A Highly Enantioselective Synthetic Method towards the $a_{2 c}$-adrenoceptor Antagonist ORM-10921

Qiaoning Ma, ${ }^{\text {a }}$ Xiaodi Yang, ${ }^{\mathrm{b}}$ Xinsheng Lei,*, ${ }^{*}$ and Guo-Qiang Lin*,a,b,c
a. Institutes of Biomedical Sciences \& School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
b. Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
c. Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

Email: leixs@fudan.edu.cn

Table of Contents:

1. General Experimental S-3
2. Experimental Procedures and Analytical Data S-4
3. Determine the Absolute Configuration of 12a and 12b S-30
4. The X-ray Single Crystal Analysis of $\mathbf{8 \boldsymbol { R } ^ { \prime }}$, and $\mathbf{2 0}{ }^{\prime}$ S-31
5. References S-31
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds S-32

General Experimental

The chemicals and reagents were purchased from Acros, Alfa Aesar, and National Chemical Reagent Group Co. Ltd., P. R. China, and used without further purification. Anhydrous solvents (THF, MeOH, DMF, DCM, and $\mathrm{CH}_{3} \mathrm{CN}$) used in the reactions were dried and freshly distilled before use. Petroleum ether (PE) used had a boiling range of $60-90^{\circ} \mathrm{C}$. All the reactions were carried out under Ar atmosphere, otherwise stated else. Oxygen and/or moisture sensitive solids and liquids were transferred appropriately. Concentration of solutions in vacuo was accomplished using a rotary evaporator fitted with a water aspirator. Residual solvents were removed under high vacuum ($0.1-0.2 \mathrm{~mm} \mathrm{Hg}$). The progress of the reactions was monitored by TLC (silica-coated glass plates) and visualized under UV light, and by using iodine, ceric ammonium molybdate stain or phosphomolybdic acid. Melting points were measured on a SGW X-4 microscopy melting point apparatus without correction. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded either on a 400 MHz Varian Instrument at 25 ${ }^{\circ} \mathrm{C}$ or 600 MHz Bruke Instrument at $25^{\circ} \mathrm{C}$, using TMS as an internal standard, respectively. Multiplicity is tabulated as s for singlet, d for doublet, dd for doublet of doublet, t for triplet, and m for multiplet. Coupling constants (J) are reported in Hertz. ${ }^{13} \mathrm{C}$ NMR spectra were completely hetero-decoupled and measured at 150 MHz . HRMS spectra were recorded on Finnigan- Mat-95 mass spectrometer, equipped with ESI source. Single crystal X-ray diffraction measurements were performed with a diffractometer working with graphitemonochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation.

Experimental Procedures

3-Benzyloxy-1-propionaldehyde (2). IBX ($25.3 \mathrm{~g}, 90 \mathrm{mmol}$) was added to a solution of 3-benzyl-1-propyl alcohol ($\mathbf{1}, 10.0 \mathrm{~g}, 60 \mathrm{mmol}$) in DMSO $(240 \mathrm{~mL})$ at room temperature. After 9 h , Celite pad filtration followed dilute the filtrate with ethyl acetate (500 mL), and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL} \times 4)$, brine (100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtrated and concentrated. Purification by flash chromatography (7% ethyl acetate in petroleum ether) gave aldehyde $2(9.00 \mathrm{~g}, 91 \%)$ as pale yellow oil. Its spectra data corresponds to those reported in the literature ${ }^{1}$. TLC: $\mathrm{R}_{f}=0.25$ (silica gel, 7% ethyl acetate in petroleum ether); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{t}, J$ $=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{dt}, J=6.1,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, ESI-MS $(\mathrm{m} / \mathrm{z}) 187.1[\mathrm{M}+\mathrm{Na}]^{+}$.

Ethyl (E)-5-(Benzyloxy)-2-methyl-2-pentenoate (3). (ethoxycarbonylethylidene) triphenyl phosphorane ($16.0 \mathrm{~g}, 44 \mathrm{mmol}$) was added to a solution of the aldehyde $\mathbf{1}(6.00 \mathrm{~g}, 36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(350 \mathrm{~mL})$ at rt.. The mixture was stirred for 9 h , and then concentrated. Purification by flash chromatography (2.0% ethyl acetate in petroleum ether) gave the ester $3(8.3 \mathrm{~g}$, 91%)as colorless oil. The spectra data was consistent well with those reported in the literature ${ }^{2 \mathrm{ab-b}}$. TLC: $\mathrm{R}_{f}=0.25$ (silica gel, 3.3% ethyl acetate in petroleum ether); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.78(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.57$ (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS $(\mathrm{m} / \mathrm{z}) 249.2$ $[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-5-(benzyloxy)-2-methylpent-2-enoic acid (4). A solution of the ester $\mathbf{3}$ ($10.0 \mathrm{~g}, 40 \mathrm{mmol}$) and $2.0 \mathrm{M} \mathrm{LiOH}(73 \mathrm{~mL}, 145 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1 / 1 / 2)(125 \mathrm{~mL})$ was stirred at rt for overnight. The mixture was acidified the pH to $2 \sim 3$ with 2.0 M HCl aqueous solution at $0{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL} \times 3)$. And the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ $(250 \mathrm{~mL})$, brine $(250 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtrated and concentrated. Purification by flash chromatography (7.0% ethyl acetate in dichlormethane) gave the acid 4 ($8.4 \mathrm{~g}, 95 \%$) as colorless oil. TLC: $\mathrm{R}_{f}=0.37$ (silica gel, 10% ethyl acetate in dichlormethane); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7$, 140.6, 137.5, 128.1, 127.8, 127.0, 72.4, 67.8, 29.0, 11.5. HRMS (m / z) : calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 243.0992, found: 243.0990 .

(R)-3-(5-(benzyloxy)-2-methylpent-2-enoyl)-4-isopropyloxazolidin-2-one (6R). A mixture of $\mathrm{SOCl}_{2}(25 \mathrm{~mL})$ and the acid $4(4.70 \mathrm{~g}, 21 \mathrm{mmol})$ was stirred under rt for 2 h . The solvent was removed under reduced pressure to give the acid chloride as pale yellow oil.
To a solution of the (R)-4-(1-methylethyl) oxazolidin-2-one ($4.20 \mathrm{~g}, 32 \mathrm{mmol}$) in anhydrous THF (200 mL) at $-78^{\circ} \mathrm{C}$ was added $1.6 \mathrm{M} n$-butyllithium ($14.4 \mathrm{~mL}, 23 \mathrm{mmol}$). After 30 min , the acid chloride solution (THF, 50 mL) was added. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and then at $0{ }^{\circ} \mathrm{C}$ for 15 min . The reaction was quenched with a saturated aqueous ammonium chloride aqueous solution (20 mL), and the resultant slurry is concentrated in vacuo. The residue was diluted with water $(20 \mathrm{~mL})$ and extracted with ethyl acetate $(50 \mathrm{~mL} \times$ 4). The organic phase was washed with the saturated NaHCO_{3} solution (50 mL), brine (50 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtrated and concentrated. Purification by flash chromatography (20% ethyl acetate in petroleum ether) gave $\mathbf{6 R}(5.70 \mathrm{~g}, 83 \%)$ as colorless oil. TLC: $\mathrm{R}_{f}=0.20$ (silica gel, 20\% ethyl acetate in petroleum ether); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-49.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.11(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.52-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}$, $1 \mathrm{H}), 4.17(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H})$, $1.92(\mathrm{~s}, 3 \mathrm{H}), 0.92-0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,153.5,138.2,135.1$, 132.3, 128.3, $127.5,72.9,68.5,63.3,58.2,29.0,28.2,17.8,15.0,13.7$. HRMS (m / z) : calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 354.1676$, found: 354.1664.

(S)-3-(5-(benzyloxy)-2-methylpent-2-enoyl)-4-isopropyloxazolidin-2-one (6S). A mixture of $\mathrm{SOCl}_{2}(25 \mathrm{~mL})$ and the acid $4(2.00 \mathrm{~g}, 9.1 \mathrm{mmol})$ was stirred under rt for 2 h . The solvent was removed under reduced pressure to give the acid chloride as a pale yellow oil.

To a solution of the (S)-4-(1-methylethyl) oxazolidin-2-one ($1.70 \mathrm{~g}, 13 \mathrm{mmol}$) in anhydrous THF (130 mL) at $-78{ }^{\circ} \mathrm{C}$ is added $2.4 \mathrm{M} n$-butyllithium ($5.70 \mathrm{~mL}, 13 \mathrm{mmol}$). After 30 min , the acid chloride solution (THF, 20 mL) was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then at $0^{\circ} \mathrm{C}$ for 15 min . The reaction was quenched with a saturated aqueous ammonium chloride solution (10 mL), and the resultant slurry was concentrated in vacuo. The residue was diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(20 \mathrm{~mL} \times 4)$. The organic phase was washed with a saturated NaHCO_{3} solution $(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtrated and concentrated. Purification by flash chromatography (20% ethyl acetate in
petroleum ether) gave $\mathbf{6 S}(2.0 \mathrm{~g}, 70 \%)$ as colorless oil. TLC: $\mathrm{R}_{f}=0.32$ (silica gel, 25% ethyl acetate in petroleum ether); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=45.9\left(c 0.80, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34$ $-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.11(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.52-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=$ $8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 0.92-$ $0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,153.0,137.7,134.6,131.8,127.8,127.0$, 72.4, 68.0, 62.8 57.7, 28.4, 27.7, 17.2, 14.4, 13.2. HRMS (m/z): calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 354.1676$, found: 354.1664.

(R)-3-((R)-5-(benzyloxy)-2-(methoxymethyl)-2-methylpentanoyl)-4-isopropyloxazolidin-

2-one ($\mathbf{7 R}$). To a solution of the chiral imide $\mathbf{6} \boldsymbol{R}(7.70 \mathrm{~g}, 23 \mathrm{mmol})$ in toluene $(250 \mathrm{~mL})$ was added dropwise a solution of NaHMDS (2.0 M in THF, $23 \mathrm{~mL}, 46 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring for 90 min at $-78{ }^{\circ} \mathrm{C}$, chloromethylmethyl ether (5.3 mL , 69 mmol) was added dropwise to the mixture, which was then stirred at $-50^{\circ} \mathrm{C}$ overnight. The reaction mixture was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL), and extracted with ethyl acetate ($50 \mathrm{~mL} \times$ 3). The combined organic layer was washed with brine (50 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by flash column chromatography (petroleum ether/dichlormethane/ethyl acetate $10 / 1 / 1)$ gave $7 \boldsymbol{R}(4.50 \mathrm{~g}, 50 \%)$ as colorless oil. TLC: $\mathrm{R}_{f}=$ 0.42 (silica gel, petroleum ether/dichlormethane /ethyl acetate $5 / 1 / 1$); $[\alpha]_{D^{20}}=-45.9$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.36-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54$ (dt, $J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.47$ (s, 2H), $4.25-4.15(\mathrm{~m}, 3 \mathrm{H}), 4.00(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,152.0,137.7,134.0$, $127.7,127.2,126.9,125.5,77.0,71.1,69.9,62.5,59.3,58.6,50.7,27.6,22.2,17.4,13.9$. HRMS (m / z): calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 398.1938$, found: 398.1940.

