Supporting Information

Copper-catalyzed [3+2] annulation of ethynyl epoxides with
malononitrile to access highly substituted dihydrofuranswith an all-carbon quaternary stereocenter
Xuanyi Li^{\dagger}, Chunhua Han ${ }^{\dagger}$, Yue Huang, Hequan Yao*, and Aijun Lin*
State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R.China.E-mail: ajlin@cpu.edu.cn; hyao@cpu.edu.cn
Contents

1. General Information 2
2. General Procedure for Preparation of Substituted Ethynyl Epoxides 3
3. General Procedure for Preparation of Substituted Dihydrofurans and Characterization 6
4. Further Study of the Reaction 14
5. Reference. 15
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Title Compounds 16

1. General Information

Reagents and Solvents: PE refers to petroleum ether b.p. $60-90^{\circ} \mathrm{C}$ and EA refers to ethyl acetate. All other starting materials and solvents were commercially available and were used without further purification unless otherwise stated.
Chromatography: Flash column chromatography was carried out using commercially available 200 - 300 mesh under pressure unless otherwise indicated. Gradient flash chromatography was conducted eluting with PE/EA, they are listed as volumeratios.
Data collection: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were collected on BRUKER AV-300/500 ($300 / 500 \mathrm{MHz}$) spectrometer using CDCl_{3} or DMSO-d6 as solvent. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR were recorded in parts per million (ppm, δ) relative to tetramethylsilane ($\delta=$ $0.00 \mathrm{ppm})$ with the solvent resonance as an internal standard $\left(\mathrm{CDCl}_{3}: \delta=7.26 \mathrm{ppm}\right.$, DMSO-d $6, \delta=2.50 \mathrm{ppm}$). Data are reported as follows: chemical shift in $\mathrm{ppm}(\delta)$, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant (Hz), and integration. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR were reported in ppm with the solvent as the internal standard $\left(\mathrm{CDCl}_{3}: \delta=77.0 \mathrm{ppm}\right.$, DMSO-d6, $\delta=39.5$ ppm). High Resolution Mass measurement was performed on Agilent Q-TOF 6520 mass spectrometer with electron spray ionization (ESI) as the ion source. IR spectra were recorded on a FT-IR spectrometer. Melting point (m.p.) was measured on a microscopic melting point apparatus.

2. General Procedure for Preparation of Substituted Ethynyl

Epoxides ${ }^{[1]}$

Substituted ethynyl epoxides were prepared in two steps from substituted phenacyl chloride/bromine. A typical experimental procedure for the preparation of ethynyl epoxide is described below.

Preparation of 2-ethynyl-2-(4-nitrophenyl)oxirane (1e) is used as an example:
In a 100 mL round-bottomed flask were placed 2-chloro-1-(4-nitrophenyl)ethanone (10.0 mmol) and anhydrous THF (30 mL). Ethynylmagnesium bromide (0.5 M in THF; 11.0 mmol) was added to the solution at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 4 h . After that, the reaction was quenched slowly with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $0{ }^{\circ} \mathrm{C}$ and extracted with EA $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water and brine sequentially, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. The crude product was purified by flash chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=200: 1 \sim 100: 1$) to afford the 1-chloro-2-(4-nitrophenyl)but-3-yn-2ol in 70% yield.
In a 100 mL round-bottomed flask were placed the 1-chloro-2-(4-nitrophenyl)-but-3-yn-2-ol and anhydrous diethyl ether (10 mL). Powdered $\mathrm{NaOH}(20.0 \mathrm{mmol})$ was added to the solution slowly, and the mixture was stirred at room temperature for 12 h . After that, the suspension was filtered through a pad of celite and washed by DCM (5 mL). Then the solvent was removed in vacuum and the crude product was purified by flash chromatography (PE/EA $=100: 1$) to afford the 2-ethynyl-2-(4-nitrophenyl)oxirane (1e) in 86% yield.

2-ethynyl-2-(4-nitrophenyl)oxirane (1e)

60% yield (1.13 g), yellow solid, m.p. $101-102{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.34(\mathrm{PE} / \mathrm{EA}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 148.0,143.8,126.5,123.7,79.9,73.9,59.2,50.1 \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}): \widetilde{\mathrm{v}}=2918$,

2851, 2119, 1520, 1341, 847, 860, $748 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$ 190.0499, found 190.0498.

