Rapid Access to Difluoroalkylated Pyrrolobenzodiazepines via a Pd-catalyzed C-

H Difluoroalkylation/Cyclization Cascade Reaction

Yang Gao,^{a,b,c} Chunpu Li,^{b, c, *} Bin Xu,^a and Hong Liu^{b, c, *}

^aDepartment of Chemistry, Shanghai University, Shanghai 200444, China.

^bState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
^cKey Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China

*E-mail: hliu@simm.ac.cn, lichunpu@simm.ac.cn

Table of Contents

1. General Information	S2
 General procedures Synthetic Transformations Mechanistic Investigations 	\$3
	\$3
	S4
5. Analytical Characterization Data of Compounds	85
6. References	S13
7. NMR Spectra of the Products	S14

1. General Information

Analytical thin layer chromatography (TLC) was HSGF 254 (0.15-0.2 mm thickness). Preparative thin layer chromatography (PTLC) was HSGF 254 (0.4-0.5 mm thickness). All products were characterized by their NMR and MS spectra. ¹H and ¹³C NMR spectra were recorded on a 400 MHz, 500 MHz or 600 MHz instrument. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd) and broad (br). Highresolution mass spectra (HRMS) were measured on Micromass Ultra Q-TOF spectrometer. Other reagents (chemicals) were purchased from Alfa Aesar, Acros organics, TCI, J&K Chemicals, Energy Chemical and Adamas and used without further purification. Compounds 1b-1d, 1f, 1i, 1k were known compounds, compounds 1e, 1j were new compounds and all of them were prepared according to literature.¹ Compounds 1g, 1o were known compounds and were prepared according to literature.² Compounds 1m, 1n, 1s, 1u and 1v were known compounds and were prepared according to literature.³ Compounds 11, 1h, 1p, 1q were known compounds and were prepared according to literature.⁴ Compound 1r was known compounds and were prepared according to literature.⁷ Compound 1t was known compounds and were prepared according to literature.⁸

2. General procedures

To a 25 mL of Schlenk tube was added 1-(2-aminophenyl)pyrrole (0.2 mmol), $Pd(PPh_3)_4$ (5.0 mol %), L4 (10.0 mol %), and CH₃COOK (2.0 equiv) under air. The mixture was then evacuated and backfilled with Ar (3 times). Ethyl bromodifluoroacetate (0.8 mmol), 1,2-dichloroethane (DCE, 4.0 mL) were added subsequently. The tube was screw capped and stirred at 110 °C for 14 h. After the solution was cooled to room temperature, the crude reaction mixture was diluted with EA (5 mL) and washed with saturated aqueous NaCl (3 x 5 mL). The aqueous layers were extracted with EA (3 x 5 mL) and the combined organic layers dried over anhydrous Na₂SO₄. Then, the solvents were removed under vacuo, and the residue was purified by a silica gel column chromatography (PE/EA = 10:1) to give the desired products **3**.

3. Synthetic Transformations

5-Allyl-7,7-difluoro-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (4)

To a solution of **3a** (70.0 mg, 0.3 mmol) in MeCN (10.0 mL) was added bromoallylene (72.3 mg, 0.6 mmol), Pd(PPh₃)₄ (17.3 mg, 0.015 mmol) and K₂CO₃ (206.5 mg, 1.5 mmol). The mixture was then evacuated and backfilled with Ar (3 times). The reaction mixture was stirred for 12 h at 60 °C, then diluted with water (20 mL), extracted with EA (20 mL x 3), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA=6:1) to obtain **4** (53 mg, 65%) as a yellow oil.⁵

5-Benzyl-7,7-difluoro-5H-benzo[b]pyrrolo[1,2-d][1,4]diazepin-6(7H)-one (5)

To a solution of **3a** (70.5 mg, 0.3 mmol) in DMF (5.0 mL) was added BnBr (103 mg, 0.6 mmol) and K_2CO_3 (83.2 mg, 0.6 mmol) sequentially. The reaction mixture was stirred for 12 h at 90 °C. Then the reaction was diluted with H₂O (10 mL), extracted with EA (30 mL), the organic layer was washed with H₂O for three times, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA, 8:1) to obtain **5** (70 mg, 72%) as a yellow solid.

