Electronic Supplementary Information

N-(2-Fluoro-2,2-dinitroethyl)azoles: Novel assembly of diverse explosophoric building blocks for energetic compounds design

Nadezhda V. Palysaeva,^a Aleksei G. Gladyshkin,^{a,b} Irina A. Vatsadze,^a Kyrill Yu. Suponitsky,^c Dmitry E. Dmitriev,^d and Aleksei B. Sheremetev^{*a}

 ^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
^b Mendeleev University of Chemical Technology, Moscow, 125047, Russian Federation
^c A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation
^d ChemRar Ltd, Khimki, Moscow region, 141400, Russian Federation

sab@ioc.ac.ru

Table of Contents

General Information	1
Characterization of Compounds 12-29	2
General Procedure for the Preparation of Compounds 12-29.	2
X-ray analysis of the involved materials	9
References	
NMR spectra	16

General Information

All the reagents were of analytical grade, purchased from commercial sources, and used as received. Infrared spectra were determined in KBr pellets on a BrukerALPHA spectrometer. The ¹H, ¹⁹F, ¹³C, ¹⁴N and ¹⁵N NMR spectra were recorded on a Bruker AM-300 instrument at 300.13, 282.00, 75.47, 21.68 and 30.42 MHz, respectively. The chemical shift values (δ) are expressed relative to the chemical shift of the [D]solvent or to external standard without correction nitromethane (¹⁴N) and CClF₃ (¹⁹F). Analytical TLC was performed using commercially precoated silica gel plates (Silufol UV₂₅₄), and visualization was effected with short-wavelength UV-light. Melting points were determined on Gallenkamp melting point apparatus and they are uncorrected.

CAUTION! All compounds are potentially explosive and should be handled with appropriate precautions.

Characterization of Compounds 12-29

General Procedure for the Preparation of K-salts of N-(dinitroethyl)azoles. A mixture of a NH-azole (2.5 mmol) and t-BuOK (5 mmol) in methanol (10 mL) was stirred for 5 min under reflux. 1,1,1-Trinitroethan (2.6 mmol) in methanol (10 mL) was then added dropwise, keeping the flask temperature about 65 °C. After the addition was complete, the reaction mixture was heated under reflux. The reaction was stirred until the starting azole could no longer be detected by thin-layer chromatography, which typically took 1-2 h. The mixture was then cooled to 20 °C, and the yellow-orange solid which separated was collected by filtration and washed with methanol (5 mL) and diethyl ether (3×5 mL), and dried to give crude K-salt 3. The crude compound was used directly in the next step without any further purification. If necessary, a pure sample could be prepared for analysis by recrystallization; however, the purification is accompanied by large losses.

General Procedure for the Preparation of Compounds 12-29.

SelectfluorTM was added with stirring to a slurry of crude K-salt (2 mmol; from the previous stage) in acetonitrile (10 mL) at room temperature. After 1 h of stirring, the reaction mixture was diluted with CH₂Cl₂ (200 mL), washed with brine (2×50 mL), passed through silica gel, and dried over MgSO₄. The solution was evaporated and the residue was purified by recrystallization from a suitable solvent or column chromatography on silica gel to give fluorinated product as a white solid:

1-(2-Fluoro-2,2-dinitroethyl)-3-nitro-1H-pyrazole, 12

 $O_2N_4 N_2^{-2} C(NO_2)_2F$ The compound was prepared followed by General Procedure. After recrystallization from CHCl₃ colorless solid 12 was obtained in 68% yield; mp 88-89°C. ¹H NMR (DMSO-*d*₆): 6.18 (d, *J*_{HF} = 15.3 Hz, 2H, NCH₂), 7.17 (s, 1H, CH), 8.16 (s, 1H, CH); ¹³C NMR $(DMSO-d_6)$: 52.2 (d, $J_{CF} = 17.6$ Hz, C2), 100.9 (C5), 119.4 (d, $J_{CF} = 293.9$ Hz, C1), 137.2 (C4),

156.9 (C3); ¹⁹F NMR (DMSO- d_6): 108.95 (t, 1F, J = 14.32 Hz); IR: v = 3164, 3131, 3035, 2976, 2896, 1618, 1553, 1510, 1458, 1429, 1381, 1355, 1317, 1302, 1220,1187, 1078, 1061, 1027, 998, 888, 849, 827, 810, 784, 755, 736, 618, 593, 447 cm⁻¹; Anal. calcd. (%) for C₅H₄FN₅O₆ (249,11): C 24.11, H 1.62, N 28.11; found: C 24.31; H 1.74; N 28.20.

