Supporting Information

Copper-catalyzed [3 + 2] annulation of ethynyl epoxides with malononitrile to access highly substituted dihydrofurans with an all-carbon quaternary stereocenter

Xuanyi Li^{\dagger}, Chunhua Han^{\dagger}, Yue Huang, Hequan Yao^{*}, and Aijun Lin^{*}

State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R.China.

E-mail: ajlin@cpu.edu.cn; hyao@cpu.edu.cn

Contents

1. General Information	2
2. General Procedure for Preparation of Substituted Ethynyl Epoxides	3
3. General Procedure for Preparation of Substituted Dihydrofurans and	
Characterization	6
4. Further Study of the Reaction	14
5. Reference	15
6. ¹ H and ¹³ C NMR Spectra of Title Compounds	16

1. General Information

Reagents and Solvents: PE refers to petroleum ether b.p. 60 - 90 °C and EA refers to ethyl acetate. All other starting materials and solvents were commercially available and were used without further purification unless otherwise stated.

Chromatography: Flash column chromatography was carried out using commercially available 200 - 300 mesh under pressure unless otherwise indicated. Gradient flash chromatography was conducted eluting with PE/EA, they are listed as volumeratios.

Data collection: ¹H and ¹³C NMR spectra were collected on BRUKER AV-300/500 (300/500 MHz) spectrometer using CDCl₃ or DMSO-d₆ as solvent. Chemical shifts of ¹H NMR were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ = 0.00 ppm) with the solvent resonance as an internal standard (CDCl₃: δ = 7.26 ppm, DMSO-d₆, δ = 2.50 ppm). Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz), and integration. Chemical shifts of ¹³C NMR were reported in ppm with the solvent as the internal standard (CDCl₃: δ = 77.0 ppm, DMSO-d₆, δ = 39.5 ppm). High Resolution Mass measurement was performed on Agilent Q-TOF 6520 mass spectrometer with electron spray ionization (ESI) as the ion source. IR spectra were recorded on a FT-IR spectrometer. Melting point (m.p.) was measured on a microscopic melting point apparatus.

2. General Procedure for Preparation of Substituted Ethynyl

Epoxides^[1]

Substituted ethynyl epoxides were prepared in two steps from substituted phenacyl chloride/bromine. A typical experimental procedure for the preparation of ethynyl epoxide is described below.

Preparation of 2-ethynyl-2-(4-nitrophenyl)oxirane (1e) is used as an example:

In a 100 mL round-bottomed flask were placed 2-chloro-1-(4-nitrophenyl)ethanone (10.0 mmol) and anhydrous THF (30 mL). Ethynylmagnesium bromide (0.5 M in THF; 11.0 mmol) was added to the solution at 0 °C, and the mixture was stirred at room temperature for 4 h. After that, the reaction was quenched slowly with sat. aq. NH₄Cl solution at 0 °C and extracted with EA (3 × 20 mL). The combined organic layers were washed with water and brine sequentially, dried over Na₂SO₄, filtered and concentrated in vacuum. The crude product was purified by flash chromatography on silica gel (PE/EA = 200:1 ~ 100:1) to afford the 1-chloro-2-(4-nitrophenyl)but-3-yn-2-ol in 70% yield.

In a 100 mL round-bottomed flask were placed the 1-chloro-2-(4-nitrophenyl)but-3-yn-2-ol and anhydrous diethyl ether (10 mL). Powdered NaOH (20.0 mmol) was added to the solution slowly, and the mixture was stirred at room temperature for 12 h. After that, the suspension was filtered through a pad of celite and washed by DCM (5 mL). Then the solvent was removed in vacuum and the crude product was flash chromatography (PE/EA = 100:1) purified by to afford the 2-ethynyl-2-(4-nitrophenyl)oxirane (1e) in 86% yield.

2-ethynyl-2-(4-nitrophenyl)oxirane (1e)

60% yield (1.13 g), yellow solid, m.p. 101 – 102 °C, $R_f = 0.34$ (PE/EA = 20:1); ¹H NMR (300 MHz, CDCl₃) δ 8.21 (d, J = 8.7 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H), 3.51 (d, J = 6.0 Hz, 1H), 3.01 (d, J = 6.0 Hz, 1H), 2.62 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 148.0, 143.8, 126.5, 123.7, 79.9, 73.9, 59.2, 50.1 ppm; IR (KBr): $\tilde{v} = 2918$,

2851, 2119, 1520, 1341, 847, 860, 748 cm⁻¹; HRMS (ESI) calcd for $[C_{10}H_7NO_3+H]^+$ 190.0499, found 190.0498.