7,7-Difluoro-5-phenyl-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (6)

To a solution of **3a** (70.5 mg, 0.3 mmol) in dry DCM (3.0 mL) was added Ph₃Bi (265 mg, 0.6 mmol), Cu(OAc)₂ (109.4 mg, 0.6 mmol) and NEt₃ (91.4 mg, 0.9 mmol) sequentially. The reaction mixture was stirred at room temperature overnight. Then the reaction was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA, 10:1) to obtain **6** (70 mg, 75%) as a yellow solid.

4. Mechanistic Investigations

N-(2-(1H-pyrrol-1-yl)phenyl)-2-bromo-2,2-difluoroacetamide (7)

To a flask charged with a solution of difluorobromoacetic acid (1 g, 5.72 mmol) in DCM/THF (4/1, 37.5 mL) was added DMAP (139.7 mg, 1.14 mmol), **1a** (994.8 mg, 6.29 mmol) and EDCI (1.53 g, 8.0 mmol). The mixture was stirred at room temperature. After 3 h, DIPEA (1.03 g, 8.0 mmol) was added to the mixture. The

reaction was stirred at room temperature for 6 h. The crude mixture was washed with HCl (1 M), saturated aqueous NaHCO₃ (3 x 20 mL) and NaCl (3 x 20 mL) in turn, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (PE/EA, 10:1) to obtain 7 (970 mg, 54 %) as a white solid.⁶

5. Analytical Characterization Data of Compounds

2-(1*H*-Pyrrol-1-yl)-4-(trifluoromethyl)aniline (1e)

White solid (272 mg, 60%). M.p. 97-98 °C. ¹H NMR (500 MHz, DMSO-*d6*) δ 7.41 (dd, J = 8.5, 2.1 Hz, 1H), 7.27 (d, J = 2.1 Hz, 1H), 6.96 (d, J = 8.6 Hz, 1H), 6.94 (t, J = 2.1 Hz, 2H), 6.27 (t, J = 2.1 Hz, 2H), 5.52 (s, 2H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 147.26, 125.64, 125.13 (q, J = 270.9 Hz), 124.15 (q, J = 3.6 Hz), 121.91, 116.41 (q, J = 32.7 Hz), 115.94, 109.97. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -61.25 .HRMS (ESI) m/z: calculated for C₁₁H₈F₃N₂ [M - H]⁻: 225.0645, found: 225.064.

2,4-Dichloro-6-(1*H*-pyrrol-1-yl)aniline (1j)

Colorless oil (491 mg, 54%). ¹H NMR (500 MHz, Acetone-*d6*) δ 7.24 (d, J = 2.4 Hz, 2H), 7.06 (dd, J = 8.7, 2.4 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.08 (s, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 138.36, 128.36, 128.25, 125.80, 121.80, 121.50, 120.12, 110.40. HRMS (ESI) m/z: calculated for C₁₀H₉Cl₂N₂ [M + H]⁺: 227.0137, found: 227.0134.

7,7-Difluoro-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (3a)

White solid (34 mg, 73%). M.p. 148-149 °C. ¹H NMR (500 MHz, DMSO-*d6*) δ 11.18 (s, 1H), 7.66 (dd, J = 8.3, 1.5 Hz, 1H), 7.61 (dd, J = 2.9, 1.8 Hz, 1H), 7.44 – 7.38 (m, 1H), 7.38 – 7.31 (m, 2H), 6.72 (dt, J = 3.8, 1.5 Hz, 1H), 6.51 (dd, J = 3.8, 2.9 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 162.05 (t, J = 33.4 Hz), 130.65, 128.97, 128.03,

126.62, 125.36, 125.30 (t, J = 34.1 Hz), 124.11, 123.35, 111.64, 110.64, 110.16 (t, J = 243.8 Hz). HRMS (ESI) m/z: calculated for C₁₂H₇F₂N₂O [M - H]⁻: 233.0532, found: 233.0532.