1-(2-Fluoro-2,2-dinitroethyl)-4-nitro-1H-pyrazole, 13

The compound was prepared followed by General Procedure. N_2 C(NO₂)₂F After recrystallization from CH₂Cl₂ colorless solid **13** was obtained in 68% yield; mp 101-102°C. ¹H NMR (DMSO-*d*₆): 6.11 (d, 2H, O₂N $J_{\rm HF} = 15.1$ Hz, NCH₂), 8.45 (s, 1H, CH), 9.01 (s, 1H, CH); ¹³C NMR (DMSO- d_6): 51.8 (d, J_{CF} = 17.6 Hz, C2), 119.2 (d, J_{CF} = 294.0 Hz, C1), 133.2 (C5), 135.9 (C4), 137.6 (C3); ¹⁹F NMR (DMSO- d_6): 109.14 (t, 1F, J = 14.86 Hz); ¹⁴N NMR (DMSO- d_6): -18.85 (bs, \underline{NO}_2); ¹⁵N NMR (DMSO- d_6): -182.2 (NCH₂), -70.8(C=N-N), -21.5 (C(NO₂) F), -21.0 $(C(NO_2)F)$, -18.0 (NO_2) ; IR: v = 3435, 3147, 3129, 3026, 2984,1624, 1604, 1536, 1510, 1413, 1332, 1309, 1210, 1191, 1139, 1082, 1003, 966, 885, 851, 822, 806, 756, 740, 658, 613, 586,

548, 451 cm⁻¹; Anal. calcd. (%) for $C_5H_4FN_5O_6$ (249,11): C 24.11, H 1.62, N 28.11; found C 24.19; H 1.71; N 28.03.

1-(2-Fluoro-2,2-dinitroethyl)-4-methyl-3-nitro-1H-pyrazole, 14

$$O_2N_3N_2^1(NO_2)_2N_4^1$$

Me 5

The compound was prepared followed by **General Procedure**. After recrystallization from CH₂Cl₂ colorless solid **13** was obtained in 32% yield; mp 100-101°C. ¹H NMR (DMSO-*d*₆): 2.27 (s, 3H, C<u>H</u>₃), 6.09 (d, 2H, $J_{\text{HF}} = 15.3$ Hz, NC<u>H</u>₂), 7.98 (s, 1H, C<u>H</u>); ¹³C NMR (DMSO-*d*₆): 9.12 (s, <u>C</u>H₃), 52.1 (d, $J_{\text{CF}} = 17.4$ Hz, C2),

119.3 (d, $J_{CF} = 293.5$ Hz, C1), 114.9 (C4), 127.3 (C5), 135.8 (C3); ¹⁹F NMR (DMSO- d_6): -109.12 (t, 1F, J = 15.09 Hz); ¹⁴N NMR (DMSO- d_6): -18.70 (bs, <u>NO</u>₂); ¹⁵N NMR (DMSO- d_6): -189.0 (<u>NCH</u>₂), -76.7 (C=<u>N</u>-N), -21.5 (C(<u>NO</u>₂)F), -21.0 (C(<u>NO</u>₂)F), -18.1; IR: v = 3421, 3121, 3031, 3002, 2979, 1622, 1591, 1525, 1425, 1377, 1337, 1305, 1220, 1187, 1148, 1076, 1027, 1000, 891, 849, 814, 777, 758, 627, 591, 522 cm⁻¹; Anal. calcd. (%) for C₆H₆FN₅O₆ (263,14): C 27.39; H 2.30; N 26.61; found C 27.31; H 2.35; N 26.51.

1-(2-Fluoro-2,2-dinitroethyl)-5-methyl-4-nitro-1H-pyrazole, 15 1-(2-Fluoro-2,2-dinitroethyl)-3-methyl-4-nitro-1H-pyrazole, 15

The mixture of isomers 15 and 15' is not separated (ratio 1/1). The mixture of compounds 15 and 15' was prepared followed by **General Procedure**. After recrystallization from CH₂Cl₂ colorless solid 15 and

15' was obtained in 65% yield; mp 85-90°C.

NMR data for the mixture of isomers 15 and 15:

¹H NMR (DMSO-*d*₆): 2.39 (s, 3H, C<u>H</u>₃, **15**[°]), 2.69 (s, 3H, C<u>H</u>₃, **15**), 5.93 (d, 2H, $J_{HF} = 2.1$ Hz, NC<u>H</u>₂, **15**[°]), 5.98 (d, 2H, $J_{HF} = 2.2$ Hz, NC<u>H</u>₂, **15**), 8.28 (s, 1H, C<u>H</u>, **15**[°]); 8.85 (s, 1H, C<u>H</u>, **15**); ¹³C NMR (DMSO-*d*₆): 10.54 (s, <u>C</u>H₃, **15**[°]), 12.87 (s, <u>C</u>H₃, **15**), 49.52 (d, $J_{CF} = 17.45$ Hz, C2, **15**[°]), 51.6 (d, $J_{CF} = 17.68$ Hz, C2, **15**), 119.24 (d, $J_{CF} = 294.04$ Hz, C1, **15**+15[°]), 133.34 (C4, **15**), 133.85 (C4, **15**[°]), 133.99 (C3, **15**[°]), 134.46 (C5, **15**), 143.24 (C5, **15**[°]), 147.07 (C3, **15**); ¹⁹F NMR (DMSO-*d*₆): -109.12 (t, 1F, J = 14.86 Hz), -111.02 (t, 1F, J = 14.75 Hz); ¹⁴N NMR (DMSO-*d*₆): -23.18 (bs, <u>NO</u>₂); ¹⁵N NMR (DMSO-*d*₆): -182.8 (<u>NCH</u>₂, **15**[°]), -189.6 (<u>NCH</u>₂, **15**), -78.1 (C=<u>N</u>-N, **15**), -75.5 (C=<u>N</u>-N, **15**[°]), -21.2 (C(<u>NO</u>₂)F), -21.3 (C(<u>NO</u>₂)F), -20.8 (C(<u>NO</u>₂)F), -20.9 (C(<u>NO</u>₂)F), -16.4 (<u>NO</u>₂, **15**[°]), -16.1 (<u>NO</u>₂, **15**[°]).