4-(2-ethynyloxiran-2-yl)benzonitrile (1g)

51% yield (0.86 g), yellow solid, m.p. $64-65{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.42(\mathrm{PE} / \mathrm{EA}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.9,132.3,126.3,118.4,112.4,80.0,73.8,59.1,50.2 \mathrm{ppm}$; IR (KBr): $\widetilde{\mathrm{v}}=3063,2992,2922,2230,1506,1417,910,842 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{NO}+\mathrm{H}\right]^{+} 170.0600$, found 170.0595 .

2-ethynyl-2-(4-methoxyphenyl)oxirane(1i)

53% yield (0.93 g), yellow oil, $\mathrm{R}_{f}=0.51(\mathrm{PE} / \mathrm{EA}=20: 1)$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 159.9,128.4,126.9,113.9,81.4,72.5,58.6,55.3,50.5 \mathrm{ppm}$; $\mathrm{IR}(\mathrm{KBr}): \widetilde{\mathrm{v}}=3296$, 3065, 2987, 2124, 1576, 1473, 1269, 690, $785 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{2}+\mathrm{H}\right]^{+} 175.0754$, found 175.0753.

2-(3-chlorophenyl)-2-ethynyloxirane(1j)

37% yield (0.66 g), yellow oil, $\mathrm{R}_{f}=0.65(\mathrm{PE} / \mathrm{EA}=20: 1)$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.57-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=4.9,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.46(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 141.3, 137.2, 132.4, 131.3, 128.4,126.3, 83.2, 80.1, 61.4, 52.8 ppm ; IR $(\mathrm{KBr}): \widetilde{\mathrm{v}}=3063,2988,2123,1599,1427,1267,918,785 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClO}+\mathrm{H}\right]^{+} 179.0258$, found 179.0248 .

2-ethynyl-2-(3-fluorophenyl)oxirane(1k)

67% yield (1.09 g), yellow oil, $\mathrm{R}_{f}=0.62(\mathrm{PE} / \mathrm{EA}=20: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.42-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9(\mathrm{~d}, J=246.2 \mathrm{~Hz}), 139.3(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 121.2(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 112.7(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 80.7,72.9,58.9,50.2 \mathrm{ppm}$; IR $(\mathrm{KBr}): \widetilde{\mathrm{v}}=3067,2989,2909,2126,1593,1487,1279,1188,925,785 \mathrm{~cm}^{-1} ;$ HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{FO}+\mathrm{H}\right]^{+} 163.0554$, found 163.0550 .

2-ethynyl-2-(2-fluorophenyl)oxirane(1l)

58% yield (0.94 g), yellow oil, $\mathrm{R}_{f}=0.60(\mathrm{PE} / \mathrm{EA}=20: 1) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.03(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.5(\mathrm{~d}, J=249.6 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 124.5(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 115.78(\mathrm{~d}, J=20.7 \mathrm{~Hz}), 81.3,71.7(\mathrm{~d}, J=1.6 \mathrm{~Hz})$, 55.8 (d, $J=1.9 \mathrm{~Hz}$), 47.5 ppm ; IR (KBr): $\widetilde{\mathrm{v}}=3067$, 2926, 2855, 2124, 1491, 1456, 1220, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{FO}+\mathrm{H}\right]^{+} 163.0554$, found 163.0558.

2-(2,4-difluorophenyl)-2-ethynyloxirane(1n)

50% yield $(0.90 \mathrm{~g})$, yellow oil, $\mathrm{R}_{f}=0.63(\mathrm{PE} / \mathrm{EA}=20: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.54-7.41(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1$ (dd, $J=248.9$, 11.4 $\mathrm{Hz}), 160.7(\mathrm{dd}, J=248.6,12.0 \mathrm{~Hz}), 129.4(\mathrm{dd}, J=9.9,4.6 \mathrm{~Hz}), 120.8(\mathrm{dd}, J=13.43$, $3.7 \mathrm{~Hz}) 111.4(\mathrm{dd}, J=21.5,3.8 \mathrm{~Hz}), 104.6,104.3,103.9,81.1,71.9(\mathrm{~d}, J=1.5 \mathrm{~Hz})$, 55.8 (d, $J=2.0 \mathrm{~Hz}$), 47.1 ppm ; IR (KBr): $\widetilde{\mathrm{v}}=3082$, 2995, 2916, 2122, 1616, 1506, 1142, $852 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 181.0459$, found 181.0463 .