3-Chloro-7,7-difluoro-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (3b)

Yellow solid (38 mg, 71%). M.p. 205-207 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.65 (s, 1H), 7.42 (d, *J* = 8.6 Hz, 1H), 7.30 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.26 (d, *J* = 2.2 Hz, 1H), 7.17 (dd, *J* = 2.9, 1.7 Hz, 1H), 6.77 – 6.69 (m, 1H), 6.48 (dd, *J* = 3.8, 2.9 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.69 (t, *J* = 34.7 Hz), 132.54, 129.34, 128.54, 126.43, 125.13 (t, *J* = 34.0 Hz), 124.27, 123.32, 122.19, 111.42, 110.92 (t, *J* = 3.0 Hz), 108.87 (t, *J* = 246.9 Hz). HRMS (ESI) m/z: calculated for C₁₂H₆ClF₂N₂O [M - H]⁻: 267.0142, found: 267.0143.

2,7,7-Trifluoro-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (3c)

Yellow solid (34 mg, 68%). M.p. 190-192 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.62 (s, 1H), 7.24 – 7.19 (m, 2H), 7.18 (dd, *J* = 3.0, 1.7 Hz, 1H), 7.11 – 7.05 (m, 1H), 6.76 – 6.72 (m, 1H), 6.49 (dd, *J* = 3.7, 2.9 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.05 (t, *J* = 34.5 Hz), 160.24 (d, *J* = 247.9 Hz), 132.15 (d, *J* = 10.0 Hz), 125.81 (t, *J* = 34.1 Hz), 124.45 – 124.24 (m), 123.64, 114.66 (d, *J* = 22.6 Hz), 112.04, 111.45 (t, *J* = 3.2 Hz), 110.76 (d, *J* = 26.1 Hz), 109.30 (t, *J* = 245.8 Hz). HRMS (ESI) m/z: calculated for C₁₂H₆F₃N₂O [M - H]⁻: 251.0438, found: 251.044.

7,7-Difluoro-3-methyl-5H-benzo[b]pyrrolo[1,2-d][1,4]diazepin-6(7H)-one (3d)

Yellow solid (32 mg, 64%). M.p. 247-248 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 7.36 (d, *J* = 8.2 Hz, 1H), 7.18 (dd, *J* = 2.9, 1.8 Hz, 1H), 7.14 – 7.11 (m, 1H), 7.00 (dd, *J* = 1.8, 0.9 Hz, 1H), 6.73 – 6.69 (m, 1H), 6.44 (dd, *J* = 3.8, 2.8 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.16 (t, *J* = 34.6 Hz), 138.03, 128.92, 127.80, 127.74, 125.69, 123.76, 123.58, 123.05, 111.39, 110.95 (t, *J* = 3.2 Hz), 109.75 (t, *J* = 245.7 Hz), 20.99. HRMS (ESI) m/z: calculated for C₁₃H₁₁F₂N₂O [M - H]⁻: 249.0834, found: 249.0832.

7,7-Difluoro-2-(trifluoromethyl)-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)one (3e)

Yellow solid (52 mg, 75%). M.p. 222-223 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.67 (s, 1H), 7.78 – 7.73 (m, 1H), 7.65 – 7.58 (m, 1H), 7.37 (d, J = 8.3 Hz, 1H), 7.25 (dd, J = 3.0, 1.8 Hz, 1H), 6.80 – 6.75 (m, 1H), 6.52 (dd, J = 3.8, 2.9 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.15 (t, J = 35.3 Hz), 131.22 (d, J = 33.4 Hz), 129.23 (q, J = 34.2 Hz), 125.89 (t, J = 34.1 Hz), 124.52 (d, J = 4.1 Hz), 124.39, 124.17, 123.39, 122.22, 121.18 (d, J = 3.9 Hz), 112.48, 111.94 (t, J = 3.1 Hz), 109.31 (t, J = 245.9 Hz). HRMS (ESI) m/z: calculated for C₁₃H₆F₅N₂O [M - H]⁻: 301.0406, found: 301.0402.