(S)-3-((S)-5-(benzyloxy)-2-(methoxymethyl)-2-methylpentanoyl)-4-isopropyloxazolidin-

2-one ($7 \boldsymbol{S}$). To a solution of the chiral imide $\mathbf{6 S}(2.00 \mathrm{~g}, 6.0 \mathrm{mmol}$) in toluene (60 mL) was added dropwise a solution of NaHMDS (2.0 M in THF, $6.3 \mathrm{~mL}, 12 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 90 min at $-78{ }^{\circ} \mathrm{C}$, chloromethylmethyl ether ($1.40 \mathrm{~mL}, 18 \mathrm{mmol}$) was added dropwise to the mixture, which was then stirred at $-50^{\circ} \mathrm{C}$ for overnight. The reaction mixture was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL), and extracted with ethyl acetate (20 $\mathrm{mL} \times 3$). The combined organic layer was washed with brine (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by flash column chromatography (petroleum ether/dichlormethane/ethyl acetate $10 / 1 / 1)$ gave $7 \boldsymbol{S}(1.00 \mathrm{~g}, 45 \%)$ as colorless oil. TLC: $\mathrm{R}_{f}=$ 0.44 (silica gel, petroleum ether/dichlormethane/ethyl acetate $5 / 1 / 1$); $[\alpha]_{\mathbf{D}}{ }^{20}=49.7$ (c 0.6, CHCl_{3}); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54$ (dt, $J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.47$ (m, 1H), 4.47 (s, 2H), $4.25-4.15$ (m, 3H), 4.00 (d, $J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8$
$\mathrm{Hz}, 2 \mathrm{H}), 8.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,152.0,137.7,134.0$, 127.7, 127.2, 126.9, 125.5, 77.0, 71.1, 69.9, 62.5, 59.3, 58.6, 50.7, 27.6, 22.2, 17.4, 13.9. HRMS (m / z) : calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 398.1938$, found: 398.1925.

(R)-3-((R)-5-hydroxy-2-(methoxymethyl)-2-methylpentanoyl)-4-isopropyloxazolidin-2one ($\mathbf{8 R}$). Compound $7 \boldsymbol{R}(5.0 \mathrm{~g}, 13 \mathrm{mmol})$ was hydrogenated over 2.50 g of $10 \% \mathrm{Pd} / \mathrm{C}$ in 80 mL of MeOH at rt for overnight. Then the catalyst was removed by filtration, the filtrate was evaporated under reduced pressure, and the residue was dried in vacuo, giving $\mathbf{8 R}$ as colorless oil. The crude product could be used in the next step without further purification. TLC: $\mathrm{R}_{f}=$ 0.30 (silica gel, 50% ethyl acetate in petroleum ether); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-40.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{~ N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.78-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.7,152.5,76.1,62.7,62.3,59.8,58.4,49.5,29.5,27.6,27.1,20.4,17.4$, 13.8. HRMS (m / z) : calculated for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 310.1625$, found: 310.1610 .

(S)-3-(S)-5-hydroxy-2-(methoxymethyl)-2-methylpentanoyl)-4-isopropyloxazolidin-2-one ($8 \mathbf{S}$). Compound $7 \boldsymbol{S}(1.00 \mathrm{~g}, 2.6 \mathrm{mmol})$ was hydrogenated over 0.500 g of $10 \% \mathrm{Pd} / \mathrm{C}$ in 25 mL of MeOH at rt for overnight. After the catalyst was removed by filtration, the filtrate was evaporated under reduced pressure, and the residue was dried in vacuo, giving $\mathbf{8 S}$ as colorless oil. The crude product could be used in the next step. TLC: $\mathrm{R}_{f}=0.30$ (silica gel, 50% ethyl acetate in petroleum ether); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-28.5\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 4.54$ $(\mathrm{m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H})$, $1.45(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.7,152.5$, $76.1,62.7,62.3,59.8,58.4,49.5,29.5,27.6,27.1,20.4,17.4,13.8$. HRMS (m/z): calculated for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 310.1625$, found: 310.1614 .

(R)-5-((R)-4-isopropyl-2-oxooxazolidin-3-yl)-4-(methoxymethyl)-4-methyl-5-oxo-pentyl 4-nitrobenzoate ($\mathbf{8} \boldsymbol{R}^{\boldsymbol{\prime}}$). To a stirred mixture of alcohol $\mathbf{8 R}$ ($382 \mathrm{mg}, 1.3 \mathrm{mmol}$), pnitrobenzoic acid $(223 \mathrm{mg}, 1.3 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(367 \mathrm{mg}, 1.4 \mathrm{mmol})$ in the THF $(15 \mathrm{ml})$ was
added dropwise DIAD $(0.30 \mathrm{~mL}, 1.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After addition, the resulting mixture was warmed up to rt. Once the reaction finished by monitoring the progress of reaction with TLC, the organic solvent was evaporated, and the residue was purified by column chromatography (petroleum ether/dichlormethane/ethyl acetate $7 / 1 / 1$), giving $\mathbf{8} \boldsymbol{R}^{\prime}$ ($464 \mathrm{mg}, 80 \%$ into two steps) as white solid. TLC: $\mathrm{R}_{f}=0.40$ (silica gel, petroleum ether/dichlormethane /ethyl acetate $5 / 1 / 1) ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-36.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31-8.29(\mathrm{~m}, 2 \mathrm{H}), 8.23$ $-8.21(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.77(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,164.6$, $153.1,150.5,135.7,130.7,123.5,76.5,65.9,63.3,60.4,59.0,50.1,30.3,28.2,23.9,21.0$, 18.0, 14.4. HRMS (m / z) : calculated for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 459.1738, found: 459.1740.

(R)-5-((R)-4-isopropyl-2-oxooxazolidin-3-yl)-4-(methoxymethyl)-4-methyl-5-oxo-pentyl

4-methylbenzenesulfonate $(\mathbf{9 R})$. To a solution of alcohol $\mathbf{8 R}(648 \mathrm{mg}, 2.3 \mathrm{mmol})$, triethylamine ($1.0 \mathrm{~mL}, 6.8 \mathrm{mmol}$) and DMAP ($280 \mathrm{mg}, 0.23 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) was added tosyl chloride ($860 \mathrm{mg}, 14.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ in one portion and stirred for 10 min at this temperature. Then, the mixture was allowed to reach $25^{\circ} \mathrm{C}$ and continued to stir until consumption of $\mathbf{8 R}$ by checking the reaction progress with TLC. The mixture was then poured into a flask containing 20 mL of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (25% ethyl acetate in petroleum ether) gave $9 \boldsymbol{R}(802 \mathrm{mg}, 81 \%$ into two steps) as colorless oil. TLC: $\mathrm{R}_{f}=0.20$ (silica gel, 30% ethyl acetate in petroleum ether); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-32,7\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H})$, $4.29(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 3 \mathrm{H})$, $1.32(\mathrm{~s}, 3 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,153.1,144.7,133.1$, $129.8,127.9,76.4,70.6,63.4,60.4,59.0,50.0,30.2,28.3,24.3,21.6,20.8,18.0,14.5$ HRMS (m / z) : calculated for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 464.1713$, found: 464.1702.

(S)-5-((S)-4-isopropyl-2-oxooxazolidin-3-yl)-4-(methoxymethyl)-4-methyl-5-oxo-pentyl-

4-methylbenzenesulfonate (9S). To a solution of alcohol $\mathbf{8 S}$ ($765 \mathrm{mg}, 2.6 \mathrm{mmol}$), triethylamine ($1.10 \mathrm{~mL}, 7.8 \mathrm{mmol}$) and DMAP ($32 \mathrm{mg}, 0.26 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) was added tosyl chloride ($977 \mathrm{mg}, 5.12 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ in one portion and stirred for 10 min at this temperature. Then, the mixture was allowed to reach $25^{\circ} \mathrm{C}$ and continued to stir until consumption of $\mathbf{8 S}$ by checking the reaction progress with TLC. The mixture was then poured into a flask containing 20 mL of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase
was extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (25% ethyl acetate in petroleum ether) gave $\mathbf{9 S}$ ($993 \mathrm{mg}, 87 \%$ into two steps) as colorless oil. TLC: $\mathrm{R}_{f}=0.20$ (silica gel, 30% ethyl acetate in petroleum ether); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=34.1$ (c 1.0, CHCl_{3}); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.51$ (m, 1H), $4.29(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.27(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 0.90-$ $0.86(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,153.1,144.7,133.1,129.8,127.9,76.4$, 70.6, 63.4, $60.4,59.0,50.0,30.2,28.3,24.3,21.6,20.8,18.0,14.5$. HRMS (m / z): calculated for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 464.1713$, found: 464.1705 .

(\boldsymbol{R})-1-(2-(benzofuran-3-yl)ethyl)-3-(methoxymethyl)-3-methylpiperidin-2-one (10R). To a solution of $9 \boldsymbol{R}(1.10 \mathrm{~g}, 2.48 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was added 2-(benzofuran-3-yl) ethanamine ($0.620 \mathrm{~g}, 3.70 \mathrm{mmol}$). Then the mixture solution was refluxed for 4 h . After cooled to the rt , a solution of $\mathrm{NaOH}(1.0 \mathrm{M})(10 \mathrm{~mL})$ and EtOAc (20 mL) containing 10% of EtOH were added to the reaction mxiture. Separation of organic phase, the aqueous phase was extracted with ethyl acetate ($25 \mathrm{~mL} \times 3$). The combined organic phase was washed with water $(20 \mathrm{~mL})$, brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (33% ethyl acetate in petroleum ether) gave $\mathbf{1 0 R}(0.50 \mathrm{~g}, 67 \%)$ as colorless oil. TLC: $\mathrm{R}_{f}=0.37$ (silica gel, 50% ethyl acetate in petroleum ether); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=2.10$ (c 1.0, CHCl_{3}); ${ }^{\mathbf{H}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.31$ $-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.11$ $(\mathrm{m}, 2 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,154.7,141.3,127.5,123.6,121.8,119.1,116.8,110.8,79.1,58.6,48.7$, 47.2, 42.5, 30.6, 22.4, 20.8, 19.1. HRMS (m / z) : calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 302.1751$, found: 302.1752.

(S)-1-(2-(benzofuran-3-yl)ethyl)-3-(methoxymethyl)-3-methylpiperidin-2-one (10S). To a solution of $9 \boldsymbol{S}(972 \mathrm{mg}, 2.20 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was added 2-(benzofuran-3yl)ethanamine ($533 \mathrm{mg}, 3.30 \mathrm{mmol}$). Then the mixture solution was refluxed for 4 h . After cooled to the rt , a solution of $\mathrm{NaOH}(1.0 \mathrm{M})(10 \mathrm{~mL})$ and EtOAc (20 mL) containing 10% of EtOH were added to the reaction mxiture. Separation of organic phase, the aqueous phase was extracted with ethyl acetate ($25 \mathrm{~mL} \times 3$). The combined organic phase was washed with water $(20 \mathrm{~mL})$, brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (33% ethyl acetate in petroleum ether) gave $\mathbf{1 0 S}(470 \mathrm{mg}, 71 \%$) as a colorless oil. TLC: $\mathrm{R}_{f}=0.37$ (silica gel, 50% ethyl acetate in petroleum ether); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20}=-1.69$ (c 1.0, CHCl_{3}); ${ }^{\mathbf{H}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.30$ $-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.11$
$(\mathrm{m}, 2 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,154.7,141.3,127.5,123.6,121.8,119.1,116.8,110.8,79.1,58.6,48.7$, 47.2, 42.5, 30.6, 22.4, 20.8, 19.1. HRMS (m / z) : calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 324.1570, found: 324.1561 .