2-(3,4-difluorophenyl)-2-ethynyloxirane(1o)

45% yield (0.81 g), yellow oil, $\mathrm{R}_{f}=0.62(\mathrm{PE} / \mathrm{EA}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.56(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.98$ (dd, $J=12.1,7.4$ $\mathrm{Hz}), 148.69(\mathrm{dd}, J=12.1,6.2 \mathrm{~Hz}), 133.78(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 121.75(\mathrm{dd}, J=6.6,3.7$ $\mathrm{Hz}), 117.31(\mathrm{~d}, J=17.7 \mathrm{~Hz}), 114.85(\mathrm{~d}, J=19.3 \mathrm{~Hz}), 80.4,73.3,58.8,49.86(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}) \mathrm{ppm}$; IR (KBr): $\widetilde{\mathrm{v}}=3064$, 2992, 2916, 2125, 1611, 1522, 1119, 771, 1770, 1558, 1521, 1508, 933, $769 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$181.0459, found 181.0465 .

3. General Procedure for Preparation of Substituted Dihydrofurans

and Characterization

3.1 General procedure for Preparation of Substituted Dihydrofurans

A sealed tube were charged with Copper bis(2-ethylhexanoate) ($0.01 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$, dpy ($0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and dry $\mathrm{DCM}(0.5 \mathrm{~mL})$. The reaction mixture was stirred under at room temperature for 30 min . After that, $\mathbf{1}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), 2 ($0.12 \mathrm{mmol}, 1.2$ equiv), DIPEA ($0.2 \mathrm{mmol}, 2.0$ equiv) were dissolved in dry DCM $(0.5 \mathrm{~mL})$ and added to the tube via a syringe under argon. The reaction mixture was stirred at room temperature for 12 h . After the reaction was completed determined by TLC, the reaction mixture was diluted with EA (5 mL) and filtered through a plug of Celite. And then the solvent was removed under vacuum and the crude product was purified by flash chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=20: 1 \sim 10: 1)$ to afford the desired product 3 .

3.2 Characterization of the Products

2-amino-4-ethynyl-4-phenyl-4,5-dihydrofuran-3-carbonitrile (3aa)

86% yield (18.1 mg), white solid, m.p. $144-145{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.39(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 7.63-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.33$ $(\mathrm{m}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 168.5,142.3$, 129.1, 128.1, 126.4, 118.7, 85.8, 83.4, 76.5, 59.2, 49.9 ppm . IR (KBr): $\widetilde{\mathrm{v}}=2924,2851,2187,1635,1792,1651,1489,1096$, $827 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 211.0866$, found 211.0866.

2-amino-4-ethynyl-4-(4-fluorophenyl)-4,5-dihydrofuran-3-carbonitrile (3ba)

85% yield (19.4 mg), white solid, m.p. $174-175{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.46(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.68-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, DMSO- d_{6}) $\delta 168.5,161.9(\mathrm{~d}, J=244.3 \mathrm{~Hz}), 138.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=8.4$ $\mathrm{Hz}), 118.6,115.9(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 85.6,83.3,76.7,59.1,49.5 \mathrm{ppm}$; $\operatorname{IR}(\mathrm{KBr}): \widetilde{\mathrm{v}}=$ 2920, 2849, 2189, 1747, 1647, 1506, 1224, $835 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$229.0772, found 229.0770.

2-amino-4-(4-chlorophenyl)-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3ca)

77% yield (18.8 mg), white solid, m.p. $111-112{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.44(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.62-7.42(\mathrm{~m}, 6 \mathrm{H}), 4.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 168.5,141.3$, 132.8, 129.1, 128.4, 118.5, 85.3, 83.1, 77.0, 59.0, 49.6 ppm; IR (KBr): $\widetilde{\mathrm{v}}=2924$, 2852, 2189, 1651, 1489, 1095, 1037, $827 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 245.0476$, found 245.0476 .

2-amino-4-(4-bromophenyl)-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3da)

76% yield (21.9 mg), white solid, m.p. $149-150{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.47(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 7.60$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (s, 2H), 7.44 (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 168.5,141.8,132.0,128.8,121.3,118.5,85.2,83.1$, 77.0, 59.0, 49.6 ppm ; IR (KBr): $\widetilde{\mathrm{v}}=2922,2191,1653,1593,1473,1037,1008,821$ cm^{-1}; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 288.9971$, found 288.9970.

