,

3-Cyclohexylpropanenitrile (3ng)²¹: 26.3 mg, 96% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 2.34 (t, *J* = 7.4 Hz, 2H), 1.73-1.65 (m, 5H), 1.58-1.53 (m, 2H), 1.42-1.36 (m, 1H), 1.28-1.12 (m, 3H), 0.94-0.86 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 120.3, 36.8, 32.80, 32.75, 26.6, 26.2, 14.9. MS (EI) m/z: 137.1

3ah

Diethyl phenethylphosphonate (3ah)²²: 16.9 mg, 35% yield, yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.28 (m, 2H), 7.22-7.19 (m, 3H), 4.13-4.06 (m, 4H), 2.92 (dd, J = 17.2, 9.8 Hz, 2H), 2.05 (ddd, J = 11.7, 10.3, 7.0 Hz, 2H), 1.32 (t, J = 7.1 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 141.3, 141.2, 128.8, 128.3, 126.6, 61.8 (d, J = 6.5 Hz), 28.8 (d, J = 4.4 Hz), 27.8 (d, J = 139.4 Hz), 16.7 (d, J = 6.0 Hz). MS (EI) m/z: 242.1

Diethyl (3-methylphenethyl)phosphonate (3ch)²³: 24.1 mg, 47% yield, yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.19-7.16 (m, 1H), 7.03-7.00 (m, 3H), 4.15-4.13 (m, 4H), 2.92-2.86 (m, 2H), 2.32 (s, 3H), 2.11 (brs, 2H), 1.33 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 129.1, 128.7, 127.4, 125.3, 61.9 (d, *J* = 6.5 Hz), 28.6 (d, *J* = 4.2 Hz), 27.8 (d, *J* = 139.2 Hz), 21.6, 16.7 (d, *J* = 6.1 Hz). MS (EI) m/z: 256.1

Diethyl (3-methoxyphenethyl)phosphonate (3eh)²³: 19.6 mg, 36% yield, yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.23-7.20 (m, 1H), 6.80-6.75 (m, 3H), 4.14-4.07 (m, 4H), 3.80 (s, 3H), 2.92-2.86 (m, 2H), 2.09-2.02 (m, 2H), 1.33 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 160.0, 129.8, 120.6, 114.1, 111.9, 61.9 (d, *J* = 6.5 Hz), 55.4, 28.9, 27.8 (d, *J* = 139.2 Hz), 16.7 (d, *J* = 6.2 Hz). MS (EI) m/z: 272.1