(S)-1-(methoxymethyl)-1-methyl-1,2,3,4,6,7-hexahydrobenzofuro[2,3-a]quinolizin-5-ium perchlorate (11S). A mixture of lactam $10 R(50.0 \mathrm{mg}, 0.16 \mathrm{mmol})$ and freshly distilled $\mathrm{POCl}_{3}(5 \mathrm{~mL})$ was refluxed for 6 h . After evaporation to dryness, the brown gum obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and treated by a 1 M aqueous solution of $\mathrm{LiClO}_{4}(5.0 \mathrm{~mL})$. After the mixture was stirred for 10 min , the organic layer was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The collected organic phases were washed with an aqueous solution of LiClO_{4}, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo, gave $\mathbf{1 1 S}$ as amorphous solid. Then to the next steps without further purification.

(R)-1-(methoxymethyl)-1-methyl-1,2,3,4,6,7-hexahydrobenzofuro[2,3-a]quinolizin-5-ium perchlorate ($11 R$). A mixture of lactam $10 S(50.0 \mathrm{mg}, 0.16 \mathrm{mmol})$ and freshly distilled $\mathrm{POCl}_{3}(5 \mathrm{~mL})$ was refluxed for 6 h . After evaporation to dryness, the brown gum obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and treated by a 1 M aqueous solution of $\mathrm{LiClO}_{4}(5.0 \mathrm{~mL})$. After the mixture was stirred for 10 min , the organic layer was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The collected organic phases were washed with an aqueous solution of LiClO_{4}, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo, gave $\mathbf{1 1 R}$ as amorphous solid. then to the next steps without further purification.

(1S,12bS)-1-(methoxymethyl)-1-methyl-1,3,4,6,7,12b-hexahydro-2H-benzofuro[2,3-a] quinolizine (12a). TLC: $\mathrm{R}_{f}=0.55$ (silica gel, 50% ethyl acetate in petroleum ether); $\mathbf{C D}$ $\left(\mathrm{CH}_{3} \mathrm{CN}, ~ c 0.43 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right): \lambda_{\max }[\mathrm{nm}]=229(\Delta \mathcal{E}+0.84), 208(\Delta \mathcal{E}-6.2) ;[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}=-33.2(c 1.0$, CHCl_{3}); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=$
$9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H})$, $2.97(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H})$, $1.49(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.9,153.1,127.4,122.5,121.6$, $117.9,112.9,110.4,80.3,63.9,58.6,55.7,52.9,37.9,34.1,21.5,20.6,16.6$. HRMS (m / z) : calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 286.1802$, found: 286.1792 .
(1S,12bR)-1-(methoxymethyl)-1-methyl-1,3,4,6,7,12b-hexahydro-2H-benzofuro[2,3a]quinolizine (12b). TLC: $\mathrm{R}_{f}=0.35$ (silica gel, 50% ethyl acetate in petroleum ether); CD $\left(\mathrm{CH}_{3} \mathrm{CN}, c 0.43 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right): \lambda_{\max }[\mathrm{nm}]=230(\Delta \mathcal{E}-0.11), 211(\Delta \mathcal{E}+8.3) ;[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 0}}=46.9(c 1.0$, CHCl_{3}); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H}), 3.00-2,97(\mathrm{~m}, 3 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.50(\mathrm{~m}$, $2 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,152.4,127.3,122.7,121.7,117.9,112.8,110.6,74.0,68.3$, 58.5, 55.9, 52.9, 37.7, 33.7, 24.8, 21.8, 20.5. HRMS (m / z) : calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 286.1802$, found: 286.1804.

The reduction of perchlorate salt $\mathbf{1 1 S}$ to $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ in different condition as follow.
Reduction with $\mathbf{N a B H}_{4}$. The amorphous solid $\mathbf{1 1 S}$ was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$, and sodium borohydride ($172 \mathrm{mg}, 0.57 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for overnight and quenched with aqueous sodium sulfate. The mixture was extracted with ethyl acetate $(15 \mathrm{~mL} \times 4)$, and the combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (1,3,5-trimethoxybenzene as an internal standard). Afford 12a and 12b (82% into two steps, 12a/12b $1.0 / 1.8$) as viscous yellow oil.

Reduction with $\mathbf{Z n}\left(\mathrm{BH}_{4}\right)_{2}$. Preparation of $\mathbf{Z n}\left(\mathbf{B H}_{4}\right)_{2}$ (ca. 0.25 M ethereal solution). This procedure was carried out under an argon atmosphere in a round bottom flask, to a vigorously stirred suspension of NaBH_{4} ($398 \mathrm{mg}, 10.5 \mathrm{mmol}$, powder - as dry as possible) in dry $\mathrm{Et}_{2} \mathrm{O}$ $(13 \mathrm{~mL})$, was added a suspension of $\mathrm{ZnCl}_{2}(681 \mathrm{mg}, 5.0 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ dropwise over a period of 10 min at rt . The resulting mixture was stirred for 24 h . After this time, the solids were allowed to sediment. The clear solution was collected with a syringe and used immediately in the next step.
Asymmetric Reduction. The amorphous solid $\mathbf{1 1 S}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$, and the freshly prepared solution of $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}\left(0.25 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}, 6 \mathrm{~mL}, 1.65\right.$ mmol) was added dropwise. The reaction mixture was stirred for 3.5 h , then the reaction was carefully quenched (violent evolution of gas) with $\mathrm{MeOH}(5.0 \mathrm{~mL})$. Concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (1,3,5-trimethoxybenzene as an internal standard). Afford 12a and 12b (59\% into two steps, 12a/12b 1.0/2.0) as viscous yellow oil.

Reduction with LiBHEt $_{3}$. A round bottom flask charged with argon atmosphere, the amorphous solid $11 S$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, The solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and $\mathrm{LiEt}_{3} \mathrm{BH}(0.8 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added via syringe. After being stirred at $78{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was cautiously quenched with satd. $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$ and warmed to rt . The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$
$\times 3$), and the combined organic phases were washed with brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Determined the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy $(1,3,5-$ trimethoxybenzene as an internal standard). Afford 12a and 12b (81% into two steps, 12a/12b $1.0 / 2.0$) as a viscous yellow oil.

Reduction with L-selectride. A solution of L-selectride ($0.33 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF) was added dropwise to a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of the amorphous solid $\mathbf{1 1 S}$ in 4.0 mL THF, and the stirring was continued at that temperature for 4 h , there are start material residual by TLC, prolong reaction time to overnight, there is no obvious change by TLC. The reaction mixture was cautiously quenched with satd. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and warmed to rt. Dilute the reaction solution with 10 mL water, Separation of organic phase, the aqueous phase was extracted with ethyl acetate $(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). Afford 12a and 12b (38% into two steps, 12a/12b 1.0/1.9) as viscous yellow oil.

Reduction with catecholborane. A round bottom flask charged with argon atmosphere, the amorphous solid $\mathbf{1 1 S}$ was dissolved in THF (3.0 mL), The solution was cooled to $-78^{\circ} \mathrm{C}$, and catecholborane ($99 \mathrm{mg}, 0.8 \mathrm{mmol}$) was added, warm to room temperature. And then stirring at room temperature for overnight, there is no target compounds was detected by TLC. To this mixture was added 1.0 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and 1.0 mL of a saturated solution of sodium potassium tartrate. The resulting mixture was stirred for 1 h , washed with brine, and the brine layer was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic portions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Determined the residue by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, the result is same as by TLC.

Reduction with $\mathbf{B H}_{3} \cdot \mathbf{S M e}_{2}$. A round bottom flask charged with argon atmosphere, the amorphous solid $\mathbf{1 1 S}$ was dissolved in THF (2.5 mL), The solution was cooled to $-78^{\circ} \mathrm{C}$, and $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2} \quad(0.08 \mathrm{~mL}, 10.0 \mathrm{M}$ solution in THF) was added via syringe. After being stirred at $-78^{\circ} \mathrm{C}$ for 2 h . To this mixture was added 5.0 mL of $\mathrm{CH}_{3} \mathrm{OH}$, stirred 0.5 h , then warmed to room temperature and concentrated. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (1,3,5-trimethoxybenzene as an internal standard). Afford 12a and 12b (98% into two steps, 12a/12b 1.0/1.8) as viscous yellow oil.

Reduction with $\mathbf{B H}_{3} \cdot \mathbf{S M e} /(\boldsymbol{R})$-CBS. To a solution of (R)-Me-CBS $(0.17 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(0.08 \mathrm{~mL}, 10.0 \mathrm{M}$ solution in THF) and the mixture was stirred under a nitrogen atmosphere at room temperature, then cooled to $-78{ }^{\circ} \mathrm{C}$. Then the amorphous solid $\mathbf{1 1 S}$ was added. The reaction mixture was stirred for 4 h . To this mixture was added 5.0 mL of $\mathrm{CH}_{3} \mathrm{OH}$, stirred 0.5 h , then warmed to room temperature and concentrated. Determined the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). Afford 12a and 12b (97% into two steps, 12a/12b $1.0 / 2.8$) as viscous yellow oil.

Reduction with $\mathbf{B H}_{3} \cdot \mathbf{S M e}_{2} /(\boldsymbol{S})$-CBS. To a solution of (S)-Me-CBS $(0.17 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(0.08 \mathrm{~mL}, 10.0 \mathrm{M}$ solution in THF) and the mixture was stirred
under a nitrogen atmosphere at room temperature, then cooled to $-78^{\circ} \mathrm{C}$. Then the amorphous solid $\mathbf{1 1 S}$ was added. The reaction mixture was stirred for 4 h . To this mixture was added 5.0 mL of $\mathrm{CH}_{3} \mathrm{OH}$, stirred 0.5 h , then warmed to room temperature and concentrated. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (1,3,5-trimethoxybenzene as an internal standard). Afford 12a and 12b (95% into two steps, $\mathbf{1 2 a} / \mathbf{1 2 b} 1.0 / 3.8$) as viscous yellow oil.

Reduction with $\mathbf{E t}_{\mathbf{3}} \mathbf{S i H}$. A round bottom flask charged with argon atmosphere, the amorphous solid $\mathbf{1 1 S}$ was dissolved in 4.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}(3 / 1)$. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and $\mathrm{Et}_{3} \mathrm{SiH}(40.0 \mathrm{uL}, 0.25 \mathrm{mmol})$ was added, stirring at this temperature for 2.0 h , there is no target compounds was detected by TLC. Then warm to $-50^{\circ} \mathrm{C}$, stirred overnight, no target compounds was detected by TLC. Then warm to room temperature, stirred overnight, no target compounds was detected by TLC. The reaction mixture was then diluted with 15.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $5 \%(\mathrm{w} / \mathrm{w})$ aq. $\mathrm{NaHCO}_{3}(10.0 \mathrm{~mL})$. The layers were separated and the organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo.