2-amino-4-ethynyl-4-(4-nitrophenyl)-4,5-dihydrofuran-3-carbonitrile (3ea)

71% yield (18.1 mg), green solid, m.p. $219-220{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.21(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.30(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 168.1,149.2,146.9,127.4,123.9,117.8,84.1,82.2$, 77.1, 58.5, 49.5 ppm ; IR (KBr): $\widetilde{\mathrm{v}}=2920,2849,2187,1647,1541,1339,931,657$ cm^{-1}; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{H}\right]^{+} 256.0717$, found 466.256.0721.

2-amino-4-ethynyl-4-(4-(trifluoromethyl)phenyl)-4,5-dihydrofuran-3-carbonitrile

 (3fa)
86% yield (23.9 mg), white solid, m.p. $115-116{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.59(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.94-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) δ $168.6,146.9,128.8(\mathrm{~d}, J=31.6 \mathrm{~Hz}), 127.4,126.2,126.1,118.4,84.9$, 82.9 , 77.2 , 59.0 , 49.9 ppm ; IR (KBr): $\tilde{\mathrm{v}}=2920,2851,2187,1747,1647,1506,1039 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 279.0740$, found 279.0743.

2-amino-4-(4-cyanophenyl)-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3ga)

87% yield (20.5 mg), white solid, m.p. $201-202{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.38(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.07-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 2 \mathrm{H})$, $4.70(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) δ 168.6, 147.8, 133.2, 127.6, 119.0, 118.3, 111.0, 84.6, 82.7, 77.5, 58.9, 50.1 ppm ; IR (KBr): $\widetilde{\mathrm{v}}=2926,2191,1647,1327,1068,1039,1124,810 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}+\mathrm{H}\right]^{+} 236.0818$, found 236.0821.

2-amino-4-ethynyl-4-(p-tolyl)-4,5-dihydrofuran-3-carbonitrile (3ha)

72% yield (16.1 mg), white solid, m.p. $140-141{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.45(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.58-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 167.9,138.8,136.8,129.1,125.9,118.2,85.5,83.0,75.9,58.8$, $49.2,20.5 \mathrm{ppm}$; IR (KBr): $\widetilde{\mathrm{v}}=2920,2851,2180,1600,1471,1037,815,727 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for [$\left.\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 225.1022$, found 225.1026.

2-amino-4-ethynyl-4-(4-methoxyphenyl)-4,5-dihydrofuran-3-carbonitrile (3ia)

58% yield (13.9 mg), white solid, m.p. $115-117{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.37(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.53-7.34$ (m, 4H), 6.97 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.62 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 168.3,159.1,134.0,127.7,118.8,114.4,86.1,83.6,76.3,59.3$, $55.6,49.4 \mathrm{ppm}$; IR (KBr): $\widetilde{\mathrm{v}}=2920,2849,2187,1645,1508,1252,1035,831 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for [$\left.\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 241.0972$, found 241.0976.

2-amino-4-(3-chlorophenyl)-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3ja)

81% yield (19.8 mg), white solid, m.p. $137-138{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.50(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.57$ (s, 2H), $7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H})$ $4.66(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 168.6,144.8,133.7,131.2,128.1,126.3,125.3,118.5,85.0,83.0$, $77.1,58.8,49.7 \mathrm{ppm}$; IR (KBr): $\widetilde{\mathrm{v}}=2922,2851,2185,1660,1598,1473,1041,937$ cm^{-1}; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 245.0476$, found 245.0481.

2-amino-4-ethynyl-4-(3-fluorophenyl)-4,5-dihydrofuran-3-carbonitrile (3ka)

71% yield (16.2 mg), white solid, m.p. $140-141{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.49(\mathrm{PE} / \mathrm{EA}=2: 1)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6}) $7.76-7.41$ (m, 3H), $7.38-7.35$ (m, 1H), $7.33-7.09$ $(\mathrm{m}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 168.6,162.7(\mathrm{~d}, J=244.2 \mathrm{~Hz}), 145.3(\mathrm{~d}, J=6.6 \mathrm{~Hz})$, $131.2(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 122.6(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 118.4,114.9(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 113.4(\mathrm{~d}$, $J=23.0 \mathrm{~Hz}), 85.2,83.0,76.8,58.9,49.8 \mathrm{ppm}$; IR (KBr): $\widetilde{\mathrm{v}}=2920,2848,2187$, 1653, 1338, 1041, $758 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{FO}+\mathrm{H}\right]^{+}$229.0772, found 229.0772 .