4-(2-ethynyloxiran-2-yl)benzonitrile (1g)

51% yield (0.86 g), yellow solid, m.p. 64 – 65 °C, $R_f = 0.42$ (PE/EA = 20:1); ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 3.48 (d, J = 6.0 Hz, 1H), 2.98 (d, J = 6.1 Hz, 1H), 2.60 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 141.9, 132.3, 126.3, 118.4, 112.4, 80.0, 73.8, 59.1, 50.2 ppm; IR (KBr): $\tilde{v} = 3063$, 2992, 2922, 2230, 1506, 1417, 910, 842 cm⁻¹; HRMS (ESI) calcd for [C₁₁H₇NO+H]⁺ 170.0600, found 170.0595.

2-ethynyl-2-(4-methoxyphenyl)oxirane(1i)

53% yield (0.93 g), yellow oil, $R_f = 0.51$ (PE/EA = 20:1); ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, J = 8.9 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 3.41 (d, J = 6.0 Hz, 1H), 3.01 (d, J = 6.0 Hz, 1H), 2.51 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 128.4, 126.9, 113.9, 81.4, 72.5, 58.6, 55.3, 50.5 ppm; IR (KBr): $\tilde{v} = 3296$, 3065, 2987, 2124, 1576, 1473, 1269, 690, 785 cm⁻¹; HRMS (ESI) calcd for [C₁₁H₁₀NO₂+H]⁺ 175.0754, found 175.0753.

2-(3-chlorophenyl)-2-ethynyloxirane(1j)

37% yield (0.66 g), yellow oil, $R_f = 0.65$ (PE/EA = 20:1); ¹H NMR (300 MHz, CDCl₃) δ 7.57 – 7.48 (m, 1H), 7.47 – 7.37 (m, 1H), 7.33 (dd, J = 4.9, 1.6 Hz, 2H), 3.46 (d, J = 6.1 Hz, 1H), 3.01 (d, J = 6.1 Hz, 1H), 2.59 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) 141.3, 137.2, 132.4, 131.3, 128.4, 126.3, 83.2, 80.1, 61.4, 52.8 ppm; IR (KBr): $\tilde{v} = 3063$, 2988, 2123, 1599, 1427, 1267, 918, 785 cm⁻¹; HRMS (ESI) calcd for [C₁₀H₇ClO+H]⁺ 179.0258, found 179.0248.

67% yield (1.09 g), yellow oil, $R_f = 0.62$ (PE/EA = 20:1); ¹H NMR (300 MHz, CDCl₃) δ 7.42 – 7.28 (m, 2H), 7.26 – 7.21 (m, 1H), 7.09 – 7.02 (m, 1H), 3.47 (d, J = 6.1 Hz, 1H), 3.01 (d, J = 6.1 Hz, 1H), 2.58 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.9 (d, J = 246.2 Hz), 139.3 (d, J = 7.6 Hz), 130.0 (d, J = 8.3 Hz), 121.2 (d, J = 3.0 Hz), 115.4 (d, J = 21.1Hz), 112.7 (d, J = 23.5 Hz), 80.7, 72.9, 58.9, 50.2 ppm; IR (KBr): $\tilde{v} = 3067$, 2989, 2909, 2126, 1593, 1487, 1279, 1188, 925, 785 cm⁻¹; HRMS (ESI) calcd for [C₁₀H₇FO+H]⁺ 163.0554, found 163.0550.

2-ethynyl-2-(2-fluorophenyl)oxirane(11)

58% yield (0.94 g), yellow oil, $R_f = 0.60$ (PE/EA = 20:1); ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.45 (m, 1H), 7.36 – 7.25 (m, 1H), 7.16 – 7.03 (m, 2H), 3.38 (d, J = 6.0 Hz, 1H), 3.06 (d, J = 6.1 Hz, 1H), 2.43 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 160.5 (d, J = 249.6 Hz), 130.4 (d, J = 8.1 Hz), 128.3 (d, J = 3.0 Hz), 124.5 (d, J = 13.4 Hz), 124.2 (d, J = 3.7 Hz), 115.78 (d, J = 20.7 Hz), 81.3 , 71.7 (d, J = 1.6 Hz), 55.8 (d, J = 1.9 Hz), 47.5 ppm; IR (KBr): $\tilde{v} = 3067$, 2926, 2855, 2124, 1491, 1456, 1220, 759 cm⁻¹; HRMS (ESI) calcd for [C₁₀H₇FO+H]⁺ 163.0554, found 163.0558.