7,7-Difluoro-3-methoxy-5H-benzo[b]pyrrolo[1,2-d][1,4]diazepin-6(7H)-one (3f)

Yellow solid (29 mg, 55%). M.p. 162-163 °C. ¹H NMR (500 MHz, DMSO-*d6*) δ 11.10 (s, 1H), 7.58 (d, *J* = 8.9 Hz, 1H), 7.52 (dd, *J* = 2.8, 1.8 Hz, 1H), 6.93 (dd, *J* = 8.9, 2.8 Hz, 1H), 6.88 (d, *J* = 2.8 Hz, 1H), 6.67 (dd, *J* = 3.7, 1.7 Hz, 1H), 6.46 (dd, *J* = 3.8, 2.7 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.40 (t, *J* = 34.7 Hz), 158.79, 129.05, 125.46 (t, *J* = 34.1 Hz), 124.81, 124.72, 123.72, 112.80, 111.19, 110.68 (t, *J* = 3.2 Hz), 109.77 (t, *J* = 245.4 Hz), 107.55, 55.93. HRMS (ESI) m/z: calculated for C₁₃H₉F₂N₂O₂ [M - H]⁻: 263.0638, found: 263.0642.

Methyl 7,7-difluoro-6-oxo-6,7-dihydro-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepine-2-carboxylate (3g)

White solid (34 mg, 60%). M.p. 257-258 °C. ¹H NMR (600 MHz, DMSO-*d6*) δ 11.57 (s, 1H), 8.13 (d, J = 1.9 Hz, 1H), 7.98 (dd, J = 8.4, 1.9 Hz, 1H), 7.74 (dd, J = 2.9, 1.7 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 6.78 (dt, J = 3.7, 1.4 Hz, 1H), 6.55 (dd, J = 3.8, 2.9 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 165.86, 162.57 (t, J = 34.73 Hz), 133.82, 131.57, 129.20, 128.85, 126.46 (t, J = 34.2 Hz), 125.68, 123.92, 112.51, 111.44 (t, J = 2.8 Hz), 111.31 (d, J = 134.1 Hz), 110.65 (t, J = 243.9 Hz), 52.74. HRMS (ESI) m/z: calculated for C₁₄H₉F₂N₂O₃ [M - H]⁻: 291.0587, found: 291.0592.

7,7-Difluoro-3-(trifluoromethyl)-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (3h)

Brown solid (48 mg, 79%). M.p. 190-191 ° C. ¹H NMR (600 MHz, DMSO-*d6*) δ 11.44 (s, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.74 – 7.68 (m, 3H), 6.80 (dt, *J* = 3.7, 1.5 Hz, 1H), 6.58 (dd, *J* = 3.8, 2.9 Hz, 1H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 162.53 (t, *J* = 33.9 Hz), 134.59, 130.48, 129.69 (q, *J* = 33.3 Hz), 126.68 (t, *J* = 34.0 Hz), 125.72 (d, *J* = 3.8 Hz), 125.46, 123.73 (q, *J* = 3.8 Hz), 123.66, 121.07 (q, *J* = 4.0 Hz), 112.78, 111.83 (t, *J* = 3.3 Hz), 110.55 (t, *J* = 244.1 Hz). HRMS (ESI) m/z: calculated for C₁₃H₆F₅N₂O [M - H]⁻: 301.0406, found: 301.0404.

2-Chloro-7,7-difluoro-5H-benzo[b]pyrrolo[1,2-d][1,4]diazepin-6(7H)-one (3i)

White solid (33 mg, 63%). M.p. 222-223 °C. ¹H NMR (600 MHz, DMSO-*d6*) δ 7.81 (d, *J* = 2.3 Hz, 1H), 7.70 (dd, *J* = 2.9, 1.7 Hz, 1H), 7.50 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.36 (d, *J* = 8.6 Hz, 1H), 6.75 (dd, *J* = 3.7, 1.7 Hz, 1H), 6.56 – 6.49 (m, 1H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 162.48 (t, *J* = 33.8 Hz), 132.71, 131.49, 128.86, 128.38,

126.54 (t, J = 34.1 Hz), 125.57, 125.30, 124.34, 112.42, 111.45 (t, J = 3.1 Hz), 110.65 (t, J = 243.9 Hz). HRMS (ESI) m/z: calculated for C₁₂H₆ClF₂N₂O [M - H]⁻: 267.0142, found: 267.0141.