2-amino-4-ethynyl-4-(2-fluorophenyl)-4,5-dihydrofuran-3-carbonitrile (3la)

63% yield (14.3 mg), white solid, m.p. $131-132{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.51(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.59-7.38$ (m, 3H), $7.38-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.07$ $(\mathrm{m}, 2 \mathrm{H}), 4.65(\mathrm{dd}, J=10.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 1 \mathrm{H})$ ppm; ${ }^{13}$ C NMR (75 MHz, DMSO- d_{6}) $\delta 168.6,160.5(\mathrm{~d}, J=247.7 \mathrm{~Hz}$), 130.6 (d, $J=$ $8.6 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 124.7(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 118.9$, $116.9(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 85.0,81.7(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 56.4,46.7 \mathrm{ppm}$; $\mathrm{IR}(\mathrm{KBr}): \widetilde{\mathrm{v}}=$ 2920, 2851, 2187, 1506, 1259, 1034, 934, $750 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{FO}+\mathrm{H}\right]^{+} 229.0772$, found 229.0775 .

2-amino-4-(2,4-dichlorophenyl)-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3ma)

64% yield (25.0 mg), white solid, m.p. $195-196{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.56(\mathrm{PE} / \mathrm{EA}=2: 1)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 7.68$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.65-7.56$ (m, 3H), 7.56 $7.52(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 168.9$, 138.7, 133.9, 133.7, 131.1, 129.8, 127.8, 119.1, 84.5, 81.0, 75.8, 56.0, 48.8 ppm ; IR (KBr): $\tilde{\mathrm{v}}=2922,2951,2185,1651,1499$, 1275, 1041, $966 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 279.0086$, found 279.0090 .

2-amino-4-(2,4-difluorophenyl)-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3na)

71% yield (17.5 mg), white solid, m.p. $155-156{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.48(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.70-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.02$ $(\mathrm{m}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=9.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 161.97$ (dd, $J=244.7,12.05 \mathrm{~Hz}$), 160.0 (dd, J $=249.15,12.25 \mathrm{~Hz}), 128.9(\mathrm{dd}, J=9.8,4.7 \mathrm{~Hz}), 125.6(\mathrm{dd}, J=11.9,3.5 \mathrm{~Hz}), 118.3$, 111.02 (dd, $J=21.1,3.3 \mathrm{~Hz}$), 105.4, 105.1, 104.7, 84.2, 81.0, $75.5,55.8,45.9 \mathrm{ppm}$; IR (KBr): $\widetilde{\mathrm{v}}=2926,2189,1661,1593,1518,1285,1040,773 \mathrm{~cm}^{-1} ;$ HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$247.0677, found 247.0678.

2-amino-4-(3,4-difluorophenyl)-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3oa)

64% yield (15.7 mg), white solid, m.p. $118-119{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.53(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 7.73$ - 7.40 (m, 4H), 7.39 - 7.34 (m, 1H), 4.66 (d, $J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, DMSO- d_{6}) $\delta 168.1,150.60(\mathrm{dd}, J=32.7,12.7 \mathrm{~Hz}$), $147.34(\mathrm{dd}, J=33.0,12.8 \mathrm{~Hz}$), $139.5,122.88(\mathrm{dd}, J=6.7,3.3 \mathrm{~Hz}), 117.9,117.8,117.5,115.25(\mathrm{~d}, J=18.6 \mathrm{~Hz}), 84.5$,
82.4, 76.6, 58.4, 49.0 ppm ; IR (KBr): $\widetilde{\mathrm{v}}=2924,2853,2187,1651,1435,1040,937$, $817 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 247.0677$, found 247.0680.

2-amino-4-ethynyl-4-(naphthalen-2-yl)-4,5-dihydrofuran-3-carbonitrile (3pa)

80% yield (20.8mg), white solid, m.p. $149-150{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.47(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.20-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.74-7.44(\mathrm{~m}, 5 \mathrm{H}), 4.74(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 168.0,139.1,132.5,132.2,128.6,128.0,127.4,126.5,126.3,124.5$, 124.1, 118.2, 85.2, 82.7, 76.4, 59.0, 58.9, 49.6 ppm; IR (KBr): $\widetilde{\mathrm{v}}=2924,2855,2189$, 1645, 1489, 1095, $827 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 261.1022$, found 261.1028.