Reduction with $\mathbf{P h M e}_{2} \mathbf{S i H}$. A round bottom flask charged with argon atmosphere, the amorphous solid $\mathbf{1 1 S}$ was dissolved in 4.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}(3 / 1)$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{PhMe}_{2} \mathrm{SiH}(40.0 \mathrm{uL}, 0.25 \mathrm{mmol})$ was added. Then warm to room temperature, stirred overnight, no target compounds was detected by TLC. The reaction mixture was then diluted with 15.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $5 \%(\mathrm{w} / \mathrm{w})$ aq. $\mathrm{NaHCO}_{3}(10.0 \mathrm{~mL})$. The layers were separated and the organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo.

Reduction with $\mathbf{H}_{2} /(\mathbf{P d} / \mathbf{C})$. A round bottom flask charged with argon atmosphere, the amorphous solid $11 \boldsymbol{S}$ was dissolved in 3.0 mL of DMF. $\mathrm{Pd} / \mathrm{C}(10 \%, 80 \mathrm{mg})$ was added, and the resulting suspension was stirred under hydrogen atmosphere (1.0 atm) for 4.5 h . The reaction mixture was filtered through Celite and the solid residue washed with ethyl acetate. The filtrate was evaporated, and the crude residue was treated with a 30% ammonia solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$, and the collected organic phases were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (1,3,5-trimethoxybenzene as an internal standard). Afford 12a and 12b (73% into two steps, 12a/12b 1.0/2.4) as viscous yellow oil.

Reduction with \mathbf{H}_{2} /Crabtree's catalyst. A round bottom flask charged with argon atmosphere, the amorphous solid $\mathbf{1 1 S}$ was dissolved in 3.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this mixture was added Crabtree's catalyst $(6.60 \mathrm{mg}, 0.008 \mathrm{mmol})$. The flask was evacuated, refilled with hydrogen three times, placed under an atmosphere of hydrogen (1.0 atm) and stirring for overnight. No target compounds was detected by TLC. The flask was evacuated and the solvent was removed under reduced pressure.

Reduction with $\mathrm{H}_{2} /(\boldsymbol{R})$-TsDPEN-Ru ${ }^{\text {II }}$ catalyst.

Method A. A round bottom flask charged with argon atmosphere, the amorphous solid $11 S$ was dissolved in 3.0 mL of $\mathrm{CH}_{3} \mathrm{OH}$ at room temperature, To this mixture was added (R) -

TsDPEN-Ru ${ }^{\text {II }}$ catalyst ($11.0 \mathrm{mg}, 0.016 \mathrm{mmol}$). The flask was evacuated, refilled with hydrogen three times, placed under an atmosphere of hydrogen (1.0 atm) and stirring for overnight. No target compounds was detected by TLC. The flask was evacuated and the solvent was removed under reduced pressure.
Method B. A round bottom flask charged with argon atmosphere, the amorphous solid $11 S$ was dissolved in 3.0 mL of DMF at room temperature, To this mixture was added (R) -TsDPEN-Ru ${ }^{\text {II }}$ catalyst ($11.0 \mathrm{mg}, 0.016 \mathrm{mmol}$). The flask was evacuated, refilled with hydrogen three times, placed under an atmosphere of hydrogen (1.0 atm) and stirring for overnight. Then reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}$, sat. aq.). The resulting mixture was extracted with $\operatorname{EtOAc}(50 \mathrm{~mL} \times 4)$ and the combined organic extracts were dried over anhydrous MgSO 4) and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). Afford 12a and 12b (68% into two steps, 12a/12b $1.0 / 2.4$) as viscous yellow oil.

Reduction with LiAlH_{4}. The amorphous solid $\mathbf{1 1 S}$ was added to a mixture of lithium aluminum hydride ($63.0 \mathrm{mg}, 1.65 \mathrm{mmol}$) and trimethylaluminum ($0.83 \mathrm{~mL}, 2.0 \mathrm{M}$ in Toluene, $1.65 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen. The suspension was stirred at $-78^{\circ} \mathrm{C}$ for 1.0 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, then add 30 mL of $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{EtOAc}(3 / 10 / 87)$. This mixture stirring 0.5 h . The precipitate was filtered off. The solution was extracted with EtOAc ($20 \mathrm{~mL} \times 3$), combined organic phase ,washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. Determined the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). Afford 12a and 12b (25% into two steps, 12a/12b 1.0/1.8) as viscous yellow oil.

Reduction with $\operatorname{LiAlH}\left(\mathbf{O B u}^{\prime}\right)_{3}$. A round bottom flask charged with argon atmosphere, the amorphous solid $\mathbf{1 1 S}$ was dissolved in 2.0 mL of THF. The solution was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{LiAlH}\left(\mathrm{OBu}^{\mathrm{t}}\right)_{3}(135 \mathrm{mg}, 0.53 \mathrm{mmol})$ was added, stirring at this temperature for 0.5 h . At this time, the reaction was quenched by addition of satd. aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture added 5.0 mL of $\mathrm{HCl}(2.0 \mathrm{M})$, stirred 5.0 min . Adjusted $\mathrm{pH} 8 \sim 9$ by $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 4)$ and the combined organic extracts washed with satd. aqueous NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). Afford 12a and 12b (85% into two steps, 12a/12b $1.0 / 2.5$) as viscous yellow oil.

Reduction with Red-Al. A round bottom flask charged with argon atmosphere, the amorphous solid $\mathbf{1 1 S}$ was dissolved in 4.0 mL of THF. The solution was cooled to $-78^{\circ} \mathrm{C}$. A solution of sodium bis(2-methoxyethoxy)aluminum hydride ($0.10 \mathrm{~mL}, 0.36 \mathrm{mmol}, 3.5 \mathrm{M}$ in toluene) was added dropwise. Once the addition was complete, stirred at this temperature for 1.0 h . Then aqueous saturated ammonium chloride (1.0 mL) added. The flask warmed to room temperature. Diluted with 10 mL of water, the layers were separated and the aqueous phase was extracted with EtOAc ($10 \mathrm{~mL} \times 3$), combined organic phase, washed with brine $(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. Determined
the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). Afford 12a and 12b (97% into two steps, 12a/12b 1.0/3.2) as viscous yellow oil.

Reduction with $\operatorname{LiAlH}_{4} /(\boldsymbol{R})$-BINAL-H. Preparation of (\boldsymbol{R})-BINAL-H reagents. A round bottom flask charged with argon atmosphere, 0.6 mL of $\mathrm{LiAlH}_{4}(1.0 \mathrm{M}$ in THF) was introduced via a syringe, and then at room temperature an alcohol in THF ($2.0 \mathrm{M}, 1.0$ equiv) was added in a dropwise manner over a period of ca. 10 min with stirring. Subsequently a THF solution of optically pure (R)-binaphthol ($172 \mathrm{mg}, 0.6 \mathrm{mmol}$,) was added, and the resulting mixture was stirred usually for an additional 30 min at room temperature and used for the asymmetric reduction. Notably the BINAL-H reagent ($\mathrm{R}^{\prime} \mathrm{O}=$ simple alkoxyl) thus formed in THF was cloudy but a near-solution which contained only a very small amount of suspension. If a large quantity ofprecipitate separates out for some reason, one should repeat the preparation from the beginning.
Asymmetric Reduction. The (R)-BINAL-H reagent in THF was cooled to $-90{ }^{\circ} \mathrm{C}$. Subsequently the amorphous solid $\mathbf{1 1 S}$ was added, The mixture was stirred for an additional 1.0 h at this temperature. After addition of methanol (1.0 mL), the mixture added 5.0 mL of $\mathrm{HCl}(2.0 \mathrm{M})$, stirred 5.0 min . Adjusted $\mathrm{pH} 8 \sim 9$ by $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 4)$ and the combined organic extracts washed with satd. aqueous NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). Afford 12a and 12b (95% into two steps, 12a/12b 1.0/1.9) as viscous yellow oil.

Reduction with $\mathrm{LiAlH}_{4} /(\boldsymbol{S})$-BINAL-H. Preparation of (\boldsymbol{S})-BINAL-H Reagents. A round bottom flask charged with argon atmosphere, 0.6 mL of $\mathrm{LiAlH}_{4}(1.0 \mathrm{M}$ in THF) was introduced via a syringe, and then at room temperature an alcohol in THF ($2.0 \mathrm{M}, 1.0$ equiv) was added in a dropwise manner over a period of ca. 10 min with stirring. Subsequently a THF solution of optically pure (S)-binaphthol ($172 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added, and the resulting mixture was stirred usually for an additional 30 min at room temperature and used for the asymmetric reduction. Notably the BINAL-H reagent ($\mathrm{R}^{\prime} \mathrm{O}=$ simple alkoxyl) thus formed in THF was cloudy but a near-solution which contained only a very small amount of suspension. If a large quantity ofprecipitate separates out for some reason, one should repeat the preparation from the beginning.
Asymmetric Reduction. The (S)-BINAL-H reagent in THF was cooled to $-90{ }^{\circ} \mathrm{C}$. Subsequently the amorphous solid $\mathbf{1 1 S}$ was added, the mixture was stirred for an additional 1.0 h at this temperature. After addition of methanol (1.0 mL), the mixture added 5.0 mL of $\mathrm{HCl}(2.0 \mathrm{M})$, stirred 5.0 min . Adjusted $\mathrm{pH} 8 \sim 9$ by $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 4)$ and the combined organic extracts washed with satd. aqueous NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). Afford 12a and 12b (98% into two steps, 12a/12b 1.0/1.6) as viscous yellow oil.

Reduction with DIBALH.

Method A. A round bottom flask charged with argon atmosphere, the amorphous solid $\mathbf{1 1 S}$ was dissolved in 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Neat DIBALH (0.15
$\mathrm{mL}, 0.2 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) was added dropwise, the mixture was stirred for an additional 1.0 h at this temperature. The reaction was quenched by dropwise addition of $\mathrm{H}_{2} \mathrm{O}$, till coagulation occurred. The suspension was diluted with 1.0 M aqueous HCl solution and then stirred 5.0 min . Adjusted $\mathrm{pH} 8 \sim 9$ by 1.0 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 4)$ and the combined organic extracts washed with satd. aqueous NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy (1,3,5-trimethoxybenzene as an internal standard). Afford 12a and 12b (98% into two steps, 12a/12b 2.2/1.0) as viscous yellow oil. Purification by column chromatography (petroleum ether $/$ ethyl acetate $/$ acetone $=200 / 5 / 1$) gave 12a and 12b (89% into two steps, 12a: 62%, 12b: 27%) as colorless oil.
Method B. A round bottom flask charged with argon atmosphere, the amorphous solid $11 S$ was dissolved in 3.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Added $\mathrm{Yb}(\mathrm{OTf})_{3}(113 \mathrm{mg}, 0.16 \mathrm{mmol})$, the mixture was stirred at room temperature for 30 min . Neat DIBALH ($0.17 \mathrm{~mL}, 0.25 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) was added dropwise, the resulting solution was stirred for 1 h and the mixture was quenched with 1.5 mL of methanol. The solvent was evaporated in vacuo, and the residue was diluted with $10 \% \mathrm{HCl}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL} \times 4)$, and dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (1,3,5trimethoxybenzene as an internal standard). Afford 12a and 12b (95% into two steps, 12a/12b 2.0/1.0) as viscous yellow oil.