2-(2,4-difluorophenyl)-2-ethynyloxirane(1n)

50% yield (0.90 g), yellow oil, $R_f = 0.63$ (PE/EA = 20:1); ¹H NMR (300 MHz, CDCl₃) δ 7.54 – 7.41 (m, 1H), 6.93 – 6.77 (m, 2H), 3.37 (d, J = 5.9 Hz, 1H), 3.05 (d, J = 6.0Hz, 1H), 2.44 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (dd, J = 248.9, 11.4 Hz), 160.7 (dd, J = 248.6, 12.0 Hz), 129.4 (dd, J = 9.9, 4.6 Hz), 120.8 (dd, J = 13.43, 3.7 Hz) 111.4 (dd, J = 21.5, 3.8 Hz), 104.6, 104.3, 103.9, 81.1, 71.9 (d, J = 1.5 Hz), 55.8 (d, J = 2.0 Hz), 47.1 ppm; IR (KBr): $\tilde{v} = 3082$, 2995, 2916, 2122, 1616, 1506, 1142, 852 cm⁻¹; HRMS (ESI) calcd for [C₁₀H₇F₂O+H]⁺ 181.0459, found 181.0463.

45% yield (0.81 g), yellow oil, $R_f = 0.62$ (PE/EA = 20:1); ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.19 (m, 2H), 7.16-7.09 (m, 1H), 3.42 (d, J = 6.0 Hz, 1H), 2.95 (d, J = 6.0 Hz, 1H), 2.56 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 151.98 (dd, J = 12.1, 7.4 Hz), 148.69 (dd, J = 12.1, 6.2 Hz), 133.78 (d, J = 2.2 Hz), 121.75 (dd, J = 6.6, 3.7 Hz), 117.31 (d, J = 17.7 Hz), 114.85 (d, J = 19.3 Hz), 80.4, 73.3, 58.8, 49.86 (d, J = 2.1 Hz) ppm; IR (KBr): $\tilde{v} = 3064$, 2992, 2916, 2125, 1611, 1522, 1119, 771, 1770, 1558, 1521, 1508, 933, 769 cm⁻¹; HRMS (ESI) calcd for [C₁₀H₇F₂O+H]⁺ 181.0459, found 181.0465.

3. General Procedure for Preparation of Substituted Dihydrofurans

and Characterization

3.1 General procedure for Preparation of Substituted Dihydrofurans

A sealed tube were charged with Copper bis(2-ethylhexanoate) (0.01 mmol, 10 mol %), dpy (0.02 mmol, 20 mol %) and dry DCM (0.5 mL). The reaction mixture was stirred under at room temperature for 30 min. After that, **1** (0.1 mmol, 1.0 equiv), **2** (0.12 mmol, 1.2 equiv), DIPEA (0.2 mmol, 2.0 equiv) were dissolved in dry DCM (0.5 mL) and added to the tube via a syringe under argon. The reaction mixture was stirred at room temperature for 12 h. After the reaction was completed determined by TLC, the reaction mixture was diluted with EA (5 mL) and filtered through a plug of Celite. And then the solvent was removed under vacuum and the crude product was purified by flash chromatography on silica gel (PE/EA = $20:1 \sim 10:1$) to afford the desired product **3**.

3.2 Characterization of the Products

2-amino-4-ethynyl-4-phenyl-4,5-dihydrofuran-3-carbonitrile (3aa)

86% yield (18.1 mg), white solid, m.p. 144 – 145 °C, $R_f = 0.39$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.63 – 7.51 (m, 4H), 7.50 – 7.42 (m, 2H), 7.42 – 7.33 (m, 1H), 4.70 (d, J = 8.9 Hz, 1H), 4.40 (d, J = 8.9 Hz, 1H), 3.72 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.5, 142.3, 129.1, 128.1, 126.4, 118.7, 85.8, 83.4, 76.5, 59.2, 49.9 ppm. IR (KBr): $\tilde{v} = 2924$, 2851, 2187, 1635, 1792, 1651, 1489, 1096, 827 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₁₀N₂O+H]⁺ 211.0866, found 211.0866.

2-amino-4-ethynyl-4-(4-fluorophenyl)-4,5-dihydrofuran-3-carbonitrile (3ba)

85% yield (19.4 mg), white solid, m.p. 174 – 175 °C, $R_f = 0.46$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO- d_6) δ 7.68 – 7.42 (m, 4H), 7.24 (t, J = 8.8 Hz, 2H), 4.65 (d, J = 8.9 Hz, 1H), 4.35 (d, J = 8.9 Hz, 1H), 3.70 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ 168.5 , 161.9 (d, J = 244.3 Hz), 138.4 (d, J = 3.0 Hz), 128.6 (d, J = 8.4 Hz), 118.6 , 115.9 (d, J = 21.7 Hz), 85.6 , 83.3 , 76.7 , 59.1, 49.5 ppm; IR (KBr): $\tilde{v} = 2920$, 2849, 2189, 1747, 1647, 1506, 1224, 835 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₉FN₂O+H]⁺ 229.0772, found 229.0770.