4-([1,1'-biphenyl]-4-yl)-2-amino-4-ethynyl-4,5-dihydrofuran-3-carbonitrile (3qa)

76% yield (21.7 mg), white solid, m.p. $210-212{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.42(\mathrm{PE} / \mathrm{EA}=2: 1)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.85-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.55-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.69(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 168.0,141.0,139.5,139.5,128.9,127.5,127.0,126.6,126.6,118.2$, 85.2, 82.8, 76.1, 58.8, 49.3 ppm; IR (KBr): $\widetilde{\mathrm{v}}=2920,2851,2187,1635,1506,1033$, $765 \mathrm{~cm}^{-1} ;$ HRMS (ESI) calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+} 287.1179$, found 287.1182.

4-ethynyl-4-phenyl-3-(phenylsulfonyl)-4,5-dihydrofuran-2-amine (3ab)

41% yield (13.3 mg), white solid, m.p. $187-188{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.40(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 7.60-7.57$ (m, 2H), $7.52-7.47$ (m, 1H), $7.41-7.35$ $(\mathrm{m}, 6 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39$ (s, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) δ 165.6, 145.5, 142.1, 132.0, 128.8,
128.4, 127.4, 126.8, 126.3, 84.6, 83.9, 82.1, 76.9, $49.8 \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}): \widetilde{\mathrm{v}}=2922$, 2311, 1770, 1506, 1489, 1271, 1124, $723 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+} 326.0845$, found 326.0842 .

4-ethynyl-3-((4-fluorophenyl)sulfonyl)-4-phenyl-4,5-dihydrofuran-2-amine (3ac)

48% yield (16.5 mg), white solid, m.p. $197-198{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.44$ (PE/EA $=2: 1$); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.68-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.17$ $(\mathrm{m}, 5 \mathrm{H}), 4.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 165.6,164.14(\mathrm{~d}, J=247.9 \mathrm{~Hz}$), 141.93 (d, $J=3.4 \mathrm{~Hz}$),, $129.3(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 128.4,127.5,126.8,115.8(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 84.6,83.9,81.9$, $77.0,49.8 \mathrm{ppm}$; IR (KBr): $\widetilde{\mathrm{v}}=2924,2852,2320,1749,1714,1636,1128,833 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FNO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+} 344.0751$, found 344.0754.

3-((4-chlorophenyl)sulfonyl)-4-ethynyl-4-phenyl-4,5-dihydrofuran-2-amine (3ad)

51% yield (18.3 mg), white solid, m.p. $164-165{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.42$ (PE/EA $=2: 1$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 7.60-7.52$ (m, 2H), $7.52-7.34$ (m, 6H), 7.23 (dd, $J=$ $5.2,2.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (s, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (75 MHz ,DMSO- d_{6}) $\delta 165.8,144.3,142.0,136.8,128.9,128.4,128.2$, $127.5,126.8,84.5,83.9,81.6,77.1,49.7 \mathrm{ppm}$; $\operatorname{IR}(\mathrm{KBr}): \widetilde{\mathrm{v}}=2924,2853,2310,1635$, 1417, 1274, $754 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClNO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+} 360.0456$, found 360.0454 .

4-ethynyl-4-phenyl-3-tosyl-4,5-dihydrofuran-2-amine (3ae)

37% yield (12.6 mg), white solid, m.p. $197-199{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.41(\mathrm{PE} / \mathrm{EA}=2: 1) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32-7.03(\mathrm{~m}, 7 \mathrm{H}), 4.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 166.3,143.7,143.2,143.1,130.1$, 129.3, 128.3, 127.7, 127.3, 85.6, 84.8, 83.3, 77.8, 50.8, 22.3 ppm ; IR (KBr): $\tilde{\mathrm{v}=}$ 2922, 2850, 1634, 1429, 1278, 1128, $835 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+} 340.1002$, found 340.1002 .