2,4-Dichloro-7,7-difluoro-5H-benzo[b]pyrrolo[1,2-d][1,4]diazepin-6(7H)-one(3j)

Yellow solid (41 mg, 74%). M.p. 208-210 ° C. ¹H NMR (400 MHz, Acetone- d_6) δ 7.76 (d, J = 2.3 Hz, 1H), 7.72 (d, J = 2.3 Hz, 1H), 7.64 (dd, J = 3.0, 1.7 Hz, 1H), 6.80 – 6.76 (m, 1H), 6.56 (t, J = 3.4 Hz, 1H). ¹³C NMR (151 MHz, Acetone- d_6) δ 162.06 (t, J = 33.6 Hz), 134.67, 132.14, 129.23, 128.70, 127.03, 126.69 (t, J = 15.1 Hz), 126.08 (t, J = 2.4 Hz), 123.92, 112.77, 112.09 (t, J = 3.3 Hz), 109.69 (t, J = 244.62 Hz). HRMS (ESI) m/z: calculated for C₁₂H₅Cl₂F₂N₂O [M - H]⁻:300.9752, found: 300.9762.

3,7,7-Trifluoro-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (3k)

Yellow solid (41 mg, 81%). M.p. 183-184 ° C. ¹H NMR (600 MHz, DMSO-*d6*) δ 11.32 (s, 1H), 7.73 (dd, J = 9.0, 5.5 Hz, 1H), 7.60 (dd, J = 2.9, 1.7 Hz, 1H), 7.28 – 7.22 (m, 1H), 7.18 (dd, J = 9.6, 2.9 Hz, 1H), 6.73 (dt, J = 4.0, 1.5 Hz, 1H), 6.51 (dd, J = 3.8, 2.9 Hz, 1H). ¹³C NMR (126 MHz, Acetone-*d*₆) δ 162.81 (t, J = 19.4 Hz), 160.86, 131.43 (d, J = 11.5 Hz), 128.52, 126.45 (d, J = 9.7 Hz), 125.50, 113.90 (d, J = 22.9 Hz), 112.11, 111.09 (t, J = 2.5 Hz), 110.77 (t, J = 244.3 Hz), 110.44 (d, J = 7.2 Hz), 110.23 (d, J = 7.2 Hz). HRMS (ESI) m/z: calculated for C₁₂H₆F₃N₂O [M - H]⁻: 251.0438, found: 251.0438.

2,3,7,7-Tetrafluoro-5H-benzo[b]pyrrolo[1,2-d][1,4]diazepin-6(7H)-one (3l)

Yellow solid (46 mg, 85%). M.p. 194-195 ° C. ¹H NMR (600 MHz, DMSO-*d6*) δ 11.29 (s, 1H), 7.95 (dd, J = 11.4, 7.8 Hz, 1H), 7.63 (dd, J = 2.9, 1.7 Hz, 1H), 7.40 (dd, J = 11.3, 7.8 Hz, 1H), 6.75 (dt, J = 3.7, 1.5 Hz, 1H), 6.53 (dd, J = 3.8, 2.9 Hz, 1H). ¹³C NMR (126 MHz, Acetone-*d*₆) δ 161.59 (t, J = 34.0 Hz), 148.77 (dd, J = 148.6, 13.5 Hz), 146.81 (dd, J = 147.4, 13.4 Hz), 127.58, 125.86, 125.65 (t, J = 34.1 Hz), 124.77 (t, J = 2.7 Hz), 112.92 (d, J = 21.8 Hz), 111.69 (d, J = 21.4 Hz), 111.54, 110.54 (t, J = 3.3 Hz), 109.72 (t, J = 244.1 Hz). HRMS (EI) m/z: calculated for C₁₂H₆F₄N₂O [M] :270.0411, found: 270.0406.