2-amino-4-(4-chlorophenyl)-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3ca)

77% yield (18.8 mg), white solid, m.p. 111 – 112 °C, $R_f = 0.44$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO- d_6) δ 7.62 – 7.42 (m, 6H), 4.66 (d, J = 9.0 Hz, 1H), 4.37 (d, J = 9.0 Hz, 1H), 3.72 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ 168.5, 141.3, 132.8, 129.1, 128.4, 118.5, 85.3, 83.1, 77.0, 59.0, 49.6 ppm; IR (KBr): $\tilde{v} = 2924$, 2852, 2189, 1651, 1489, 1095, 1037, 827 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₉ClN₂O+H]⁺ 245.0476, found 245.0476.

76% yield (21.9 mg), white solid, m.p. 149 – 150 °C, $R_f = 0.47$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO- d_6) δ 7.60 (d, J = 8.6 Hz, 2H), 7.52 (s, 2H), 7.44 (d, J = 8.6 Hz, 2H), 4.64 (d, J = 9.0 Hz, 1H), 4.34 (d, J = 9.0 Hz, 1H), 3.71 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ 168.5, 141.8, 132.0, 128.8, 121.3, 118.5, 85.2, 83.1, 77.0, 59.0, 49.6 ppm; IR (KBr): $\tilde{v} = 2922$, 2191, 1653, 1593, 1473, 1037, 1008, 821 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₉BrN₂O+H]⁺288.9971, found 288.9970.

2-amino-4-ethynyl-4-(4-nitrophenyl)-4,5-dihydrofuran-3-carbonitrile (3ea)

71% yield (18.1 mg), green solid, m.p. 219 – 220 °C, $R_f = 0.21$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.30 (d, J = 8.9 Hz, 2H), 7.79 (d, J = 9.0 Hz, 2H), 7.64 (s, 2H), 4.73 (d, J = 9.1 Hz, 1H), 4.49 (d, J = 9.1 Hz, 1H), 3.84 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.1, 149.2, 146.9, 127.4, 123.9, 117.8, 84.1, 82.2, 77.1, 58.5, 49.5 ppm; IR (KBr): $\tilde{v} = 2920$, 2849, 2187, 1647, 1541, 1339, 931, 657 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₉N₃O₃+H]⁺256.0717, found 466.256.0721.

2-amino-4-ethynyl-4-(4-(trifluoromethyl)phenyl)-4,5-dihydrofuran-3-carbonitrile (3fa)

86% yield (23.9 mg), white solid, m.p. 115 – 116 °C, $R_f = 0.59$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.94 – 7.68 (m, 4H), 7.58 (s, 2H), 4.71 (d, *J* = 9.0 Hz, 1H), 4.45 (d, *J* = 9.1 Hz, 1H), 3.77 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.6 , 146.9 , 128.8 (d, *J* = 31.6 Hz), 127.4 , 126.2, 126.1, 118.4 , 84.9 , 82.9 , 77.2 , 59.0 , 49.9 ppm; IR (KBr): $\tilde{v} = 2920$, 2851, 2187, 1747, 1647, 1506, 1039 cm⁻¹; HRMS (ESI) calcd for [C₁₄H₉F₃N₂O+H]⁺ 279.0740, found 279.0743.

87% yield (20.5 mg), white solid, m.p. 201 – 202 °C, $R_f = 0.38$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO- d_6) δ 8.07 – 7.85 (m, 2H), 7.81 – 7.65 (m, 2H), 7.59 (s, 2H), 4.70 (d, J = 9.1 Hz, 1H), 4.45 (d, J = 9.1 Hz, 1H), 3.78 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ 168.6, 147.8, 133.2, 127.6, 119.0, 118.3, 111.0, 84.6, 82.7, 77.5, 58.9, 50.1 ppm; IR (KBr): $\tilde{v} = 2926$, 2191, 1647, 1327, 1068, 1039, 1124, 810 cm⁻¹; HRMS (ESI) calcd for [C₁₄H₉N₃O+H]⁺ 236.0818, found 236.0821.

2-amino-4-ethynyl-4-(p-tolyl)-4,5-dihydrofuran-3-carbonitrile (3ha)

72% yield (16.1 mg), white solid, m.p. 140 – 141 °C, $R_f = 0.45$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.58 – 7.30 (m, 4H), 7.21 (d, *J* = 8.0 Hz, 2H), 4.63 (d, *J* = 8.9 Hz, 1H), 4.30 (d, *J* = 8.8 Hz, 1H), 3.64 (s, 1H), 2.30 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 167.9, 138.8, 136.8, 129.1, 125.9, 118.2, 85.5, 83.0, 75.9, 58.8, 49.2, 20.5 ppm; IR (KBr): $\tilde{v} = 2920$, 2851, 2180, 1600, 1471, 1037, 815, 727 cm⁻¹; HRMS (ESI) calcd for [C₁₄H₁₂N₂O+H]⁺ 225.1022, found 225.1026.

2-amino-4-ethynyl-4-(4-methoxyphenyl)-4,5-dihydrofuran-3-carbonitrile (3ia)

58% yield (13.9 mg), white solid, m.p. 115 – 117 °C, $R_f = 0.37$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.53 – 7.34 (m, 4H), 6.97 (d, *J* = 8.8 Hz, 2H), 4.62 (d, *J* = 8.8 Hz, 1H), 4.29 (d, *J* = 8.8 Hz, 1H), 3.76 (s, 3H), 3.65 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.3, 159.1, 134.0, 127.7, 118.8, 114.4, 86.1, 83.6, 76.3, 59.3, 55.6, 49.4 ppm; IR (KBr): $\tilde{v} = 2920$, 2849, 2187, 1645, 1508, 1252, 1035, 831 cm⁻¹; HRMS (ESI) calcd for [C₁₄H₁₂N₂O₂+H]⁺ 241.0972, found 241.0976.

81% yield (19.8 mg), white solid, m.p. 137 – 138 °C, $R_f = 0.50$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.57 (s, 2H), 7.53 – 7.46 (m, 3H), 7.45 – 7.40 (m, 1H) 4.66 (d, J = 9.1 Hz, 1H), 4.42 (d, J = 9.1 Hz, 1H), 3.75 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.6, 144.8, 133.7, 131.2, 128.1, 126.3, 125.3, 118.5, 85.0, 83.0, 77.1, 58.8, 49.7 ppm; IR (KBr): $\tilde{v} = 2922$, 2851, 2185, 1660, 1598, 1473, 1041, 937 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₉ClN₂O+H]⁺ 245.0476, found 245.0481.

2-amino-4-ethynyl-4-(3-fluorophenyl)-4,5-dihydrofuran-3-carbonitrile (3ka)

71% yield (16.2 mg), white solid, m.p.140 – 141 °C, $R_f = 0.49$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO- d_6) δ 7.76 – 7.41 (m, 3H), 7.38 – 7.35 (m, 1H), 7.33 – 7.09 (m, 2H), 4.67 (d, J = 9.0 Hz, 1H), 4.41 (d, J = 9.0 Hz, 1H), 3.71 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ 168.6 , 162.7 (d, J = 244.2 Hz), 145.3 (d, J = 6.6 Hz), 131.2 (d, J = 8.1 Hz), 122.6 (d, J = 2.7 Hz), 118. 4, 114.9 (d, J = 21.0 Hz), 113.4 (d, J = 23.0 Hz), 85.2, 83.0, 76.8, 58.9, 49.8 ppm; IR (KBr): $\tilde{v} = 2920$, 2848, 2187, 1653, 1338, 1041, 758 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₉N₂FO+H]⁺ 229.0772, found 229.0772.

2-amino-4-ethynyl-4-(2-fluorophenyl)-4,5-dihydrofuran-3-carbonitrile (3la)

63% yield (14.3 mg), white solid, m.p. 131 – 132 °C, $R_f = 0.51$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.59 – 7.38 (m, 3H), 7.38 – 7.26 (m, 1H), 7.25 – 7.07 (m, 2H), 4.65 (dd, J = 10.1, 1.3 Hz, 1H), 4.45 (dd, J = 10.4,1.5 Hz, 1H), 3.52 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.6, 160.5 (d, J = 247.7 Hz), 130.6 (d, J = 8.6 Hz), 129.6 (d, J = 11.4 Hz), 128.2 (d, J = 3.3 Hz), 124.7 (d, J = 3.5 Hz), 118.9 , 116.9 (d, J = 21.5 Hz), 85.0, 81.7 (d, J = 3.5 Hz), 56.4, 46.7 ppm; IR (KBr): $\tilde{v} = 2920$, 2851, 2187, 1506, 1259, 1034, 934, 750 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₉N₂FO+H]⁺ 229.0772, found 229.0775.