4. Further Study of the Reaction

4.1 Preparation of 4 and Characterization ${ }^{[2]}$:

A solution of 3aa (0.1 mmol) in acetic anhydride (1 mL) was refluxed for 6 h . Then the reaction mixture was concentrated in vacuo. The crude product was purified by flash chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=50: 1)$ to give dihydrofuran derivative 4 in 56% yield.

5-ethynyl-2-methyl-5-phenyl-5,6-dihydrofuro[2,3-d]pyrimidin-4(3H)-one (4)
56% yield (14.1 mg), colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.75-$ $7.51(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.08(\mathrm{~m}, 3 \mathrm{H}), 4.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 167.6,159.8,139.7$, $129.0,128.3,126.1,114.6,84.8,82.9,75.5,49.9,29.7,24.0 \mathrm{ppm}$; IR (KBr): $\tilde{\mathrm{v}}=$ 2982, 1760, 1729, 1446, 1180, 1025, 995, 818, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+} 275.0791$, found 275.0810.

4.2 Preparation of 5 and Characterization ${ }^{[3]}$:

To a solution of 3aa ($0.1 \mathrm{mmol}, 1.0$ equiv) in DCM was added CuI ($10 \mathrm{~mol} \%$), benzyl azid ($0.1 \mathrm{mmol}, 1.0$ equiv) under air. The mixture was stirred at room temperature for 24 h . After the reaction was completed determined by TLC, the reaction mixture was diluted with EA (5 mL) and filtered through a plug of Celite. And then the solvent was removed under vacuum and the crude product was purified by flash chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=2: 1)$ to afford dihydrofuran derivative 5 in 75% yield.

2-amino-4-(1-benzyl-1H-1,2,3-triazol-4-yl)-4-phenyl-4,5-dihydrofuran-3-carbonitril e (5)
75% yield (25.7 mg), white solid, m.p. $267-268{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 12 \mathrm{H}), 5.61(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 168.0,139.1,132.5,132.2$, 128.6, 128.0, 127.4, 126.5, 126.3, 124.5, 124.1, 118.2, 85.2, 82.7, 76.4, 59.0, 58.9, $49.6 \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}): \widetilde{\mathrm{v}}=2920,2175,1697,1681,1506,1456,1039,912 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}+\mathrm{Na}\right]^{+} 366.1325$, found 366.1338.
4.3 Optimization of reaction conditions for asymmetric version of the reaction

Table S1: Optimization of the reaction conditions. ${ }^{a}$

Entry	Ligand	Base	Solvent	Yield (\%)	Er $^{\boldsymbol{b}}$
$\mathbf{1}$	L1	DIPEA	DCM	71	$50: 50$
$\mathbf{2}$	L2	DIPEA	DCM	72	$53: 47$

$\mathbf{3}$	L3	DIPEA	DCM	67	$52: 48$
$\mathbf{4}$	L4	DIPEA	DCM	90	$46: 54$
$\mathbf{5}$	L5	DIPEA	DCM	57	$50: 50$
$\mathbf{6}$	L6	DIPEA	DCM	62	$44: 56$
$\mathbf{7}$	L7	DIPEA	DCM	91	$55: 45$
$\mathbf{8}$	L8	DIPEA	DCM	24	$50: 50$
$\mathbf{9}$	L9	DIPEA	DCM	10	$50: 50$
$\mathbf{1 0}$	L10	DIPEA	DCM	26	$50: 50$
$\mathbf{1 1}$	L11	DIPEA	DCM	34	$52: 48$
$\mathbf{1 2}$	L12	DIPEA	DCM	81	$50: 50$
$\mathbf{1 3}$	L13	DIPEA	DCM	67	$50: 50$
$\mathbf{1 4}$	L14	DIPEA	DCM	43	$50: 50$
$\mathbf{1 5}$	L15	DIPEA	DCM	86	$50: 50$
$\mathbf{1 6}$	L7	DIPEA	DCM	52	$55: 44$
$\mathbf{1 7}$	L7	DBU	DCM	27	$50: 50$
$\mathbf{1 8}$	L7	K2CO	DCM	26	$56: 44$
$\mathbf{1 9}$	L7	NaOH	DCM	NR	-
$\mathbf{2 0}$	L7	DIPEA	THF	48	$55: 45$
$\mathbf{2 1}$	L7	DIPEA	DCE	78	$60: 40$
$\mathbf{2 2}$	L7	DIPEA	Toluene	50	$56: 44$