VII. References

- P. De Fremont, N. M. Scott, E. D. Stevens, T. Ramnial, O. C. Lightbody, C. L. Macdonald, J. A. C. Clyburne, C. D. Abernethy, S. P. Nolan, *Organometallics* 2005, 24, 6301.
- S. A. Patil, P. A. Medina, D. Gonzalez-Flores, J. K. Vohs, S. Dever, L. W. Pineda, M. L. Montero, B. D. Fahlman, *Synth. Commun.* 2013, 43, 2349.
- 3. M. E. Cucciolito, M. Lega, V. Papa, F. Ruffo, Catal. Lett. 2016, 146, 1113.
- 4. H. Horiguchi, H. Tsurugi, T. Satoh, M. Miura, J. Org. Chem. 2008, 73, 1590.
- 5. L. Zhang, X. Xie, Z. Peng, L. Fu, Z. Zhang, Chem. Commun. 2013, 49, 8797.
- 6. J. J. Meng, M. Gao, M. Dong, Y. P. Wei, W. Q. Zhang, Tetrahedron Lett. 2014, 55, 2107.
- T. Sifferlen, R. Koberstein, E. Cottreel, A. Boller, T. Weller, J. Gatfield, C. Brisbare-Roch, F. Jenck, C. Boss, Bioorg. Med. Chem. Lett. 2013, 23, 3857.
- 8. M. Amézquita-Valencia, H.Alper, J. Org. Chem. 2016, 81, 3860.
- 9. W. Hafner, H. Gebauer, M. Regiert, W. Friedrich, E. Markl, Ger. Offen. 1988, DE 3703584 A1 19880818.
- 10. L. Yang, C. A. Correia, X. Guo, C. J. Li, *Tetrahedron Lett.* 2010, **51**, 5486.
- 11. H. D. Yan, Q. Zhang, Z. Wang, Catal. Commun. 2014, 45, 59.
- 12. C. Lutz, , P. Jones, P. Knochel, Synthesis 1999, 312.
- 13. M. M. Dell'Anna, V. F. Capodiferro, M. Mali, P. Mastrorilli, J. Organomet. Chem. 2016, 818, 106.
- 14. I. Profir, M. Beller, I. Fleischer, Org. Biomol. Chem. 2014, 12, 6972.
- 15. D. R. Heitz, K. Rizwan, G. A. Molander, J. Org. Chem. 2016, 81, 7308.
- 16. N. Z. Yagafarov, D. L. Usanov, A. P. Moskovets, N. D. Kagramanov, V. I. Maleev, D. Chusov, *ChemCatChem*, 2015, **7**, 2590.
- 17. H. Guo, Y. Zhang, Synth. Commun. 2000, 30, 1879.
- 18. J. J. Meng, M. Gao, M. Dong, Y. P. Wei, W. Q. Zhang, Tetrahedron Lett. 2014, 55, 2107.
- 19. M. Amatore, C. Gosmini, J. Périchon, J. Org. Chem. 2006, 71, 6130.
- 20. R. V. Jagadeesh, H. Junge, M. Beller, Nat. Commun. 2014, 5, 4123.
- 21. C. M. McMahon, E. J. Alexanian, Angew. Chem. Int. Ed. 2014, 53, 5974.
- 22. N. Iranpoor, H. Firouzabadi, K. Rajabi Moghadam, E. Etemadi-Davan, Asian J. Org. Chem. 2015, 4, 1289.
- 23. S. Kim, C. E. Kim, B. Seo, P. H. Lee, Org. Lett. 2014, 16, 5552.

VIII. Copies of ¹H, ¹³C NMR Spectra of products

¹H NMR and ¹³C NMR of 3aa

¹H NMR and ¹³C NMR of 3ba

¹H NMR and ¹³C NMR of 3ca

¹H NMR and ¹³C NMR of 3da

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR and ¹³C NMR of 3ea

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR and ¹³C NMR of 3fa

¹H NMR and ¹³C NMR of 3ga

¹H NMR and ¹³C NMR of 3ha

¹H NMR and ¹³C NMR of 3ia

¹H NMR and ¹³C NMR of 3ja

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR and ¹³C NMR of 3la

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR and ¹³C NMR of 3cb

¹H NMR and ¹³C NMR of 3db

¹H NMR and ¹³C NMR of 3ib

¹H NMR and ¹³C NMR of 3ma

¹H NMR and ¹³C NMR of 3na

¹H NMR and ¹³C NMR of 3ac

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR and ¹³C NMR of 3cc

¹H NMR and ¹³C NMR of 3ec

¹H NMR and ¹³C NMR of 3ic

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR and ¹³C NMR of 3ad

¹H NMR and ¹³C NMR of 3ed

¹H NMR and ¹³C NMR of 3ae

¹H NMR and ¹³C NMR of 3ce

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR and ¹³C NMR of 3ee

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 -10 fl (ppm)

¹H NMR and ¹³C NMR of 3cf

¹H NMR and ¹³C NMR of 3kd

-172.90 -199.84 -199.53 -149.53 -149.53 -149.53 -149.53 -149.53 -149.53 -149.53 -149.53 -149.53 -141.51 -64.82 -64.82 -64.82 -64.82 -64.82 -64.82 -64.82 -64.82

¹H NMR and ¹³C NMR of 3ke

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR and ¹³C NMR of 3ag

¹H NMR and ¹³C NMR of 3bg

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR and ¹³C NMR of 3cg

$^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of 3dg

¹H NMR and ¹³C NMR of 3eg

¹H NMR and ¹³C NMR of 3fg

¹H NMR and ¹³C NMR of 3gg

¹H NMR and ¹³C NMR of 3ig

¹H NMR and ¹³C NMR of 3kg

¹H NMR and ¹³C NMR of 3ng

¹H NMR and ¹³C NMR of 3ah

¹H NMR and ¹³C NMR of 3eh

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR of L-2