(1R,12bR)-1-(methoxymethyl)-1-methyl-1,3,4,6,7,12b-hexahydro-2H-benzofuro[2,3a]quinolizine (ent-12a). TLC: $\mathrm{R}_{f}=0.55$ (silica gel, 50% ethyl acetate in petroleum ether); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=23.9\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.20$ (m, 2H), $4.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-$ $2.85(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.83$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.1,153.8,128.1,122.6,121.7,117.9,112.9,110.4$, 80.1, 63.9, 58.5, 55.6, 52.9, 37.9, 33.9, 21.2, 20.3, 16.5. HRMS (m / z) : calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 286.1802$, found: 286.1803.
(1R,12bS)-1-(methoxymethyl)-1-methyl-1,3,4,6,7,12b-hexahydro-2H-benzofuro[2,3-a] quinolizine (ent-12b). TLC: $\mathrm{R}_{f}=0.35$ (silica gel, 50% ethyl acetate in petroleum ether); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-56.5\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 3.72$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H}), 3.00-2,97(\mathrm{~m}, 3 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,152.3,127.2,122.8,121.7,117.9,112.8,110.6,73.9$, $68.3,58.7,55.9,52.9,37.8,33.6,24.7,21.6,20.3$. HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 286.1802$, found: 286.1801 .

Reduction with $\mathbf{N a B H}_{4}$. The amorphous solid $\mathbf{1 1 R}$ was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$, and sodium borohydride ($207 \mathrm{mg}, 5.47 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for overnight and quenched with aqueous sodium sulfate. The mixture was extracted with ethyl acetate $(15 \mathrm{~mL} \times 4)$, and the combined organic phases were
washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (1,3,5-trimethoxybenzene as an internal standard). Afford ent-12a and ent-12b (79\% into two steps, ent-12a/ent-12b $1.0 / 1.8$) as viscous yellow oil. Purification by column chromatography (petroleum ether / ethyl acetate / acetone $=$ 200/5/1) gave ent-12a and ent-12b (75\% into two steps, ent-12a: 26\%, ent-12b: 49\%) as colorless oil.

(R)-N-(2-(benzofuran-3-yl)ethyl)-5-(benzyloxy)-2-(methoxymethyl)-2-methylpent-3enamide (15R). To a solution of 2-(benzofuran-3-yl) ethanamine ($121 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added $7 \mathbf{R}(188 \mathrm{mg}, 0.50 \mathrm{mmol})$. Then the mixture solution was refluxed for 2 h . After cooled to the rt , a solution of $\mathrm{NaOH}(1.0 \mathrm{M})(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$ containing 10% of EtOH were added to the reaction mxiture. Separation of organic phase, the aqueous phase was extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic phase was washed with water $(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (40% ethyl acetate in petroleum ether) gave 15R ($179 \mathrm{mg}, 88 \%$) as colorless oil. TLC: $\mathrm{R}_{f}=0.50$ (silica gel, petroleum ether/ethyl acetate $=1 / 1) ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=1.80\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 7 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{dt}, J=15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.46$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl} 3) \delta^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.4,155.4,141.9,138.2,134.5$, $128.4,127.8,127.7,127.7,124.4,122.5,119.6,117.4,111.5,78.1,72.3,70.6,59.1,48.7,38.9$, 23.7, 20.3. HRMS (m / z) : calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 408.2169$, found: 408.2166 .

(R)-3-((R)-5-(benzyloxy)-2-(methoxymethyl)-2-methylpentanoyl)-4-isopropyloxazolidin-

2-one (13R). Compound 7R ($635 \mathrm{mg}, 1.69 \mathrm{mmol}$) was hydrogenated over 31 mg of 10% Pd / C in 25 mL of MeOH at rt for 0.5 h . Then the catalyst was removed by filtration, the filtrate was evaporated under reduced pressure, and the residue purified by column chromatography (10% ethyl acetate in petroleum ether) gave 13R ($533 \mathrm{mg}, 84 \%$) as colorless oil. TLC: $\mathrm{R}_{f}=0.60$ (silica gel, petroleum ether / dichlormethane /ethyl acetate $=5 / 1 / 1$); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}$ $=-46.2\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.48$ $(\mathrm{s}, 2 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3,42(\mathrm{~m}, 3 \mathrm{H}), 3.30(\mathrm{~s}$, $3 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.89-0.87$ $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.7,152.5,137.9,127.7,127.0,126.9,72.3,69.9$, $62.6,59.8,58.4,49.7,29.7,27.6,24.3,20.6,17.4,13.8$. HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 378.2275$, found: 378.2268 .

(R)-N-(2-(benzofuran-3-yl)ethyl)-5-(benzyloxy)-2-(methoxymethyl)-2-methylpentan

 amide (14R). To a solution of 2-(benzofuran-3-yl) ethanamine ($593 \mathrm{mg}, 3.68 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added 13R ($925 \mathrm{mg}, 2.45 \mathrm{mmol}$). Then the mixture solution was refluxed for overnight. After cooled to the rt, a solution of $\mathrm{NaOH}(1.0 \mathrm{M})(30 \mathrm{~mL})$ and EtOAc (60 mL) containing 10% of EtOH were added to the reaction mxiture. Separation of organic phase, the aqueous phase was extracted with ethyl acetate $(30 \mathrm{~mL} \times 3)$. The combined organic phase was washed with water (20 mL), brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (20% ethyl acetate in petroleum ether) gave $\mathbf{1 4 R}(921 \mathrm{mg}, 92 \%)$ as colorless oil. TLC: $\mathrm{R}_{f}=0.33$ (silica gel, petroleum ether / dichlormethane /ethyl acetate $=5 / 1 / 1) ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=1.60\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 4.46$ $(\mathrm{s}, 2 \mathrm{H}), 3.56(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, \mathrm{~J}=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13 \mathrm{C}$ NMR (151 MHz, CDCl 3$) \delta 175.6,154.8,141.2,137.9,127.7,127.3$, $127.0,126.9,123.7,121.8,119.0,116.9,110.9,77.5,72.3,70.0,58.4,45.1,37.9,32.5,24.0$, 23.2, 19.5. HRMS (m / z) : calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 410.2326$, found: 410.2322.
(S)-1-(5-(benzyloxy)-1-methoxy-2-methylpentan-2-yl)-3,4-dihydrobenzofuro[2,3-c] pyridine (19S). To a solution of amide $14 \mathrm{R}(168 \mathrm{mg}, 0.41 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added freshly distilled $\mathrm{POCl}_{3}(0.13 \mathrm{ml}, 1.43 \mathrm{mmol})$ was refluxed for 6 h . After evaporation to dryness, the brown gum obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and adjusted $\mathrm{pH} 8 \sim 9$ by satd. NaHCO_{3}, the organic layer was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL} \times 3)$. The collected organic phases were washed with a brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo, gave $\mathbf{1 9 S}$ as colorless oil. Then to the next steps without further purification.

(S)-1-((S)-5-(benzyloxy)-1-methoxy-2-methylpentan-2-yl)-1,2,3,4-tetrahydrobenzofuro [2,3-c]pyridine (20a). TLC: $\mathrm{R}_{f}=0.08$ (silica gel, petroleum ether/ethyl acetate $=1 / 1$); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}$ $=-63.2\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7,40(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 7 \mathrm{H})$, $4.47(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.34-3.23(\mathrm{~m}, 5 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.58$
$(\mathrm{m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.7,153.5,138.0,127.7,127.6,127.0,126.9,122.7,121.7,117.9,113.8$, 110.5, 78.2, 72.2, 70.6, 58.6, 58.4, 42.8, 40.6, 30.4, 23.4, 22.3, 19.5. HRMS (m / z): calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 394.2377$, found: 394.2374 .
(R)-1-((S)-5-(benzyloxy)-1-methoxy-2-methylpentan-2-yl)-1,2,3,4-tetrahydrobenzofuro
[2,3-c]pyridine (20b). TLC: $\mathrm{R}_{f}=0.17$ (silica gel, petroleum ether/ethyl acetate $=1 / 1$); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}$ $=53.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7,40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.19(\mathrm{~m}, 7 \mathrm{H})$, $4.52(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.54-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~m}$, $1 \mathrm{H}), 2.72-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,153.5,138.1,127.7,127.6,127.1,126.9,122.7,121.6$, 117.9, 113.9, 110.5, 77.2, 72.3, 70.7, 58.8, 58.5, 42.8, 40.5, 30.9, 23.4, 22.4, 19.2. HRMS (m / z) : calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 394.2377$, found: 394.2380.

The reduction of imine 19S to $20 a$ and $20 b$ in different condition as follow.
Reduction with $\mathbf{H}_{2} /(\mathbf{P d} / \mathbf{C})$. A round bottom flask charged with argon atmosphere, $\mathbf{1 9 S}$ was dissolved in 3.0 mL of $\mathrm{CH}_{3} \mathrm{OH} .10 \% \mathrm{Pd} / \mathrm{C}(24 \mathrm{mg}, 50 \mathrm{wt} \%)$ was added, and the resulting suspension was stirred under hydrogen atmosphere (1.0 atm) for 2.0 h . The reaction mixture was filtered through Celite and the solid residue washed with methanol. The filtrate was concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (1,3,5trimethoxybenzene as an internal standard). Afford 20a and 20b (72% into two steps, 12SS/12SR 3.0/1.0) as viscous yellow oil.

Reduction with $\mathbf{N a B H}_{4}$. A round bottom flask charged with argon atmosphere, 19S was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, and sodium borohydride ($5.1 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 2.0 h and quenched with satd. NaHCO_{3}, evaporate off of methanol, Dilute the residue with ethyl acetate, the organic layer was separated and the aqueous phase extracted with ethyl acetate ($15 \mathrm{~mL} \times 3$), and the combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy $(1,3,5-$ trimethoxybenzene as an internal standard). Afford 20a and 20b (81\% into two steps, 20a/20b $3.2 / 1.0$) as viscous yellow oil.

Reduction with L-selectride. A solution of L-selectride ($0.25 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF) was added dropwise to a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 9 S}$ in 3.0 mL THF, and the stirring was continued at that temperature for 1.0 h , there are much start material residual by TLC, warm to rt., prolong reaction time to overnight, there is no obvious change by TLC. The reaction mixture was cautiously quenched with satd. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. Dilute the reaction solution with 10 mL water, Separation of organic phase, the aqueous phase was extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic layer was washed with brine $(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.

Reduction with 9-BBN. A round bottom flask charged with argon atmosphere, 19S was dissolved in THF (3.0 mL), The solution was cooled to $-78^{\circ} \mathrm{C}$, and $9-\mathrm{BBN}(0.73 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, 0.37 mmol) was added via syringe. After being stirred at $-78^{\circ} \mathrm{C}$ for 4.0 h . There are
much start material residual by TLC, warm to $-50^{\circ} \mathrm{C}$ for 4.0 h , no obvious change. Then warm to rt., prolong reaction time to overnight, there is no obvious change by TLC. The reaction mixture was cautiously quenched with methanol (5 mL), evaporate to dryness.