${ }^{a}$ Reaction conditions: $1 \mathrm{a}(0.1 \mathrm{mmol}, 1.0$ equiv), $2 \mathrm{a}(0.1 \mathrm{mmol}, 1$ equiv), Copper bis(2-ethylhexanoate) ($10 \mathrm{~mol} \%$), ligand ($10 \mathrm{~mol} \%$), base ($0.2 \mathrm{mmol}, 2.0$ equiv) in solvent $(1.0 \mathrm{~mL})$ for $12 \mathrm{~h} .{ }^{b}$ The er valure was determined by HPLC, using CHIRALCEL OD-H, i-PrOH: Hexane $=20: 80, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} .{ }^{c} \mathrm{CuCl}_{2}$ instead of Copper bis(2-ethylhexanoate).

L6

L7

L8

L9

L10

L11

L12

L13

L14

$-\mathrm{N}$

Additional Info : Peak(s) manually integrated

Signal 1: MWD1 B, Sig=254,4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	13.744 BB	0.3286	9571.21777	449.17276	49.9634
2	16.156 BB	0.4051	9585.25195	364.09885	50.0366

5. Reference

1. Hattori, G.; Yoshida, A.; Miyake, Y.; Nishibayashi, Y. J. Org. Chem., 2009, 74, 7603.
2. Solhy, A.; Elmakssoudi, A.; Tahir, R.; Karkouri, M.; Larzek, M.; Bousmina, M.; Zahouily, M. Green Chem., 2010, 12, 2261.
3. Vidala, C.; García-Álvarez, J. Green Chem., 2014, 16, 3515.
$6{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Title Compounds

${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDC}_{3}\right)$

$$
\begin{aligned}
& \underset{\sim}{n} \text { ぶ }
\end{aligned}
$$

${ }^{13} \mathrm{H} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ba
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

				$\underset{\underset{7}{7}}{\stackrel{1}{2}}$						$\begin{array}{ll} T & T \\ \hline 8 & \frac{1}{2} \\ -1 & 0 \end{array}$										
9. 5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\mathrm{fl}{ }^{4.5}(\mathrm{ppm})$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0. 5

3ba
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

3ca
${ }^{1}$ H NMR (300 MHz , DMSO- d_{6})

3da
${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6})


```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\stackrel{\text { ஸ் }}{\text { ® }}
\] & \[
\begin{gathered}
\text { n } \\
\stackrel{n}{1} \\
\underset{i}{1}
\end{gathered}
\] & \% & \[
\begin{aligned}
& \text { is } \\
& \stackrel{y}{2} \\
& \stackrel{y}{1}
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { Ø゙ } \\
& \stackrel{\text { In }}{1}
\end{aligned}
\] & \[
\begin{aligned}
& \text { An } \\
& \text { ois } \\
& \text { is il }
\end{aligned}
\] & \\
\hline
\end{tabular}
```


${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})

0	210			18	170		150	140	130	120			90	80	70	60	50	40	30	1			
20	210	200	190	180	170	160	150	140	130	120	${ }_{\text {fl }}^{110}$	$\begin{gathered} 100 \\ (\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	

$3 i a$
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

3ia
${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})

240	230	220	210		190	180	170	160	150		130														
240	230	220	210	200	190	180	170	160	150	140	130	${ }_{\text {fl }}^{120}$	$\underset{(\mathrm{ppm})}{110}$	100	90	80	70	60	50	40	30	20	10	0	-10

3ja
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$

$\begin{gathered} \text { 万ity } \\ \text { ovicu } \end{gathered}$			Aze	$\begin{gathered} \text { n} \\ \text { ? } \\ \text { in } \end{gathered}$

3ka
${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})

\qquad

$\stackrel{3 \mathrm{ma}}{{ }^{1} \mathrm{H} \text { NMR }\left(300 \mathrm{MHz}, \text { DMSO- }_{6}\right)}$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

[^0]

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})

T	1	1	1		1	1	1			1			1	1	1	1		1	1	1		
20	210	200	190	180	170	160	150	140	130	120	${ }_{f 1}^{110}$	${ }_{(\mathrm{ppm})}^{100}$	90	80	70	60	50	40	30	20	10	0

3ac
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

3 ac
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$

[^1]

4
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$ DMSO- $\left.\mathrm{d}_{6}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

[^0]:

[^1]:

