Supporting Information

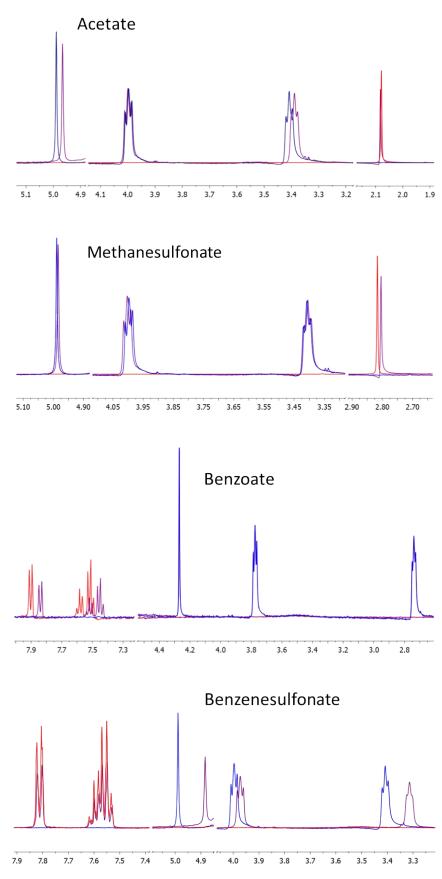
Supramolecular Forces and Their Interplay in Stabilizing Complexes of Organic Anions: Tuning Binding Selectivity in Water.

Matteo Savastano, Carla Bazzicalupi, Celeste García-Gallarín, Maria Dolores López de la Torre, Antonio Bianchi,* Manuel Melguizo*

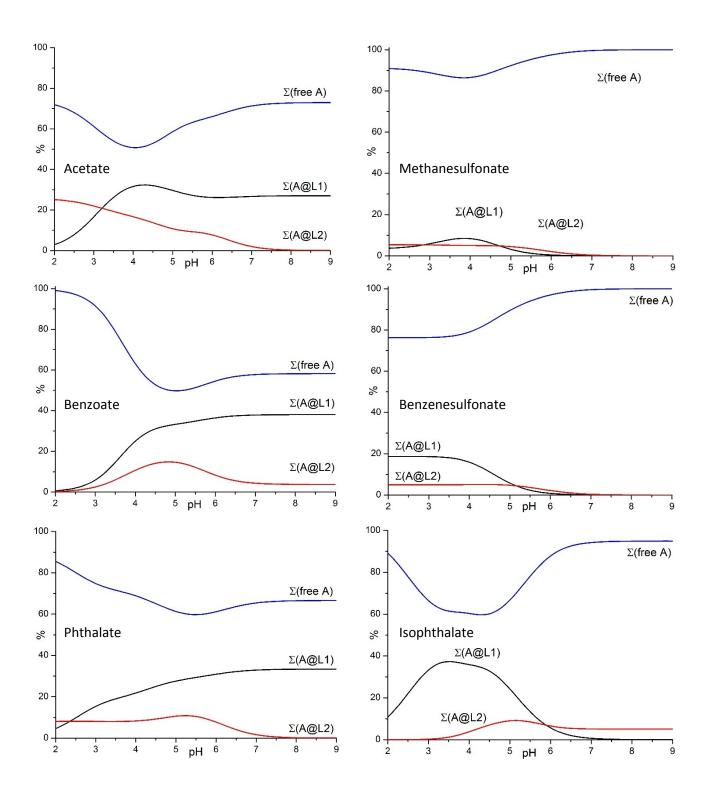
Table of Contents

Table S1. Ligands and anions protonation constants.	S3
Table S2. Crystal data and structure refinement for $(H_2L)(HPhthalate)_2 \cdot 2H_2O$, $(H_2L)(HIsophthalate)_2$	
and $H_2L2(C_6H_5SO_3)_2$ · H_2O .	S4
Figure S1. ¹ H NMR spectra of studied anions with L1	S5
Figure S2. Selectivity diagrams.	S6
Figure S3. pH dependence of conditional stability constants for complexes of L1 and L2 with	
phthalate and isophthalate anions.	S7
Figure S4. ¹ H NMR titration performed by adding benzenesolfonate to L1	S8

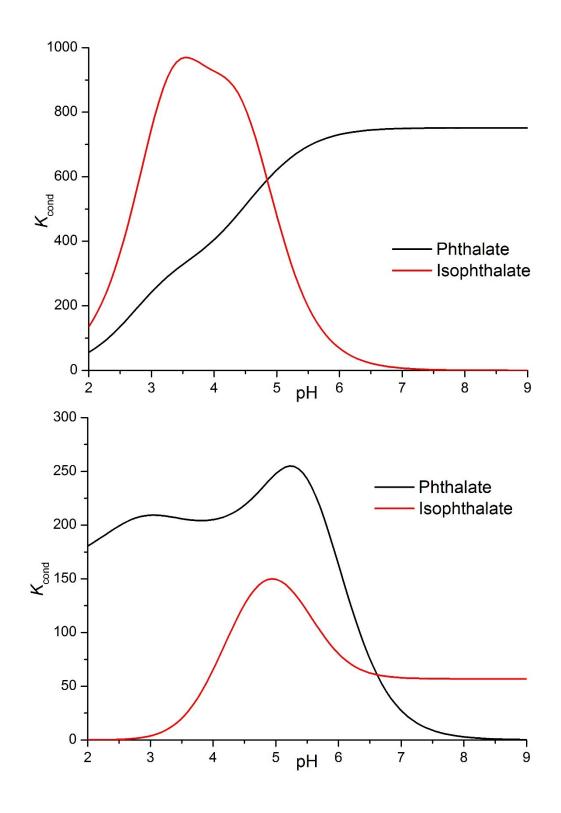
Table S1. Ligands and anions protonation constants determined at 298.1 ± 0.1 K in 0.1 M NMe₄Cl aqueous solution. Figures in parentheses are standard deviations on the last significant figure.


Equilibrium	log K
$H^+ + L1 = HL^+$	4.45(3)ª
$H^+ + HL1^+ = H_2 L1^{2+}$	3.45(3)ª
$H^+ + L2 = HL^+$	6.19(1)ª
$H^+ + HL2^+ = H_2L^{2+}$	5.37(1)ª
$H^+ + CH_3COO^- = CH_3COOH$	4.51(1)
$H^+ + C_6 H_5 COO^- = C_6 H_5 COOH$	4.15(3)
H+ + Pht ²⁻ = HPht ⁻	5.10(3)
H ⁺ + HPht ⁻ = H ₂ Pht	2.78(3)
H+ + IPht2- = HIPht-	4.32(1)
H⁺ + HIPht⁻ = H₂IPht	3.28(1)

^a taken from ref. 9.


Table S2. Crystal data and structure refinement for $(H_2L)(HPhthalate)_2 \cdot 2H_2O$ (a), $(H_2L)(HIsophthalate)_2$ (b) and $H_2L2(C_6H_5SO_3)_2 \cdot H_2O$ (c).

	(a)	(b)	(c)
Empirical formula	$C_{30}H_{40}N_6O_{12}$	$C_{30}H_{36}N_6O_{10}$	$C_{26}H_{38}N_6O_9S_2$
Formula weight	676.68	640.65	642.74
Temperature (K)	100	100	100
space group	С 2/с	P 2 ₁ /n	P na2 ₁
<i>a</i> (Å)	27.337(3)	6.8698(1)	15.1627(5)
<i>b</i> (Å)	6.1593(4)	14.4541(3)	6.4915(4)
<i>c</i> (Å)	20.343(2)	14.7842(3)	29.4057(9)
α (°)	90	90	90
β (°)	106.22(1)	95.204(2)	90
γ (°)	90	90	90
Volume (ų)	3289.0(5)	1461.97(5)	2894.4(2)
Z	4	2	4
Independent reflections / R(int)	2918 / 0.0476	2719 / 0.0672	4695 / 0.0398
μ (mm ⁻¹)	0.901/ (Cu-kα)	0.930/ (Cu-kα)	2.222/ (Cu-kα)
R indices [I>2σ(I)]*	R1 = 0.0466	R1 = 0.0513	R1 = 0.0287
	wR2 = 0.1386	wR2 = 0.1411	wR2 = 0.0741
R indices (all data)*	R1 = 0.0568	R1 = 0.0702	R1 = 0.0311
	wR2 = 0.1599	wR2 = 0.1714	wR2 = 0.0755


* R1 = Σ || Fo| - |Fc|| / Σ |Fo| ; wR2 = [Σ w(Fo² - Fc²)² / Σ wFo⁴]^{1/2}

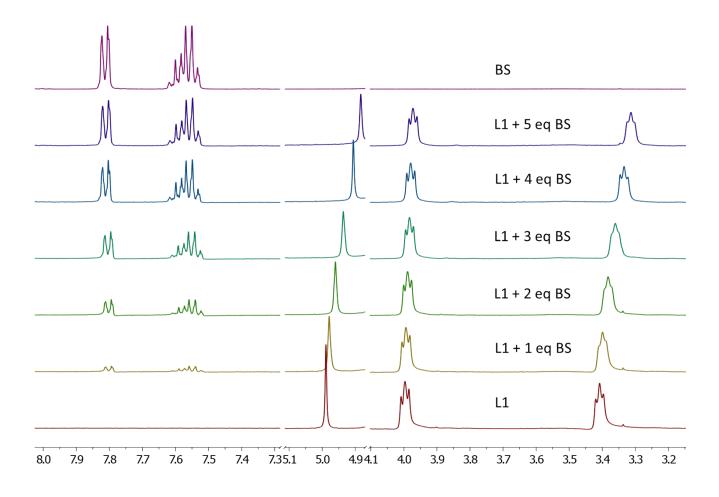

Figure S1. ¹H NMR spectra of studied anions with L1. Colour code: blue: L1 only; red: Substrate only; violet: 1:5 L1:Substrate solution. Working pH as reported in Table 4 for each spectrum. Sample concentrations as reported in the Experimental Section.

Figure S2. Selectivity diagrams showing the percentage of free and bound anion to each ligand as a function of pH: $\Sigma A@L1 =$ total abundance (%) of L1-A complexes, $\Sigma A@L2 =$ total abundance (%) of L2-A complexes (sums run over all the possible complex species reported in Tables 2 and 3, for L1 and L2 respectively). Concentration of all reagents is set to 1 mM. Percentages are referred to total anion concentration.

Figure S3. Conditional stability constants for complexes of L1 (top) and L2 (bottom) with phthalate and isophthalate anions. $K_{cond} = \Sigma[H_{i+j}LA]/(\Sigma[H_iL] \times \Sigma[H_jA])$, with *i* and *j* number of acidic protons on the ligand and on the anion, respectively.

Figure S4. ¹H NMR titration performed by adding benzenesulfonate (BS) to L1. Conditions are given in the Experimental Section.