Reduction with Catecholborane. A round bottom flask charged with argon atmosphere, 19S was dissolved in THF (3.0 mL), The solution was cooled to $-78^{\circ} \mathrm{C}$, and catecholborane (44.0 $\mathrm{mg}, 0.37 \mathrm{mmol}$) was added. After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.0 h . The reaction mixture was cautiously quenched with methanol (5 mL), evaporate to dryness. Determined the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). Afford 20a and 20b (quantity into two steps, 20a/20b 3.0/1.0) as viscous yellow oil.

Reduction with (S)-BINOL-borane. Preparation of (S)-BINOL-H Reagents. A round bottom flask charged with argon atmosphere, (S)-binaphthol ($105 \mathrm{mg}, 0.37 \mathrm{mmol}$) was dissolved in THF (2.0 mL), The solution was cooled to $0^{\circ} \mathrm{C}, \mathrm{BH} 3 / \mathrm{THF}(0.37 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.37 mmol) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at the same temperature and used for the asymmetric reduction
Asymmetric Reduction. A round bottom flask charged with argon atmosphere, 19S was dissolved in THF (3.0 mL), The solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and the solution of (S)-BINOL-borane in THF was added. After being stirred at $-78^{\circ} \mathrm{C}$ for 1.0 h . There are much start material residual by TLC, warm to $-50^{\circ} \mathrm{C}$ for 1.0 h , start material has been a significant decrease, prolong reaction time to overnight, there is no obvious change by TLC. Then the reaction mixture was cautiously quenched with methanol (5 mL), evaporate to dryness. Determined the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). No target compounds was found.

Reduction with DIBALH. A round bottom flask charged with argon atmosphere, 19S was dissolved in 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $-78^{\circ} \mathrm{C}$. Neat DIBALH $(0.32 \mathrm{~mL}$, $0.49 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) was added dropwise, the mixture was stirred for an additional 1.0 h at this temperature. The reaction was quenched by dropwise addition of $\mathrm{H}_{2} \mathrm{O}$, till coagulation occurred. The suspension was diluted with 1.0 M aqueous HCl solution and then stirred 5.0 min . Adjusted $\mathrm{pH} 8 \sim 9$ by 1.0 M aqueous NaHCO_{3}, The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 4)$ and the combined organic extracts washed with satd. aqueous NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}$-NMR spectroscopy ($1,3,5$-trimethoxybenzene as an internal standard). Afford 20a and 20b (90% into two steps, 20a/20b $>97.0 / 3.0$) as viscous yellow oil. Purification by column chromatography (50% ethyl acetate in petroleum ether) gave 20a and 20b (71% into two steps, 20a/20b $>98.0 / 2.0$) as colorless oil.

Reduction with (\boldsymbol{R})-BINAL-H. Preparation of (\boldsymbol{R})-BINAL-H reagents. A round bottom flask charged with argon atmosphere, 0.43 mL of $\mathrm{LiAlH}_{4}(1.0 \mathrm{M}$ in THF) was introduced via a syringe, and then at room temperature an alcohol in THF ($2.0 \mathrm{M}, 1.0$ equiv) was added in a dropwise manner over a period of ca. 10 min with stirring. Subsequently a THF solution of optically pure (R)-binaphthol ($123 \mathrm{mg}, 0.43 \mathrm{mmol}$,) was added, and the resulting mixture was stirred usually for an additional 30 min at room temperature and used for the asymmetric
reduction. Notably the BINAL-H reagent ($\mathrm{R}^{\prime} \mathrm{O}=$ simple alkoxyl) thus formed in THF was cloudy but a near-solution which contained only a very small amount of suspension. If a large quantity of precipitate separates out for some reason, one should repeat the preparation from the beginning.
Asymmetric Reduction. The (R)-BINAL-H reagent in THF was cooled to $-78{ }^{\circ} \mathrm{C}$. Subsequently 19S was added, the mixture was stirred for an additional 1.0 h at this temperature. There are much start material residual by TLC, warm to rt. for overnight, there is no obvious change by TLC. The reaction was quenched with methanol (5 mL), the mixture was added 5.0 mL of $\mathrm{HCl}(2.0 \mathrm{M})$, stirred 5.0 min . Adjusted $\mathrm{pH} 8 \sim 9$ by $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 4)$ and the combined organic extracts washed with satd. aqueous NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo.

Reduction with (\boldsymbol{S})-BINAL-H. Preparation of (\boldsymbol{S})-BINAL-H reagents. A round bottom flask charged with argon atmosphere, 0.43 mL of $\mathrm{LiAlH}_{4}(1.0 \mathrm{M}$ in THF) was introduced via a syringe, and then at room temperature an alcohol in THF ($2.0 \mathrm{M}, 1.0$ equiv) was added in a dropwise manner over a period of ca. 10 min with stirring. Subsequently a THF solution of optically pure (S)-binaphthol ($123 \mathrm{mg}, 0.43 \mathrm{mmol}$,) was added, and the resulting mixture was stirred usually for an additional 30 min at room temperature and used for the asymmetric reduction. Notably the BINAL-H reagent ($\mathrm{R}^{\prime} \mathrm{O}=$ simple alkoxyl) thus formed in THF was cloudy but a near-solution which contained only a very small amount of suspension. If a large quantity of precipitate separates out for some reason, one should repeat the preparation from the beginning.
Asymmetric Reduction. The (S)-BINAL-H reagent in THF was cooled to $-78{ }^{\circ} \mathrm{C}$. Subsequently 19S was added, the mixture was stirred for an additional 1.0 h at this temperature. There are much start material residual by TLC, warm to rt. for overnight, there is no obvious change by TLC. The reaction was quenched with methanol (5 mL), the mixture was added 5.0 mL of $\mathrm{HCl}(2.0 \mathrm{M})$, stirred 5.0 min . Adjusted $\mathrm{pH} 8 \sim 9$ by $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 4)$ and the combined organic extracts washed with satd. aqueous NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo.

Reduction with $\mathbf{H}_{2} /(\boldsymbol{R})$-TsDPEN-Ru ${ }^{\text {II }}$ catalyst. A round bottom flask charged with argon atmosphere, $\mathbf{1 9 S}$ was dissolved in 2.0 mL of DMF at room temperature, $\mathrm{HCOOH} / \mathrm{Et}_{3} \mathrm{~N}(\mathrm{~V} / \mathrm{V}$ $5 / 2) 0.14 \mathrm{~mL}$ was added to the solution, then (R)-TsDPEN-Ru ${ }^{\text {II }}$ catalyst $(2.35 \mathrm{mg}, 0.0037$ $\mathrm{mmol})$ was added, stirring for overnight. The target compounds was less than 10% detected by TLC. Then reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL}$, sat. aq.). The resulting mixture was extracted with $\operatorname{EtOAc}(20 \mathrm{~mL} \times 3)$ and the combined organic extracts were dried over anhydrous MgSO 4 and concentrated in vacuo.

Reduction with $\mathbf{H}_{2} /(\boldsymbol{S})$-TsDPEN-Ru ${ }^{\text {II }}$ catalyst. A round bottom flask charged with argon atmosphere, $\mathbf{1 9 S}$ was dissolved in 2.0 mL of DMF at room temperature, $\mathrm{HCOOH} / \mathrm{Et}_{3} \mathrm{~N}(\mathrm{~V} / \mathrm{V}$ $5 / 2) 0.14 \mathrm{~mL}$ was added to the solution, then (S)-TsDPEN-Ru ${ }^{\text {II }}$ catalyst $(2.35 \mathrm{mg}, 0.0037$ $\mathrm{mmol})$ was added, stirring for overnight. No target compounds was found by TLC. Then reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL}$, sat. aq.). The resulting mixture was extracted with $\mathrm{EtOAc}(20 \mathrm{~mL} \times 3)$ and the combined organic extracts
were dried over anhydrous MgSO 4 and concentrated in vacuo.

(S)-1-(5-(benzyloxy)-1-methoxy-2-methylpentan-2-yl)-3,4-dihydrobenzofuro[2,3-c]

 pyridine-2-ium perchlorate (19S''). To a solution of amide $\mathbf{1 4 R}(168 \mathrm{mg}, 0.41 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added freshly distilled $\mathrm{POCl}_{3}(0.13 \mathrm{ml}, 1.43 \mathrm{mmol})$ was refluxed for 6 h . After evaporation to dryness, the brown gum obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and treated by a 1 M aqueous solution of $\mathrm{LiClO}_{4}(5.0 \mathrm{~mL})$. After the mixture was stirred for 30 \min, the organic layer was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times$ 3). The collected organic phases were washed with an aqueous solution of LiClO_{4}, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo, gave 19S' as yellow oil. Then to the next steps without further purification.

The reduction of perchlorate salt $\mathbf{1 9 S S} "$ to $\mathbf{2 0 a}$ and $\mathbf{2 0 b}$ in different condition as follow.
Reduction with $\mathbf{N a B H}_{4}$. A round bottom flask charged with argon atmosphere, 19SS', was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, and sodium borohydride ($5.1 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 2.0 h and quenched with satd. NaHCO_{3}, evaporate off of methanol, Dilute the residue with ethyl acetate, the organic layer was separated and the aqueous phase extracted with ethyl acetate ($15 \mathrm{~mL} \times 3$), and the combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy $(1,3,5-$ trimethoxybenzene as an internal standard). Afford 20a and 20b (quantity into two steps, 20a/20b 3.3/1.0) as viscous yellow oil.

Reduction with DIBALH. A round bottom flask charged with argon atmosphere, 19SS' ' was dissolved in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $-78^{\circ} \mathrm{C}$. Neat DIBALH $(0.18 \mathrm{~mL}$, $0.3 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) was added dropwise, the mixture was stirred for an additional 1.0 h at this temperature. The reaction was quenched by dropwise addition of $\mathrm{H}_{2} \mathrm{O}$, till coagulation occurred. The suspension was diluted with 1.0 M aqueous HCl solution and then stirred 5.0 min . Adjusted $\mathrm{pH} 8 \sim 9$ by 1.0 M aqueous NaHCO_{3}, The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 4)$ and the combined organic extracts washed with satd. aqueous NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Determined the crude product by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (1,3,5-trimethoxybenzene as an internal standard).

Afford 20a and 20b (80% into two steps, 20a/20b $>97.0 / 3.0$) as viscous yellow oil.

((S)-1-((S)-5-(benzyloxy)-1-methoxy-2-methylpentan-2-yl)-3,4-dihydrobenzofuro[2,3-clpyridin-2(1H)-yl)(4-chlorophenyl)methanone (20a'). A round bottom flask charged with argon atmosphere, 20a ($143 \mathrm{mg}, 0.36 \mathrm{mmol}$) was dissolved in $\mathrm{CH} 2 \mathrm{Cl} 2(4 \mathrm{~mL})$ and $\mathrm{Et} 3 \mathrm{~N}(0.08$ $\mathrm{mL}, 0.54 \mathrm{mmol})$ was added to the solution. Then cooled to $0{ }^{\circ} \mathrm{C}, 4$-chlorobenzoyl chloride $(0.05 \mathrm{ml}, 0.36 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$ and after continued stirring at $0^{\circ} \mathrm{C}$ for 30 min the mixture was allowed to warm to room temperature $\left(23^{\circ} \mathrm{C}\right)$. After additional stirring for 24 h , the mixture was concentrated and the residue was dissolved in EtOAc (20 mL). The solution was transferred into a separation funnel and washed with satd. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ followed by brine (10 mL). The organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (10% ethyl acetate in petroleum ether) gave 20a' ($180 \mathrm{mg}, 94 \%$) as white needle-like solids. TLC: $\mathrm{R}_{f}=0.48$ (silica gel, petroleum ether / ethyl acetate $=5 / 1$); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20}=84.2\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta 7.52-7.20(\mathrm{~m}, 13 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~m}$, $1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H})$, $1.86-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,154.0$, $150.6,138.7,134.8,134.7,128.2,127.7,127.5,127.0,126.8,126.7,123.3,122.0,118.0$, $111.6,110.7,76.9,72.2,70.5,58.4,53.8,43.4,42.7,31.2,23.5,21.3,19.5$. HRMS $(\mathrm{m} / \mathrm{z}):$ calculated for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 532.2249, found: 532.2233.

(S)-5-methoxy-4-methyl-4-((S)-1,2,3,4-tetrahydrobenzofuro[2,3-c]pyridin-1-yl)pentan-1ol (21a). A round bottom flask charged with argon atmosphere, $\mathbf{2 0 a}(210 \mathrm{mg}, 0.53 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(315 \mathrm{mg}, 150 \mathrm{wt} \%)$ was added to the solution. Followed $\mathrm{HCOOH}(0.53 \mathrm{~mL}, 1 \mathrm{~mL} / \mathrm{mmol})$ was added, then reflux for 6 h , the catalyst was removed by filtration, the filtrate was evaporated under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Added satd. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, after additional stirring for 5 min , separation of organic phase, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporated under reduced pressure, then to the next steps without further purification.

(1S,12bS)-1-(methoxymethyl)-1-methyl-1,3,4,6,7,12b-hexahydro-2H-benzofuro[2,3-a]
quinolizine (12a). A round bottom flask charged with argon atmosphere, a solution of 21a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$, and thionyl chloride $(0.23 \mathrm{~mL}, 3.8 \mathrm{mmol})$ was added dropwise. The reaction mixture was stirred at room temperature for 2.0 h , evaporation to dryness, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(14 \mathrm{~mL}, 25$ $\mathrm{mL} / \mathrm{mmol}$) was added slowly. After being stirred for another 2.0 h , separation of organic phase, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (10% ethyl acetate in petroleum ether) gave 12a (111 $\mathrm{mg}, 73 \%$ into three steps) as colorless oil.

(R)-N-(2-(1H-indol-3-yl)ethyl)-5-(benzyloxy)-2-(methoxymethyl)-2-methylpentanamide
(24AR). To a solution of 2-(1H-indol-3-yl)ethan-1-amine ($339 \mathrm{mg}, 2.12 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ $(14 \mathrm{~mL})$ was added $\mathbf{1 3 R}(533 \mathrm{mg}, 1.41 \mathrm{mmol})$. Then the mixture solution was refluxed for overnight. After cooled to the rt, a solution of $\mathrm{NaOH}(15 \mathrm{~mL}, 1.0 \mathrm{M})$ and $\mathrm{EtOAc}(30 \mathrm{~mL})$ containing 10% of EtOH were added to the reaction mxiture. Separation of organic phase, the aqueous phase was extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$). The combined organic phase was washed with brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (petroleum ether / diethyl ether /ethyl acetate $=5 / 1 / 1$) gave 24AR ($524 \mathrm{mg}, 91 \%$) as colorless oil. TLC: $\mathrm{R}_{f}=0.53$ (silica gel, dichloromethane/ethyl acetate $=5 / 1 / 1) ;[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=7.50\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~s}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.74$ $(\mathrm{s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,138.6,136.3,128.4,127.7,127.6,127.4,122.1,122.0$, 119.3, 118.8, 113.2, 111.1, 78.1, 72.9, 70.8, 59.0, 45.7, 39.5, 33.2, 25.3, 24.6, 20.1. HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 409.2486$, found: 409.2483.

(S)-1-(5-(benzyloxy)-1-methoxy-2-methylpentan-2-yl)-4,9-dihydro-3H-pyrido [3,4-

b]indole (24AR'). To a solution of amide $\mathbf{2 4 A R}(524 \mathrm{mg}, 1.28 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added freshly distilled $\mathrm{POCl}_{3}(0.55 \mathrm{ml}, 4.48 \mathrm{mmol})$ was refluxed for 6 h . After evaporation to dryness, the brown gum obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and adjusted $\mathrm{pH} 8 \sim 9$ by satd. NaHCO_{3}, the organic layer was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The collected organic phases were washed with a brine $(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo, gave 24AR' as colorless oil. Then to the next steps without further purification.

(S)-1-((S)-5-(benzyloxy)-1-methoxy-2-methylpentan-2-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (25AS). A round bottom flask charged with argon atmosphere, 24AR' was dissolved in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $-78^{\circ} \mathrm{C}$. Neat DIBALH $(1.0$ $\mathrm{mL}, 2.1 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) was added dropwise, the mixture was stirred for an additional 1.0 h at this temperature. The reaction was quenched by dropwise addition of $\mathrm{H}_{2} \mathrm{O}$, till coagulation occurred. The suspension was diluted with 1.0 M aqueous HCl solution and then stirred 5.0 min . Adjusted $\mathrm{pH} 8 \sim 9$ by 1.0 M aqueous NaHCO_{3}, The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 4)$ and the combined organic extracts washed with satd. aqueous NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (50% ethyl acetate in petroleum ether) gave 25AS (84% into two steps, dr: >98:2) as colorless oil. TLC: $\mathrm{R}_{f}=0.48$ (silica gel, dichloromethane/ methyl alcohol $=20 / 1) ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-39.9\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~m}$, $1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.33(\mathrm{~m}, 5 \mathrm{H}), 3.20(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.69(\mathrm{~m}$, $2 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.6,135.1,132.6,128.0,127.4,127.3,127.2,126.5,120.6,118.2,117.1,110.8$, $110.1,79.2,72.7,70.1,58.5,57.4,43.1,41.1,32.8,23.4,22.5,19.2$. HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 393.2537$, found: 393.2533 .

(S)-5-methoxy-4-methyl-4-((S)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)pentan-1ol (25AS'). A round bottom flask charged with argon atmosphere, 25AS ($373 \mathrm{mg}, 0.95 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(560 \mathrm{mg}, 150 \mathrm{wt} \%)$ was added to the
solution. Followed $\mathrm{HCOOH}(0.95 \mathrm{~mL}, 1 \mathrm{~mL} / \mathrm{mmol})$ was added, then reflux for 6 h , the catalyst was removed by filtration, the filtrate was evaporated under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Added satd. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, after additional stirring for 5 min , separation of organic phase, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporated under reduced pressure, then to the next steps without further purification.

(1S,12bS)-1-(methoxymethyl)-1-methyl-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-
a]quinolizine (26Aa). A round bottom flask charged with argon atmosphere, a solution of $\mathbf{2 5 A S}{ }^{\prime}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$, and thionyl chloride (0.41 mL , 5.7 mmol) was added dropwise. The reaction mixture was stirred at room temperature for 2.0 h , evaporation to dryness, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(24 \mathrm{~mL}, 25$ $\mathrm{mL} / \mathrm{mmol}$) was added slowly. After being stirred for another 2.0 h , separation of organic phase, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine (40 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (petroleum ether / ethyl acetate $/$ methyl alcohol $=$ 10/2/1) gave 26Aa ($189 \mathrm{mg}, 70 \%$ into three steps) as colorless oil. TLC: $\mathrm{R}_{f}=0.18$ (silica gel, petroleum ether / ethyl acetate / methyl alcohol $=10 / 2 / 1) ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-54.4\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H}), 3.05-2.92(\mathrm{~m}, 3 \mathrm{H}), 2.64$ $(\mathrm{m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H})$, $0.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.3,133.2,126.5,120.2,118.1,117.2,110.3$, $109.7,82.2,68.1,58.8,56.2,54.1,38.1,35.9,21.3,21.2,15.7$. HRMS (m / z) : calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 285.1961$, found: 285.1962 .

(S)-N-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-5-(benzyloxy)-2-(methoxymethyl)-2-methyl pentanamide (24BR). To a solution of 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine (66 mg , $0.40 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added $\mathbf{1 3 R}(100 \mathrm{mg}, 0.26 \mathrm{mmol})$. Then the mixture solution was refluxed for overnight. After cooled to the rt , a solution of $\mathrm{NaOH}(1.0 \mathrm{M})(10$ mL) and EtOAc (20 mL) containing 10% of EtOH were added to the reaction mxiture.

Separation of organic phase, the aqueous phase was extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic phase was washed with water (10 mL), brine (10 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (petroleum ether / diethyl ether /ethyl acetate $=5 / 1 / 1$) gave 24BR ($104 \mathrm{mg}, 95 \%$) as colorless oil. TLC: $\mathrm{R}_{f}=$ 0.21 (silica gel, petroleum ether / diethyl ether /ethyl acetate $=5 / 1 / 1$); $[\alpha]_{\mathbf{D}}{ }^{20}=2.30(c 1.0$, CHCl_{3}); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~m}, 5 \mathrm{H}), 6.74-6.61(\mathrm{~m}, 4 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 4.47$ (s, 2H), $3.42(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.51(\mathrm{~m}$, $4 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.4,147.1$, 145.4, 137.9, 132.4, 127.7, 127.0, 126.96, 121.1, 108.5, 107.6, 100.2, 77.5, 72.3, 70.1, 58.5, $45.1,39.9,34.8,32.6,23.9,19.5$. HRMS (m / z): calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 414.2275$, found: 414.2285.

(S)-5-(5-(benzyloxy)-1-methoxy-2-methylpentan-2-yl)-7,8-dihydro-[1,3]dioxolo[4,5-
glisoquinoline (24BR'). To a solution of amide 24BR ($352 \mathrm{mg}, 0.85 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(10$ mL) was added freshly distilled $\mathrm{POCl}_{3}(0.27 \mathrm{ml}, 2.98 \mathrm{mmol})$ was refluxed for 6 h . After evaporation to dryness, the brown gum obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and adjusted $\mathrm{pH} 8 \sim 9$ by satd. NaHCO_{3}, the organic layer was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The collected organic phases were washed with a brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo, gave 24BR' as colorless oil. Then to the next steps without further purification.

(R)-5-((S)-5-(benzyloxy)-1-methoxy-2-methylpentan-2-yl)-5,6,7,8-tetrahydro-
[1,3]dioxolo[4,5-g]isoquinoline (25BS). A round bottom flask charged with argon atmosphere, 18bR' was dissolved in 8.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Neat DIBALH ($0.68 \mathrm{~mL}, 1.02 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) was added dropwise, the mixture was stirred for an additional 1.0 h at this temperature. The reaction was quenched by dropwise addition of $\mathrm{H}_{2} \mathrm{O}$, till coagulation occurred. The suspension was diluted with 1.0 M aqueous HCl solution and then stirred 5.0 min . Adjusted $\mathrm{pH} 8 \sim 9$ by 1.0 M aqueous NaHCO_{3}, The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 4)$ and the combined organic extracts washed with satd. aqueous NaCl , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (dichloromethane/ methyl alcohol = 40/1) gave 25BS (92% into two steps, dr: >98.0/2.0) as colorless oil. TLC: $\mathrm{R}_{f}=0.25$ (silica gel, dichloromethane/ methyl alcohol $=30 / 1$); $[\alpha]_{\mathbf{D}^{20}}{ }^{20}=-73.1\left(c 1.0\right.$, CHCl $\left._{3}\right)$) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$, $4.35(\mathrm{~s}, 1 \mathrm{H}), 3.46-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.52$ $(\mathrm{m}, 1 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$145.5,145.2,138.0,130.5,127.7,127.0,127.0,126.9,125.7,108.4,108.0,100.2,77.0,72.2$, $70.3,59.9,58.2,42.3,41.7,30.0,29.1,23.4,18.6$. HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{4}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 398.2326$, found: 398.2325 .

(S)-5-methoxy-4-methyl-4-((R)-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinolin-5-
$\mathbf{y l})$ pentan-1-0l (25BS'). A round bottom flask charged with argon atmosphere, 25BS (295 mg , $0.74 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(7.5 \mathrm{~mL})$ and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(443 \mathrm{mg}, 150 \mathrm{wt} \%)$ was added to the solution. Followed $\mathrm{HCOOH}(0.75 \mathrm{~mL}, 1 \mathrm{~mL} / \mathrm{mmol})$ was added, then reflux for 6 h , the catalyst was removed by filtration, the filtrate was evaporated under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Added satd. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, after additional stirring for 5 min , separation of organic phase, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporated under reduced pressure, then to the next steps without further purification.

(1S,12bR)-1-(methoxymethyl)-1-methyl-1,3,4,6,7,12b-hexahydro-2H-[1,3]dioxolo[4,5-g]pyrido[2,1-a]isoquinoline (26Ba). A round bottom flask charged with argon atmosphere, a solution of 25BS' in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$, and thionyl chloride ($0.32 \mathrm{~mL}, 4.4$ mmol) was added dropwise. The reaction mixture was stirred at room temperature for 2.0 h , evaporation to dryness, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, saturated $\mathrm{NaHCO} 3(19$ $\mathrm{mL}, 25 \mathrm{~mL} / \mathrm{mmol}$) was added slowly. After being stirred for another 2.0 h , separation of organic phase, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine $(40 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and purification by column chromatography (petroleum ether / ethyl acetate / methyl alcohol $=50 / 5 / 1$) gave 26Ba ($137 \mathrm{mg}, 64 \%$ into three steps) as colorless oil. TLC: $\mathrm{R}_{f}=0.24$ (silica gel, petroleum ether / ethyl acetate / methyl alcohol $=20 / 2 / 1$); $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-92.2$ (c 1.0 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H})$, $5.92-5.90(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.85(\mathrm{~m}, 4 \mathrm{H})$, $2.55-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7,144.6,130.8,128.3,107.8,107.7,99.9,80.0,65.9,58.0$, $56.0,50.6,39.5,35.4,31.1,21.7,16.3$. HRMS (m / z): calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$:
290.1751, found: 290.1758.

As the endeavor for getting high quality homochiral crystal was unsuccessful, we applied electronic circular dichroism (ECD) measurement coupled with theoretical prediction to determine the absolute configuration. It has been proved to be reliable for the absolute configuration assignment by the ECD method coupled with ab initio calculation. ${ }^{53}$ Conformational analysis at the molecular mechanics (MM) level was carried out. The B3LYP (Becke, 3-parameter, Lee-Yang-Parr) functional was adopted for geometry optimization to search the most stable conformers at the $6-31 G^{*}$ basis set level. The ECD spectrum was calculated with the TDDFT (time-dependent density functional theory) level of theory with the B3LYP function based on the DFT/B3LYP/TZVP (Valence triple-zeta plus polarization) optimized geometries. Effect of acetonitrile solvent was taken into account by the polarizable continuum model (PCM) at room temperature. The theoretical estimated ECDs are consistent with experiment value (see Figure 1), indicating the absolute configuration is SSconfiguration. All the quantum chemistry calculations are performed with Gaussian09. ${ }^{\text {S4 }}$

Fig 1 Calculated ECD spectra of $\mathbf{1 2 a}[(1 S, 12 \mathrm{~b} S)$-12] (red line), $\mathbf{1 2 b}[(1 S, 12 \mathrm{~b} R)-12]$ (green line) and experimental ECD spectra of $\mathbf{1 2 a}[(1 S, 12 \mathrm{~b} S)$-12] (black line), 12b [($1 S, 12 \mathrm{~b} R)-12]$ (blue line)

The X-ray Single Crystal Analysis of 20a' (CCDC 1868095)

Reference

S1. Tetrahedron, 2007, 63, 11325.
S2. a) J. Org. Chem., 1988, 53, 1437; b) Tetrahedron Letters, 2007, 48, 5177.
S3. a) Tetrahedron Letters, 2015, 56, 913; b) Tetrahedron, 2016, 72, 1276; c) Chem. Soc. Rev., 2007, 36, 914; d) J. Am. Chem. Soc., 2009, 131, 3183.
S4. Frisch, M. J. et al GAUSSIAN 09, Revision A.02; Gaussian: Wallingford, CT, 2009.
${ }^{1} \mathrm{H}$ NMR spectrum of compound $2\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $4\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $4\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $6 \mathrm{R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$-NMR spectrum of compound $6 \mathrm{R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $6 \mathrm{~S}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

${ }^{13} \mathrm{C}$－NMR spectrum of compound $\mathbf{6 S}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

8	8	R182 1288	18	8	2	18	218	28上
E	家		（1）	6	d	15	\％	
｜	1	ノ $1 \bigcirc$	1	｜			V／	15

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $7 \mathrm{R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $7 \mathrm{R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $7 \mathrm{~S}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$:
 흥

 HidNjos
$\stackrel{8}{4}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $7 \mathrm{R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$-NMR spectrum of compound $8 \mathrm{R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $8 \mathrm{R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

$\begin{array}{r}\stackrel{3}{8} \\ \stackrel{8}{8} \\ \hline\end{array}$

8	8829
1	8is

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $8 \mathrm{~S}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $8 \mathrm{~S}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

F 8 m
צigin
i
器

${ }^{1} \mathrm{H}$-NMR spectrum of compound $8 \mathrm{R}^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $8 \mathrm{R}^{\prime}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

$\begin{aligned} & 8 \\ & 1 \\ & 1 \end{aligned}$	8 4 4	$\begin{aligned} & 8 \% \\ & \frac{8}{2} \\ & 1 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{1}{6} \\ & \hline 1 \end{aligned}$	$\begin{array}{r}6 \\ 8 \\ \hline 1\end{array}$	$\begin{aligned} & 7 \\ & \frac{1}{3} \\ & 1 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & 1 \end{aligned}$		

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 9R ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 9R ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $9 \mathrm{~S}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $9 \mathrm{~S}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $10 \mathrm{R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

${ }^{13} \mathrm{C}$－NMR spectrum of compound $10 \mathrm{R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

8	8	\％	？	948\％	？	$=$	8	R\％	夺	8	820
E	$\stackrel{5}{1}$	三	＋	추ㅈㅗㅚ을육	$\stackrel{\square}{1}$	\％	8	\％	\％	8	죽
I	I	｜	1	1／1才	I	｜	I	11	｜	I	111

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $10 \mathrm{~S}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $10 \mathrm{~S}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

\qquad
${ }^{1} \mathrm{H}$-NMR spectrum of compound $12 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

T	$\begin{aligned} & \text { T' } \\ & \underset{\sim}{2} \end{aligned}$						$\frac{1}{2}$		$\begin{aligned} & \text { THTM } \\ & \text { ats } \end{aligned}$		T				
${ }_{7.5}^{1 .}$	${ }_{7.0}^{1}$	${ }_{6.5}^{1}$	${ }_{6.0}^{1}$	5.5	${ }_{5.0}{ }^{1}$	${ }_{4}^{1} 5$	${ }_{4}^{1} 0$. 5	${ }_{3}^{1} 0$	${ }_{2}^{1}$	2.0	${ }_{1.5}$	${ }_{1.0}$	${ }_{0.5}$	0.0

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $12 \mathrm{a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
189
18
18

\&

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $12 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

HSQC spectrum of compound 12a ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

HMBC spectrum of compound $12 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

NOESY spectrum of compound 12a ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $12 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3x

 1

${ }^{13} \mathrm{C}$-NMR spectrum of compound $12 \mathrm{~b}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $12 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

HSQC spectrum of compound $12 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

HMBC spectrum of compound $12 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

NOESY spectrum of compound $12 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound ent-12a($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$-NMR spectrum of compound ent-12a ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound ent-12b $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

1

${ }^{13} \mathrm{C}$-NMR spectrum of compound ent-12b ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
28
11

${ }^{1} \mathrm{H}$ NMR spectrum of compound $13 \mathrm{R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $13 \mathrm{R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $15 \mathrm{R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

\%2\%		E	
		\dagger	

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $15 \mathrm{R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

```
    lllllllllll
```


${ }^{1} \mathrm{H}$ NMR spectrum of compound $14 \mathrm{R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$-NMR spectrum of compound $14 \mathrm{R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound 20a ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$-NMR spectrum of compound $20 \mathrm{a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 20a ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

HSQC spectrum of compound 20a ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

HMBC spectrum of compound 20a ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound $20 \mathrm{~b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$-NMR spectrum of compound $20 \mathrm{~b}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $20 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

HSQC spectrum of compound $20 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

HMBC spectrum of compound $20 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound 20a＇（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：

	\％	8	8\％\％\％\％	部笑	
	${ }^{\circ}$			V	过场过过

${ }^{13} \mathrm{C}$－NMR spectrum of compound 20 a （ $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 24AR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

1 in inijijijit

 $\int d h^{\prime}$ \qquad 1

?	$\begin{aligned} & \text { Tr } \\ & \underset{\sim}{8} \end{aligned}$		$\stackrel{T}{\sigma}$				$$				$\begin{aligned} & \text { H } \\ & \text { S } \end{aligned}$			$\stackrel{\rightharpoonup}{d}$	$\begin{aligned} & \text { T } \\ & \text { is } \end{aligned}$		
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5		3. 0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13} \mathrm{C}-$ NMR spectrum of compound 24AR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 25AS $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$-NMR spectrum of compound 25AS ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 26Aa ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$-NMR spectrum of compound 26Aa ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$ spectrum of compound $26 \mathrm{Aa}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

HSQC spectrum of compound 26Aa ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

HMBC spectrum of compound 26Aa ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR spectrum of compound $24 \mathrm{BR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$-NMR spectrum of compound $24 \mathrm{BR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $25 \mathrm{BS}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}$-NMR spectrum of compound $25 \mathrm{BS}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

$\begin{array}{ll}88 & \text { 8 } \\ \frac{88}{7} & \frac{8}{1}\end{array}$
1

${ }^{1} \mathrm{H}$ NMR spectrum of compound 26Ba ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$-NMR spectrum of compound $26 \mathrm{Ba}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