2,3-Dichloro-7,7-difluoro-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (3m)

Yellow solid (44 mg, 69%). M.p. 254-256 ° C. ¹H NMR (600 MHz, DMSO-*d6*) δ 11.38 (s, 1H), 8.05 (s, 1H), 7.71 (dd, J = 2.9, 1.7 Hz, 1H), 7.58 (s, 1H), 6.77 (dd, J = 3.7, 1.7 Hz, 1H), 6.54 (t, J = 3.4 Hz, 1H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 162.34 (t, J = 34.2 Hz), 131.49, 131.16, 129.79, 129.59, 126.37 (t, J = 34.0 Hz), 126.11, 125.80, 125.06, 112.61, 111.77 (t, J = 3.1 Hz), 110.54 (t, J = 244.2 Hz). HRMS (ESI) m/z: calculated for C₁₂H₅Cl₂F₂N₂O [M - H]⁻:300.9752, found: 300.9752.

3-Bromo-7,7-difluoro-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (3n)

Yellow solid (56 mg, 80%). M.p. 218-219 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.92 (s, 1H), 7.45 (d, *J* = 10.8 Hz, 2H), 7.35 (d, *J* = 8.9 Hz, 1H), 7.17 (s, 1H), 6.74 (s, 1H), 6.48 (s, 1H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 162.54 (t, *J* = 34.1 Hz), 131.24, 131.12, 129.87, 126.38 (t, *J* = 33.9 Hz), 126.31, 125.40 (t, *J* = 3.02 Hz), 120.56, 112.36, 111.36 (t, *J* = 3.2 Hz), 110.64 (t, *J* = 244.0 Hz). HRMS (ESI) m/z: calculated for C₁₂H₆BrF₂N₂O [M - H]⁻: 310.9637, found: 310.9642.

7,7-Difluoro-2-methyl-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (30)

Yellow solid (43 mg, 86%). M.p. 217-218 ° C. ¹H NMR (600 MHz, DMSO-*d6*) δ 11.06 (s, 1H), 7.60 (dd, J = 2.9, 1.8 Hz, 1H), 7.49 (t, J = 1.1 Hz, 1H), 7.21 (d, J = 1.1 Hz, 2H), 6.70 (dd, J = 3.6, 1.7 Hz, 1H), 6.49 (dd, J = 3.8, 2.9 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 162.65 (t, J = 33.8 Hz), 137.29, 131.50, 129.08, 127.26, 126.54 (t, J = 33.9 Hz), 125.06, 124.74, 123.61, 111.84, 110.89 (t, J = 241.6 Hz), 110.85 (t, J = 4.53 Hz), 20.70. HRMS (ESI) m/z: calculated for C₁₃H₁₁F₂N₂O [M - H]⁻: 249.0834, found: 249.0831.

7,7-Difluoro-2-methoxy-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (3p)

Yellow solid (30 mg, 57%). M.p. 223-224 ° C. ¹H NMR (600 MHz, DMSO-*d*6) δ 10.98 (s, 1H), 7.68 (dd, J = 2.9, 1.7 Hz, 1H), 7.25 (d, J = 8.9 Hz, 1H), 7.18 (d, J = 2.8 Hz, 1H), 7.00 (dd, J = 8.9, 2.8 Hz, 1H), 6.70 (dt, J = 3.7, 1.4 Hz, 1H), 6.50 (dd, J = 3.8, 2.9 Hz,1H), 3.84 (s, 3H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 162.57 (t, J = 33.2 Hz), 158.66, 132.61, 126.65 (t, J = 34.1 Hz), 125.14, 125.02 (t, J = 9.1 Hz), 122.92, 122.81 (t, J = 30.2 Hz), 114.58, 111.89, 110.89 (t, J = 3.0 Hz), 109.08, 56.17. HRMS (ESI) m/z: calculated for C₁₃H₁₁F₂N₂O₂ [M - H]⁻: 265.0783, found: 265.0784.

7,7-Difluoro-2,3-dimethyl-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (3q)

White solid (40 mg, 77%). M.p. 269-270 °C. ¹H NMR (600 MHz, DMSO-*d6*) δ 11.01 (s, 1H), 7.56 (dd, J = 2.9, 1.8 Hz, 1H), 7.44 (s, 1H), 7.07 (s, 1H), 6.67 (dt, J = 3.7, 1.5 Hz, 1H), 6.47 (dd, J = 3.8, 2.8 Hz, 1H), 2.26 (s, 3H), 2.24 (s, 3H). ¹³C NMR (126 MHz, Acetone-*d*₆) δ 162.74 (t, J = 33.6 Hz), 137.20, 135.92, 129.44, 127.28, 126.46 (t, J = 34.1 Hz), 125.03, 124.86, 124.40, 111.63, 110.00 (t, J = 244.4 Hz), 110.60 (t, J = 3.1 Hz), 19.21, 19.13. HRMS (ESI) m/z: calculated for C₁₄H₁₁F₂N₂O [M - H]⁻: 261.0845, found: 261.0849.

5-Allyl-7,7-difluoro-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (4)

Yellow oil. (51 mg, 65%). ¹H NMR (500 MHz, Acetone-*d*6) δ 7.72 (dd, J = 8.1, 1.5 Hz, 1H), 7.59 (dd, J = 7.9, 1.7 Hz, 1H), 7.52 – 7.38 (m, 3H), 6.71 – 6.65 (m, 1H), 6.53 – 6.46 (m, 1H), 5.89 – 5.75 (m, 1H), 5.12 – 5.06 (m, 1H), 5.01 (dt, J = 17.3, 1.7 Hz, 1H), 4.69 – 4.55 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.10 (dd, J = 36.4, 29.4 Hz), 133.83, 132.67 (d, J = 2.5 Hz), 132.39, 127.64, 127.30, 127.12 (dd, J = 41.7, 27.2 Hz), 124.20, 123.96, 123.13 (d, J = 2.5 Hz), 117.35, 111.72 (d, J = 2.2 Hz), 110.87 (d, J = 4.2 Hz), 110.11 (dd, J = 250.2, 241.8 Hz), 53.58. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -95.02 (d, J = 262.9 Hz), -118.00 (d, J = 262.8 Hz). HRMS (ESI) m/z: calculated for C₁₅H₁₃F₂N₂O [M + H]⁺: 275.099, found: 275.0986.

5-Benzyl-7,7-difluoro-5*H*-benzo[*b*]pyrrolo[1,2-*d*][1,4]diazepin-6(7*H*)-one (5)

White solid (70 mg, 72%). M.p. 110-111 °C. ¹H NMR (500 MHz, Acetone- d_6) δ 7.70 (dd, J = 8.1, 1.4 Hz, 1H), 7.53 (dd, J = 7.9, 1.6 Hz, 1H), 7.45 – 7.34 (m, 3H), 7.21 – 7.14 (m, 3H), 6.99 – 6.92 (m, 2H), 6.74 – 6.69 (m, 1H), 6.54 – 6.48 (m, 1H), 5.47 (d, J = 15.8 Hz, 1H), 5.11 (d, J = 15.8 Hz, 1H). ¹³C NMR (126 MHz, Acetone- d_6) δ 162.82 (dd, J = 36.0, 29.1 Hz), 137.39, 133.99, 129.38, 128.67, 128.40, 128.16, 127.83 – 127.20 (m), 127.49, 125.69, 125.08, 124.78 – 124.61 (m), 112.23 (d, J = 2.2 Hz), 111.54 (dd, J = 249.6, 240.7 Hz), 111.15 (d, J = 4.3 Hz), 53.54. ¹⁹F NMR (471 MHz, Acetone- d_6) δ -95.27 (d, J = 260.9 Hz), -117.89 (d, J = 260.4 Hz). HRMS (ESI) m/z: calculated for C₁₉H₁₅F₂N₂O [M + H]⁺: 325.1147, found: 325.1152.

7,7-Difluoro-5-phenyl-5H-benzo[b]pyrrolo[1,2-d][1,4]diazepin-6(7H)-one(6)

White solid (70 mg, 75%). M.p. 166-167 °C. ¹H NMR (500 MHz, Acetone- d_6) δ 7.66 (dd, J = 8.1, 1.5 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.49 – 7.44 (m, 2H), 7.44 – 7.36 (m, 2H), 7.36 – 7.30 (m, 1H), 7.30 – 7.23 (m, 2H), 7.10 (dd, J = 8.3, 1.4 Hz, 1H), 6.76 – 6.72 (m, 1H), 6.58 – 6.52 (m, 1H). ¹³C NMR (126 MHz, Acetone- d_6) δ 161.05 (dd, J

= 36.6, 29.2 Hz), 141.93, 134.10 (d, J = 2.4 Hz), 132.72 (d, J = 2.5 Hz), 129.39, 128.36, 127.86, 127.49, 127.28, 126.95, 126.41 (dd, J = 41.5, 27.1 Hz), 124.26, 124.15 (d, J = 3.9 Hz), 111.51 (d, J = 2.2 Hz), 110.54 (dd, J = 240.8 Hz), 110.50 (d, J = 4.4 Hz). ¹⁹F NMR (471 MHz, Acetone- d_6) δ -95.56 (d, J = 260.0 Hz), -117.93 (d, J = 260.1 Hz). HRMS (ESI) m/z: calculated for C₁₈H₁₃F₂N₂O [M + H]⁺: 311.099, found: 311.0992.

N-(2-(1H-pyrrol-1-yl)phenyl)-2-bromo-2,2-difluoroacetamide (7)

White solid. (970 mg, 54 %). M.p. 71-72 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.35 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.76 (s, 1H), 7.50 – 7.43 (m, 1H), 7.37 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.29 (td, *J* = 7.7, 1.4 Hz, 1H), 6.80 (t, *J* = 2.1 Hz, 2H), 6.44 (t, *J* = 2.1 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 157.46 (t, *J* = 28.0 Hz), 131.79, 131.47, 129.08, 127.19, 126.29, 122.01, 121.43, 111.34, 111.20 (t, *J* = 317.5 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -60.81 (s). HRMS (ESI) m/z: calculated for C₁₂H₈F₂N₂OBr [M - H]⁻: 312.9794, found: 312.9794.

6. Reference

- 1. C. Xie, et al. Org. Biomol. Chem., 2016, 14, 8529-8535.
- 2. N.T. Patil, et al. J. Org. Chem., 2009, 74, 6315-6318.
- 3. Z. An, et al. Chem. Commun., 2017, 53, 11572-11575.
- 4. H. Liu, et al. Org. Biomol. Chem., 2017, 15, 7157-7164.
- 5. S. Cacchi, et al. J. Org. Chem., 1998, 63, 1001-1011.
- 6. W. Huang, et al. ACS Catal. 2016, 6, 7471-7474.
- 7. K. Yonekura, et al. Adv. Syn. Catal., 2016, 358, 2895-2902.
- 8. C. Xie, et al. J. Org. Chem., 2017, 82, 3491-3499

¹³C NMR spectrum of compound **1e**

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 fl (ppm)

¹⁹F NMR spectrum of compound **1e**

¹³C NMR spectrum of compound **1**j

¹³C NMR spectrum of compound **3b**

 $^{13}\mathrm{C}$ NMR spectrum of compound 3c

¹³C NMR spectrum of compound **3d**

¹³C NMR spectrum of compound **3e**

 $^{13}\mathrm{C}$ NMR spectrum of compound 3f

 $^{13}\mathrm{C}$ NMR spectrum of compound 3g

230 220 210 200 190 180 170 160 160 160 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

 $^{13}\mathrm{C}$ NMR spectrum of compound $\mathbf{3h}$

230 220 210 200 190 180 170 160 160 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectrum of compound **3i**

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 ^{13}C NMR spectrum of compound 3k

110 100 f1 (ppm)

 $^{13}\mathrm{C}$ NMR spectrum of compound **31**

¹³C NMR spectrum of compound **3m**

¹³C NMR spectrum of compound **30**

¹³C NMR spectrum of compound **3p**

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 $^{13}\mathrm{C}$ NMR spectrum of compound $\mathbf{3q}$

¹³C NMR spectrum of compound 4

¹⁹F NMR spectrum of compound 4

 $^{19}\mathrm{F}$ NMR spectrum of compound $\mathbf{5}$

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR spectrum of compound **6**

¹³C NMR spectrum of compound **7**

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

¹⁹F NMR spectrum of compound **7**