64% yield (25.0 mg), white solid, m.p. 195 – 196 °C, $R_f = 0.56$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.68 (d, J = 2.2 Hz, 1H), 7.65 – 7.56 (m, 3H), 7.56 – 7.52 (m, 1H), 4.84 (d, J = 9.3 Hz, 1H), 4.59 (d, J = 9.3 Hz, 1H), 3.59 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.9, 138.7, 133.9, 133.7, 131.1, 129.8, 127.8, 119.1, 84.5, 81.0, 75.8, 56.0, 48.8 ppm; IR (KBr): $\tilde{v} = 2922$, 2951, 2185, 1651, 1499, 1275, 1041, 966 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₈Cl₂N₂O+H]⁺ 279.0086, found 279.0090.

2-amino-4-(2,4-difluorophenyl)-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3na)

71% yield (17.5 mg), white solid, m.p. 155 – 156 °C, $R_f = 0.48$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO- d_6) δ 7.70 – 7.40 (m, 3H), 7.35 – 7.27 (m, 1H), 7.22 – 7.02 (m, 1H), 4.72 (dd, J = 9.1, 1.2 Hz, 1H), 4.54 (dd, J = 9.1, 1.6 Hz, 1H), 3.63 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ 161.97 (dd, J = 244.7, 12.05 Hz), 160.0 (dd, J = 249.15, 12.25 Hz), 128.9 (dd, J = 9.8, 4.7 Hz), 125.6 (dd, J = 11.9, 3.5 Hz), 118.3, 111.02 (dd, J = 21.1, 3.3 Hz), 105.4, 105.1, 104.7, 84.2, 81.0, 75.5, 55.8, 45.9 ppm; IR (KBr): $\tilde{v} = 2926$, 2189, 1661, 1593, 1518, 1285, 1040, 773 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₈F₂N₂O+H]⁺ 247.0677, found 247.0678.

2-amino-4-(3,4-difluorophenyl)-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (30a)

64% yield (15.7 mg), white solid, m.p. 118 – 119 °C, $R_f = 0.53$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO- d_6) δ 7.73 – 7.40 (m, 4H), 7.39 – 7.34 (m, 1H), 4.66 (d, J = 9.0 Hz, 1H), 4.40 (d, J = 9.0 Hz, 1H), 3.72 (s, 1H). ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ 168.1, 150.60 (dd, J = 32.7, 12.7 Hz), 147.34 (dd, J = 33.0, 12.8 Hz), 139.5, 122.88 (dd, J = 6.7, 3.3 Hz), 117.9, 117.8, 117.5, 115.25 (d, J = 18.6 Hz), 84.5,

82.4, 76.6, 58.4, 49.0 ppm; IR (KBr): $\tilde{v} = 2924$, 2853, 2187, 1651, 1435, 1040, 937, 817 cm⁻¹; HRMS (ESI) calcd for $[C_{13}H_8F_2N_2O+H]^+ 247.0677$, found 247.0680.

2-amino-4-ethynyl-4-(naphthalen-2-yl)-4,5-dihydrofuran-3-carbonitrile (3pa)

80% yield (20.8mg), white solid, m.p. 149 – 150 °C, $R_f = 0.47$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO- d_6) δ 8.20 – 7.82 (m, 4H), 7.74 – 7.44 (m, 5H), 4.74 (d, J = 9.0 Hz, 1H), 4.50 (d, J = 9.0 Hz, 1H), 3.77 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ 168.0, 139.1, 132.5, 132.2, 128.6, 128.0, 127.4, 126.5, 126.3, 124.5, 124.1, 118.2, 85.2, 82.7, 76.4, 59.0, 58.9, 49.6 ppm; IR (KBr): $\tilde{v} = 2924$, 2855, 2189, 1645, 1489, 1095, 827 cm⁻¹; HRMS (ESI) calcd for [C₁₇H₁₂N₂O+H]⁺261.1022, found 261.1028.

4-([1,1'-biphenyl]-4-yl)-2-amino-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3qa)

76% yield (21.7 mg), white solid, m.p. 210 – 212 °C, $R_f = 0.42$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.85 – 7.53 (m, 6H), 7.55 – 7.28 (m, 5H), 4.69 (d, J = 8.9 Hz, 1H), 4.42 (d, J = 8.9 Hz, 1H), 3.69 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.0, 141.0, 139.5, 139.5, 128.9, 127.5, 127.0, 126.6, 126.6, 118.2, 85.2, 82.8, 76.1, 58.8, 49.3 ppm; IR (KBr): $\tilde{v} = 2920$, 2851, 2187, 1635, 1506, 1033, 765 cm⁻¹; HRMS (ESI) calcd for [C₁₉H₁₄N₂O+H]⁺287.1179, found 287.1182.

4-ethynyl-4-phenyl-3-(phenylsulfonyl)-4,5-dihydrofuran-2-amine (3ab)

41% yield (13.3 mg), white solid, m.p. 187 – 188 °C, $R_f = 0.40$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO- d_6) δ 7.60 – 7.57 (m, 2H), 7.52 – 7.47 (m, 1H), 7.41 – 7.35 (m, 6H), 7.25 – 7.20 (m, 3H), 4.55 (d, J = 8.6 Hz, 1H), 4.35 (d, J = 8.8 Hz, 1H), 3.39 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ 165.6, 145.5, 142.1, 132.0, 128.8,

128.4, 127.4, 126.8, 126.3, 84.6, 83.9, 82.1, 76.9, 49.8 ppm; IR (KBr): $\tilde{v} = 2922$, 2311, 1770, 1506, 1489, 1271, 1124, 723 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{15}NO_3S+H]^+$ 326.0845, found 326.0842.

4-ethynyl-3-((4-fluorophenyl)sulfonyl)-4-phenyl-4,5-dihydrofuran-2-amine (3ac)

48% yield (16.5 mg), white solid, m.p. 197 – 198 °C, $R_f = 0.44$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO- d_6) δ 7.68 – 7.53 (m, 2H), 7.52 – 7.29 (m, 4H), 7.24 – 7.17 (m, 5H), 4.57 (d, J = 8.8 Hz, 1H), 4.36 (d, J = 8.8 Hz, 1H), 3.42 (s, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ 165.6, 164.14 (d, J = 247.9 Hz), 141.93 (d, J = 3.4 Hz), 129.3 (d, J = 9.3 Hz), 128.4, 127.5, 126.8, 115.8 (d, J = 22.4 Hz), 84.6, 83.9, 81.9, 77.0, 49.8 ppm; IR (KBr): $\tilde{v} = 2924$, 2852, 2320, 1749, 1714, 1636, 1128, 833 cm⁻¹; HRMS (ESI) calcd for [C₁₈H₁₄FNO₃S+H]⁺ 344.0751, found 344.0754.

3-((4-chlorophenyl)sulfonyl)-4-ethynyl-4-phenyl-4,5-dihydrofuran-2-amine (3ad)

51% yield (18.3 mg), white solid, m.p. 164 – 165 °C, $R_f = 0.42$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.60 – 7.52 (m, 2H), 7.52 – 7.34 (m, 6H), 7.23 (dd, J = 5.2, 2.1 Hz, 3H), 4.57 (d, J = 8.8 Hz, 1H), 4.37 (d, J = 8.8 Hz, 1H), 3.46 (s, 1H) ppm; ¹³C NMR (75 MHz,DMSO-*d*₆) δ 165.8, 144.3, 142.0, 136.8, 128.9, 128.4, 128.2, 127.5, 126.8, 84.5, 83.9, 81.6, 77.1, 49.7 ppm; IR (KBr): $\tilde{v} = 2924, 2853, 2310, 1635, 1417, 1274, 754$ cm⁻¹; HRMS (ESI) calcd for [C₁₈H₁₄ClNO₃S+H]⁺ 360.0456, found 360.0454.

37% yield (12.6 mg), white solid, m.p. 197 – 199 °C, $R_f = 0.41$ (PE/EA = 2:1); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.45 (d, J = 7.9 Hz, 2H), 7.37 (d, J = 6.8 Hz, 2H), 7.32 – 7.03 (m, 7H), 4.50 (d, J = 8.8 Hz, 1H), 4.29 (d, J = 8.8 Hz, 1H), 3.35 (s, 1H), 2.30 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 166.3, 143.7, 143.2, 143.1, 130.1, 129.3, 128.3, 127.7, 127.3, 85.6, 84.8, 83.3, 77.8, 50.8, 22.3 ppm; IR (KBr): $\tilde{v} = 2922$, 2850, 1634, 1429, 1278, 1128, 835 cm⁻¹; HRMS (ESI) calcd for [C₁₉H₁₇NO₃S+H]⁺ 340.1002, found 340.1002.

4. Further Study of the Reaction

4.1 Preparation of 4 and Characterization^[2]:

A solution of **3aa** (0.1 mmol) in acetic anhydride (1 mL) was refluxed for 6 h. Then the reaction mixture was concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (PE/EA = 50:1) to give dihydrofuran derivative **4** in 56% yield.

5-ethynyl-2-methyl-5-phenyl-5,6-dihydrofuro[2,3-d]pyrimidin-4(3H)-one (4)

56% yield (14.1 mg), colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 8.62 (s, 1H), 7.75 – 7.51 (m, 2H), 7.49 – 7.08 (m, 3H), 4.92 (d, *J* = 9.1 Hz, 1H), 4.60 (d, *J* = 9.1 Hz, 1H), 2.77 (s, 1H), 2.19 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl3) δ 167.6, 159.8, 139.7, 129.0, 128.3, 126.1, 114.6, 84.8, 82.9, 75.5, 49.9, 29.7, 24.0 ppm; IR (KBr): $\tilde{v} = 2982$, 1760, 1729, 1446, 1180, 1025, 995, 818, 700 cm⁻¹; HRMS (ESI) calcd for [C₁₅H₁₂N₂O₂+Na]⁺ 275.0791, found 275.0810.

4.2 Preparation of 5 and Characterization^[3]:

To a solution of **3aa** (0.1 mmol, 1.0 equiv) in DCM was added CuI (10 mol %), benzyl azid (0.1 mmol, 1.0 equiv) under air. The mixture was stirred at room temperature for 24 h. After the reaction was completed determined by TLC, the reaction mixture was diluted with EA (5 mL) and filtered through a plug of Celite. And then the solvent was removed under vacuum and the crude product was purified by flash chromatography on silica gel (PE/EA = 2:1) to afford dihydrofuran derivative **5** in 75% yield.

2-amino-4-(1-benzyl-1H-1,2,3-triazol-4-yl)-4-phenyl-4,5-dihydrofuran-3-carbonitril e (5)

75% yield (25.7 mg), white solid, m.p. 267 – 268 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.88 (s, 1H), 7.38 – 7.26 (m, 12H), 5.61 (s, 2H), 5.14 (d, *J* = 8.9 Hz, 1H), 4.54 (d, *J* = 8.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.0, 139.1, 132.5, 132.2, 128.6, 128.0, 127.4, 126.5, 126.3, 124.5, 124.1, 118.2, 85.2, 82.7, 76.4, 59.0, 58.9, 49.6 ppm; IR (KBr): $\tilde{v} = 2920$, 2175, 1697, 1681, 1506, 1456, 1039, 912 cm⁻¹; HRMS (ESI) calcd for [C₂₀H₁₇N₅O+Na]⁺ 366.1325, found 366.1338.

4.3 Optimization of reaction conditions for asymmetric version of the reaction

Table S1: Optimization of the reaction conditions.^a

3	L3	DIPEA	DCM	67	52:48
4	L4	DIPEA	DCM	90	46:54
5	L5	DIPEA	DCM	57	50:50
6	L6	DIPEA	DCM	62	44:56
7	L7	DIPEA	DCM	91	55:45
8	L8	DIPEA	DCM	24	50:50
9	L9	DIPEA	DCM	10	50:50
10	L10	DIPEA	DCM	26	50:50
11	L11	DIPEA	DCM	34	52:48
12	L12	DIPEA	DCM	81	50:50
13	L13	DIPEA	DCM	67	50:50
14	L14	DIPEA	DCM	43	50:50
15	L15	DIPEA	DCM	86	50:50
16 ^c	L7	DIPEA	DCM	52	55:44
17	L7	DBU	DCM	27	50:50
18	L7	K_2CO_3	DCM	26	56:44
19	L7	NaOH	DCM	NR	-
20	L7	DIPEA	THF	48	55:45
21	L7	DIPEA	DCE	78	60:40
22	L7	DIPEA	Toluene	50	56:44

^{*a*}Reaction conditions: 1a (0.1 mmol, 1.0 equiv), 2a (0.1 mmol, 1 equiv), Copper bis(2-ethylhexanoate) (10 mol%), ligand (10 mol%), base (0.2 mmol, 2.0 equiv) in solvent (1.0 mL) for 12 h. ^{*b*} The er valure was determined by HPLC, using CHIRALCEL OD-H, i-PrOH: Hexane =20:80, v = 0.5 mL/min, $\lambda = 254$ nm. ^{*c*}CuCl₂ instead of Copper bis(2-ethylhexanoate).

Signal 1: MWD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ş
1	13.744	BB	0.3286	9571.21777	449.17276	49.9634
2	16.156	BB	0.4051	9585.25195	364.09885	50.0366

5. Reference

- 1. Hattori, G.; Yoshida, A.; Miyake, Y.; Nishibayashi, Y. J. Org. Chem., 2009, 74, 7603.
- 2. Solhy, A.; Elmakssoudi, A.; Tahir, R.; Karkouri, M.; Larzek, M.; Bousmina, M.; Zahouily, M. *Green Chem.*, **2010**, *12*, 2261.
- 3. Vidala, C.; Garc á-Álvarez, J. Green Chem., 2014, 16, 3515.

6¹H and ¹³C NMR Spectra of Title Compounds

¹H NMR (300 MHz, DMSO-*d*∂)