1-(2-Fluoro-2,2-dinitroethyl)-4-nitro-1H-pyrazol-3-amine, 16 1-(2-Fluoro-2,2-dinitroethyl)-4-nitro-1H-pyrazol-5-amine, 16

The mixture of compounds 16 and 16 was prepared followed by General Procedure. Solid 16 and 16 were obtained in 38% yield (ratio 1/1). The mixture of isomers 16 and 16' is separated by column chromatography on silica gel (Eluent is CHCl₃, $R_f(16) = 0.79$, $R_f(16') = 0.45$).

After purified by silica gel chromatography, yelow solid **16** was obtained in 18% yield; mp 167-168°C (CHCl₃). ¹H NMR (DMSO-*d*₆): 5.76 (d, 2H, $J_{HF} = 14.40$ Hz, NCH₂), 7.91 (s, 2H, NH₂), 8.08 (s, 1H, CH); ¹³C NMR (DMSO-*d*₆): 47.96 (d, $J_{CF} = 17.7$ Hz, C2), 119.0 (d, $J_{CF} = 291.92$ Hz, C1), 117.3 (C4), 137.2 (C5), 147.7 (C3); ¹⁹F NMR (DMSO-*d*₆): -110.31 (t, 1F, J = 14.33 Hz); ¹⁴N NMR (DMSO-*d*₆): -20.58 (bs, <u>NO</u>₂); IR: v = 3467, 3341, 3251, 3146, 3017, 2964, 1641, 1605, 1583, 1506, 1474, 1340, 1318, 1278, 1209, 1082, 848, 807, 763, 700, 666, 592, 547, 498 cm⁻¹; Anal. calcd. (%) for C₅H₅FN₆O₆ (264,13): C 22.74; H 1.91; N 31.82; found C 22.87; H 1.82; N 31.71.

After purified by silica gel chromatography, colorless solid **16** was obtained in 20% yield; mp 189-190 °C (CHCl₃). ¹H NMR (DMSO-*d*₆): 5.79 (d, 2H, J_{HF} =14.90 Hz, NCH₂), 6.30 (bs, 2H, NH₂), 8.62 (s, 1H, CH); ¹³C NMR (DMSO-*d*₆): 51.7 (d, J_{CF} = 17.54 Hz, C2), 119.2 (d, J_{CF} = 293.55 Hz, C1), 122.2 (C4), 133.2 (C3), 151.8 (C5); ¹⁹F NMR (DMSO-*d*₆): -109.56 (t, 1F, J = 14.52 Hz); ¹⁴N NMR (DMSO-*d*₆): -22,38 (bs, NO₂); ¹⁵N NMR (DMSO-*d*₆): -322.8 (NH₂), -201.7 (NCH₂), -199.6 (C=N-N), -21.2 (C(NO₂)F), -20.1 (C(NO₂)F), -15.0 (NO₂); IR: v = 3467, 3341, 3146, 3017, 2964, 1641, 1605, 1583, 1506, 1474, 1415, 1403, 1340, 1318, 1278, 1209, 1082, 1002, 980, 848, 807, 763, 700, 666, 592, 547, 498 cm⁻¹; Anal. calcd. (%) for C₅H₅FN₆O₆ (264,13): C 22.74; H 1.91; N 31.82; found C 22.67; H 2.02; N 31.95.

1-(1-(2-Fluoro-2,2-dinitroethyl)-1H-pyrazol-3-yl)-1H-tetrazole, 17

¹ ¹ $C(NO_2)_2F$ The compound was prepared followed by **General Procedure**. After recrystallization from CCl₄ colorless solid **17** was obtained in 55% yield; mp 121°C.¹H NMR (DMSO-*d*₆): 6.11 (d, 2H, *J*_{HF} = 15.5 Hz, NC<u>H</u>₂), 6.97(d, 1H, *J* = 1.7 Hz, C<u>H</u>), 8.17 (d, 1H, *J* = 1.7 Hz, C<u>H</u>-Pz), 9.96 (s, 1H, c, C<u>H</u>-Tz); ¹³C NMR (DMSO-*d*₆):

51.8 (d, $J_{CF} = 17.6$ Hz, C2), 119.4 (d, $J_{CF} = 293.2$ Hz, C1), 100.6 (C5), 136.4 (C4), 142.4 (C6), 144.3 (C3); ¹⁹F NMR (DMSO-*d*₆): -109.29 (t, 1F, J = 15.37 Hz); ¹⁴N NMR (DMSO-*d*₆): -22.85 (bs, <u>NO</u>₂); IR: v = 3155, 3121, 3025, 2974, 1617, 1549, 1351, 1304, 1265, 1207, 1122, 1092, 1077, 1018, 962, 888, 849, 810, 787, 729, 658, 626, 588 cm⁻¹; Anal. calcd. (%) for C₆H₅FN₈O₄ (272,16): C 26.48; H 1.85; N 41.17; found C 26.35; H 1.94; N 41.37.

1-(1-(2-Fluoro-2,2-dinitroethyl)-1H-pyrazol-4-yl)-1H-tetrazole, 18

The compound was prepared followed by **General Procedure**. After recrystallization from CCl₄ colorless solid **18** was obtained in 55% yield; mp 109-110°C.¹H NMR (DMSO-*d*₆): 6.15 (d, 2H, $J_{\rm HF} = 15.2$ Hz, NC<u>H</u>₂), 8.27(s, 1H, C<u>H</u>-Pz), 8.66(s, 1H, C<u>H</u>-Pz), 9.93 (s, 1H, C<u>H</u>-Tz); ¹³C NMR (DMSO-*d*₆): 51.8 (d, $J_{\rm CF} = 17.6$ Hz, C2), 119.5 (d, $J_{\rm CF} = 292.8$ Hz, C1), 118.8 (C4), 127.3 (C5),

135.3 (C3), 143.3 (C6); ¹⁹F NMR (DMSO- d_6): -109.67 (t, 1F, J = 15.08 Hz); ¹⁴N NMR (DMSO- d_6): -17.38 (bs, <u>NO</u>₂); ¹⁵N NMR (DMSO- d_6):): -186.6 (<u>NCH</u>₂), -149.7, -72.1, -49.2, -21.1 (C(NO₂)F), -20.6 (C(NO₂)F), -14.5, 13.6; IR: v = 3139, 3046, 3018, 2971, 1614, 1593, 1482,

1316, 1298, 1261, 1165, 1098, 1075, 971, 945, 863, 849, 803, 736, 626, 584 cm⁻¹; Anal. calcd. (%) for C₆H₅FN₈O₄ (272,16): C 26.48; H 1.85; N 41.17; found C 26.57; H 1.74; N 41.26.

3-(1-(2-Fluoro-2,2-dinitroethyl)-1H-pyrazol-3-yl)-4-methyl-1,2,5-oxadiazole, 19

 $\begin{array}{c} N = 7 \\ O \\ N = 6 \\ 4 \\ - 7$ The compound was prepared followed by General Procedure.

120.60 (d, J_{CF} = 292.97 Hz, C1), 136.3 (C5), 141.9 (C3), 148.9 (C6), 151.3 (C7); ¹⁹F NMR (DMSO- d_6): -110.11 (t, 1F, J = 15.10 Hz); ¹⁴N NMR (DMSO- d_6): -22.70 (bs, <u>NO</u>₂); ¹⁵N NMR (DMSO-d₆): -322.8 (NH₂), -183.1 (NCH₂), -74.6 (C=N-N), -20.8 (C(NO₂)F), -20.2 (C(NO₂)F), 27.7 (N-furazan ring), 28.9 (N- furazan ring); IR: v = 3159, 3138, 3022, 2983, 1619, 1542, 1507, 1429, 1415, 1395, 1364, 1348, 1333, 1312, 1298, 1243, 1215, 1114, 1074, 1040, 1013, 989, 951, 893, 852, 812, 778, 729, 682, 668, 623, 604, 589, 566, 495 cm⁻¹; Anal. calcd. (%) for C₈H₇FN₆O₅ (286,18): 33.58; H 2.47; N 29.37; found C 33.63; H 2.39; N 29.46.

1-(2-Fluoro-2,2-dinitroethyl)-4-nitro-1H-imidazole, 21

The compound was prepared followed by **General Procedure**. After recrystallization from CH_2Cl_2 colorless solid **21** was obtained in 70% yield; mp 129-130°C. ¹H NMR (DMSO-*d*₆): 5.96 (d, 2H, $J_{\rm HF} = 16.0$ Hz, NCH₂), 7.94 (s, 1H, CH), 8.38 (s, 1H, CH); ¹³C

NMR (DMSO- d_6): 47.2 (d, $J_{CF} = 18.05$ Hz, C2), 119.3 (d, $J_{CF} = 292.59$ Hz, C1), 122.1 (C5), 138.5 (C3), 147.5 (C4); ¹⁹F NMR (DMSO- d_6): -107.11 (t, 1F, J = 15.62 Hz); ¹⁴N NMR (DMSOd₆): -23.39 (bs, NO₂); ¹⁵N NMR (DMSO-d₆): -17.6 (NO₂), -21.1 (C(NO₂)F), -21.2 (C(NO₂)F), -123.0 (C-N=C), -217.3 (NCH₂); IR: v = 3144, 3018, 2961, 1613, 1550, 1521, 1493, 1384, 1348, 1290, 1248, 1216, 1140, 1076, 1042, 983, 900, 852, 826, 809, 752, 709, 670, 602, 566 cm⁻¹; Anal. calcd. (%) for C₅H₄FN₅O₆ (249,11): C 24.11; H 1.62; N 28.11; found C 24.23; H 1.71; N 28.02.

1-(2-Fluoro-2,2-dinitroethyl)-2-methyl-4-nitro-1H-imidazole, 22

After recrystallization from CH₂Cl₂ colorless solid **22** was obtained in 36% yield; mp 159°C. ¹H NMR (DMSO-*d*₆): 2.4 (s, 3H, CH₃), 5.96 (d, 2H, $J_{HF} = 16.3$ Hz NCH₂ ≈ 21 ($T_{HF} = 16.3$ Hz NCH₂ ≈ 21 ((DMSO- d_6): 12.49 (d, $J_{CF} = 2.88$ Hz, <u>C</u>H₃), 46.5 (d, $J_{CF} = 17.63$

Hz, C2), 119.5 (d, J_{CF} = 292.64 Hz, C1), 122.2 (C5), 146.1 (C3), 146.8 (C4); ¹⁹F NMR (DMSO d_6): -108.25 (t, 1F, J = 15.47 Hz); ¹⁴N NMR (DMSO- d_6): -19.12 (bs, NO₂); ¹⁵N NMR (DMSO d_6 : -219.8 (NCH₂), -126.2 (C-N=C), -21.5 (C(NO₂)F), -21.0 (C(NO₂)F), -17.3 (NO₂); IR: v = 3140, 3041, 2954, 1616, 1513, 1439, 1412, 1366, 1344, 1310, 1279, 1210, 1141, 1072, 1008, 991, 955, 907, 880, 851, 814, 765, 725, 676, 644, 594, 530 cm⁻¹; Anal. calcd. (%) for C₆H₆FN₅O₆ (263,14): C 27.39; H 2.30; N 26.61; found C 27.25; H 2.27; N 26.74.

1-(2-Fluoro-2,2-dinitroethyl)-1H-1,2,4-triazole, 23 4-(2-Fluoro-2,2-dinitroethyl)-4H-1,2,4-triazole, 23`

The mixture of compounds 23 and 23` was

23` (ratio 10/1):

¹H NMR (DMSO- d_6): 5.59 (2H, μ , J_{HF} = 15.32 Hz, NCH₂, **23**[•]), 6.10 (2H, μ , J_{HF} = 15.30 Hz, NCH₂, **23**), 8.10 (1H, c, CH, **23**), 8.60 (1H, c, CH, **23**[']), 8.70 (1H, c, CH, **23**);

After recrystallization from CH₂Cl₂ colorless solid 23 was obtained in 50% yield; mp 83°C. ¹H NMR (DMSO- d_6): 6.10 (d, 2H, J_{HF} = 15.30 Hz, NCH₂), 8.10 (s, 1H, CH), 8.70 (s, 1H, CH); ¹³C NMR (DMSO- d_6): 49.24 (d, J_{CF} = 17.93 Hz, C2), 119.6 (d, J_{CF} = 292.74 Hz, C1), 147.1 (C5), 153.5 (C3); ¹⁹F NMR (DMSO- d_6): -109.50 (t, 1F, J = 14.89 Hz); ¹⁴N NMR (DMSO- d_6): -23. 62 (bs, \underline{NO}_2); ¹⁵N NMR (DMSO- d_6): -188.27 (\underline{NCH}_2), -123.35, -84.99, -21.20 (C(\underline{NO}_2)F), -20.70 $(C(NO_2)F)$; IR: v = 3140, 3041, 2954, 2899, 1616, 1594, 1513, 1439, 1412, 1383, 1366, 1344, 1329, 1310, 1293, 1279, 1210, 1193, 1141, 1072, 1008, 991, 955, 907, 880, 851, 814, 765, 725, 676, 644, 594, 530 cm⁻¹; Anal. calcd. (%) for C₄H₄FN₅O₄ (205,11): C 23.42; H 1.97; N 34.15; found C 23.34; H 2.05; N 34.24.

1-(2-Fluoro-2,2-dinitroethyl)-3-nitro-1H-1,2,4-triazole, 24

$$O_2 N_3 N_2 C(NO_2)_2 F$$

 $N \approx 4$

The compound was prepared followed by General Procedure. After recrystallization from CH₂Cl₂ colorless solid 24 was obtained in 9% yield; mp 217°C; ¹H NMR (DMSO- d_6): 6.30 (d, 2H, J_{HF} = 15.10 Hz, NCH₂), 9.02 (s, 1H, CH); ¹³C NMR (DMSO-*d*₆): 50.27 (d, $J_{CF} = 17.82$ Hz, C2), 119.2 (d, $J_{CF} = 293.93$ Hz, C1), 150.0

(C4), 163.3 (C3); ¹⁹F NMR (DMSO- d_6): -108.41 (t, 1F, J = 14.76 Hz); ¹⁴N NMR (DMSO- d_6): -24.14 (bs, NO₂); ¹⁵N NMR (DMSO- d_6): -174.78 (NCH₂), -131.40, -86.17, -25.90 (C(NO₂) F), -22.31 (C(NO₂) F), -21.81 (NO₂); IR: v = 3135, 3015, 2970, 2361, 2343, 1608, 1595, 1562, 1510, 1425, 1384, 1466, 1313, 1291, 1216, 1080, 1029, 884, 839, 812, 765, 740, 647, 581 cm⁻¹; Anal. calcd. (%) for C₄H₃FN₆O₆ (250,10): C 19.21; H 1.21; N 33.60; found C 19.30; H 1.11; N 33.71.

1-(2-Fluoro-2,2-dinitroethyl)-3-nitro-1H-1,2,4-triazol-5-amine, 26

The compound was prepared followed by General Procedure. After recrystallization from CHCl₃/ MeCN 5/1 colorless solid 26 O_2N $3 N_2$ $C(NO_2)_2F$ was obtained in 15% yield; mp 218°C; ¹H NMR (DMSO-*d*₆): 5.89 (2H, μ , $J_{HF} = 14.80$ Hz, NCH_2), 7.56 (2H, c, NH_2); ¹³C NMR (DMSO-*d*₆): 47.4 (μ , $J_{CF} = 17.43$ Hz, C2), 118.7 (μ , $J_{CF} = 293.26$ (DMSO- d_6): 47.4 (д, $J_{CF} = 17.43$ Hz, C2), 118.7 (д, $J_{CF} = 293.26$ Hz, C1), 158.0 (C4), 160.4 (C5); ¹⁹F NMR (DMSO-*d*₆): -109.37

(1F, T, J = 14.00 Hz); ¹⁴N NMR (DMSO-*d*₆): -23. 67 (ym. c, NO₂); ¹⁵N NMR (DMSO-*d*₆): -319.05 (NH₂), -214.33, -176.33 (NCH₂), -104.37, -23.39 (NO₂), -21.32 (C(NO₂) F), -20.81 $(C(NO_2) F)$; IR: v = 3415, 3314, 3246, 3153, 1655, 1609, 1533, 1423, 1317, 1271, 1159, 1070, 1000, 867, 849, 816, 729, 709, 629 cm⁻¹; Anal. calcd. (%) for C₄H₄FN₇O₆ (265,12): C 18.12; H 1.52; N 36.98; found C 18.01; H 1.63; N 37.05.

1-(1-(2-Fluoro-2,2-dinitroethyl)-1H-1,2,4-triazol-3-yl)-1H-tetrazole, 27

The compound was prepared followed by General Procedure. $N_{N} = 5$ $N_{N} = N_{N} = 2$ After recrystallization from CHC1₃ colored. 5.14 (d, obtained in 15% yield; mp 130°C; ¹H NMR (DMSO-*d*₆): 6.24 (d, 2H, *J*_{HF} = 14.80 Hz, NCH₂), 9.01 (s, 1H, CH), 10.08 (s, 1H, CH); ¹³C NMR (DMSO-*d*₆): 49.5 (d, *J*_{CF} = 17.84 Hz, C2), 118.8 (d, 13C NMR (DMSO-*d*₆): 49.5 (d, *J*_{CF} = 17.84 Hz, C2), 118.8 (d, 14C Minimum chcick) and 14C Minimum chcicks are set of the After recrystallization from CHCl₃ colorless solid 27 was $J_{\rm CF} = 293.92$ Hz, C1), 143.1 (C3), 149.1(C5), 153.4 (C4); ¹⁹F

NMR (DMSO- d_6): -108.74 (t, 1F, J = 14.84 Hz); ¹⁴N NMR (DMSO- d_6): -24. 08 (bs, NO₂); ¹⁵N NMR (DMSO-d₆): -179.50 (NCH₂), -144.94, -130.16, -103.94, -48.54, -22.02 (C(NO₂) F), -21.51 (C(NO₂) F), -16.64, 16.28; IR: v = 3116, 3034, 1623, 1575, 1503, 1422, 1359, 1303, 1267, 1223, 1203, 1185, 1083, 1029, 980, 865, 848, 814, 771, 735, 655, 643, 611, 500 cm⁻¹; Anal. calcd. (%) for C₅H₄FN₉O₄ (273,14): C 21.99; H 1.48; N 46.15; found C 21.90; H 1.59; N 46.27.

1-(2-Fluoro-2,2-dinitroethyl)-1H-tetrazole, 28

The compound was prepared followed by General Procedure. After $N = N_{1} + N_{2} + N_{2} + N_{3} +$ Hz, C2), 118.6 (d, J_{CF} = 293.64 Hz, C1), 145.7 (C3); ¹⁹F NMR (DMSO-

 d_6): -107.93 (t, 1F, J = 14.09 Hz); ¹⁴N NMR (DMSO- d_6): -24. 23 (bs, NO₂); ¹⁵N NMR (DMSO d_6): -158.60, -47.98, -22.323 (NO₂), -21.81 (NO₂), -12.01, 17.91.; IR: v = 3151, 2989, 2956, 1604, 1479, 1432, 1324, 1296, 1268, 1177, 1103, 1065, 1020, 994, 958, 886, 850, 810, 763, 705, 686, 650, 593 cm⁻¹; Anal. calcd. (%) for C₃H₃FN₆O₄ (273,14): C 17.48; H 1.47; N 40.78; found C 17.55; H 1.42; N 40.69.

1-(2-Fluoro-2,2-dinitroethyl)-5-methyl-1H-tetrazole, 29

The compound was prepared followed by General Procedure. After $N = N_{A_{a}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$ = 17.63 Hz, C2), 118.8 (d J_{CF} = 292.64 Hz, C1), 154.5 (<u>C</u>3);. ¹⁹F NMR

 $(DMSO-d_6)$: -109.87 (t, 1F, J = 14.53 Hz); ¹⁵N NMR $(DMSO-d_6)$: -272.20, -51.08, -22.33 (NO_2) , -21.85 (NO_2) , 15.74; IR: v = 3014, 2978, 2940, 1602, 1529, 1422, 1371, 1315, 1293, 1253,1143, 1060, 1006, 898, 850, 814, 744, 670, 571, 499 cm⁻¹; Anal. calcd. (%) for C₄H₅FN₆O₄ (220,12): C 21.83; H 2.29; N 38.18; found C 21.85; H 2.21 N 38.08.

X-ray analysis of the involved materials.

X-ray experiments for compounds **12,13,21,28** were carried out using SMART APEX2 CCD diffractometer (λ (Mo-K α)=0.71073 Å, graphite monochromator, ω -scans) at 100K. Collected data were processed by the SAINT and SADABS programs incorporated into the APEX2 program package.^[1S] The structures were solved by the direct methods and refined by the full-matrix least-squares procedure against F^2 in anisotropic approximation. The refinement was carried out with the SHELXTL program.^[2S] The details of data collection and crystal structures refinement are summarized in Table 1S along with CCDC numbers which contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

	12	13	21	28
formula	C ₅ H ₄ N ₅ FO ₆	C ₅ H ₄ N ₅ FO ₆	C ₅ H ₄ N ₅ FO ₆	C ₅ H ₄ N ₅ FO ₆
fw	249.13	249.13	249.13	206.11
crystal system	Triclinic	Monoclinic	Orthorhombic	Orthorhombic
space group	<i>P</i> -1	$P2_1$	Pbca	$Pna2_1$
a, Å	7.976(3)	5.4659(12)	6.6055(3)	11.4331(11)
b, Å	8.218(3)	10.477(2)	11.5186(5)	5.7212(6)
<i>c</i> , Å	15.344(6)	8.1322(17)	23.4809(10)	11.2434(11)
α , deg.	94.059(8)	90	90	90
β , deg.	104.850(7)	94.857(4)	90	90
γ, deg.	97.364(8)	90	90	90
<i>V</i> , Å ³	958.5(6)	464.02(17)	1786.57(14)	735.44(13)
Z	4	4	8	4
	1.727	1.783	1.852	1.862
$d_{cryst}, g \cdot cm^{-3}$	504	252	1008	416
F(000)	0.169	0.174	0.181	0.182
μ , mm ⁻¹	2.5 - 28.0	2.5 - 27.15	3.5 - 30.08	3.6 - 28.9
θ range, deg.	14158	4928	22344	7221
reflections collected	4628 / 0.0587	2039 / 0.0603	2621 / 0.0166	1930 / 0.0335
independent reflections/ R_{int}	100	100	99.9	99.9
Completeness to theta θ ,%	307	154	154	127
refined parameters	1.009	0.987	1.039	1.045
$GOF(F^2)$	2968	1475	2288	1773
reflections with $I > 2\sigma(I)$	0.0448	0.0431	0.0317	0.0289
$R_1(F) (I \ge 2\sigma(I))^a$	0.1034	0.0781	0.0878	0.0648
$wR_2(F^2)$ (all data) ^b	0.279 / -0.312	0.218 / -0.223	0.393 / -0.257	0.202 / -0.241
Max diff. peak/hole, e·Å ⁻³	1874345	1874346	1874347	1874348
CCDC number				
$2D \sum \Gamma \nabla(\Gamma) $				1

Table 1S.	Crystallographic	data for azasydnone	derivatives	12,13,21,28.
		2		, , ,

^a $R_1 = \sum |F_o - |F_c|| / \sum (F_o);$ ^b $wR_2 = (\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]^{\frac{1}{2}}$

Figure 1S. General view of compounds **12**, **13**, **21**, and **28** with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level

Table 2S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A of compound **12** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry Code	Atom	ic pair	Distance	Type of interaction	Molecular pair	
1	-1+x,y,z	No	close contcts van der Waals		AA		
2	1+x,y,z	No	close c	contcts	van der Waals	AA	
2	2 2 1	F1	04	2.858	E O	AA	
5	2-x,1-y,-Z	04	F1	2.858	ГО		
		05	C4	3.315			
		05	H4B	2.531			
1) x) x 7	C4	05	3.315	С-НО		
4	2-x,2-y,-Z	H4B	05	2.531	C-HN	AA	
		N2	H4B	2.511			
		H4B	N2	2.511			
5	1	02	C4'	3.184		AA'	
5	1+x,y,z	02	H4'A	2.398	С-пО		
6	1+x,1+y,z	01	F1'	2.939	FO	AA'	
7	-x,1-y,-z	No	close c	contcts	van der Waals	AA'	
0	1 . 1	05	C4'	3.140		A A 1	
0	1-X,1-Y,-Z	05	H4'A	2.347	С-пО	AA	
		N3	05'	2.914			
9 1-2	1-x,1-y,1-z	C4	05'	3.089	$O_2 \dots O_2$	AA'	
		H4A	05'	2.361	С-пО		
		02	06'	2.997			
10	0 1 1	02	C2'	3.305	NO_2NO_2	A A 1	
10	2-x,1-y,1-Z	02	H2'	2.524	С-НО	AA	
		N3	O6'	3.024			

Table 3S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A' of compound **12** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry Code	Atom	ic pair	Distance	Type of interaction	Molecular pair
11	1	O3'	C3'	3.146		
1	-1+x,y,z	O3'	H3'	2.483	С-нО	AA
21	1	C3'	O3'	3.146		
2	1+x,y,Z	H3'	03'	2.483	С-нО	AA
21		F1'	04'	2.910	ЕО	
3	-x,-y,1-z	O4'	F1'	2.910	FO	AA
		01'	05'	2.891		
11	v 1 v 1 a	O5'	01'	2.891	NO_2NO_2	<u> </u>
4	-X,1-Y,1-Z	N2'	H4'B	2.438	C-HN	AA
		H4'B	N2'	2.438		
51 1	1+v v z	C4'	02	3.184	СНО	
5	-1+x,y,z	H4'A	02	2.398	С-пО	AA
6'	-1+x,-1+y,z	F1'	01	2.939	FO	A'A
7'	-x,1-y,-z	No	close	contacts	van-der-Waals	A'A
01	1 x 1 x 7	C4'	05	3.140		
0	1 - X,1 - Y,-Z	H4'A	05	2.347	С-пО	AA
		O5'	N3	2.914		
9'	1-x,1-y,1-z	O5'	C4	3.089	C H O	A'A
		05'	H4A	2.361	С-пО	
		O6'	02	2.997		
1.01	2 1 1	O6'	N3	3.024	NO_2NO_2	
10	2-x,1-y,1-Z	C2'	02	3.305	С-НО	AA
		H2'	02	2.524		

Table 4S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule of compound **13** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry Code	Atom	ic pair	Distance	Type of interaction
		01	N4	2.973	
1	-1+x,y,z	C1	05	3.170	$O_2 \dots O_2$
		H1	05	2.464	С-пО
		05	C1	3.170	
2	1+x,y,z	05	H1	2.464	$O_2 \dots O_2$
		N4	01	2.973	С-пО
3	x,y,-1+z	No	close co	ontacts	van-der-Waals
4	x,y,1+z	No	close co	ontacts	van-der-Waals
		06	N2	3.100	N NO
5	-1-x,-1/2+y,-3-z	06	C4	3.268	$\Gamma_1 = \Gamma_2$
		06	H4A	2.508	С-пО
		N2	06	3.100	N NO
6	-1-x,1/2+y,-3-z	C4	06	3.268	Γ_{1}
		H4A	06	2.508	С-пО
7	-1-x,-1/2+y,-2-z	No	close co	ontacts	van-der-Waals
8	-1-x,1/2+y,-2-z	No	close co	ontacts	van-der-Waals
0	-x,-1/2+y,-3-z	05	C4	3.129	СНО
9		05	H4B	2.576	С-пО
10 1/2 2	x 1/2±x 2 z	C4	05	3.129	СЧО
10	-x,1/2+y,-3-Z	H4B	05	2.576	С-пО
11	-x,-1/2+y,-2-z	F1	03	2.806	FO
12	-x,1/2+y,-2-z	03	F1	2.806	FO

Table 5S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule of compound **21** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Symmetry Code	Atomic pair Distance		Distance	Type of interaction
1	-1+x,y,z	No close contacts		ontacts	van-der-Waals
2	1+x,y,z	No	close c	ontacts	van-der-Waals
2	$x = 1/2 \pm x = 1/2$	C4	05	3.300	СНО
5	-x,-1/2+y,1/2-Z	H4B	05	2.321	С-пО
4	y 1/2⊥y 1/2 z	05	C4	3.300	СНО
4	-x, 1/2 + y, 1/2 - 2	05	H4B	2.321	С-пО
5	-1/2+x,1/2-y,-z	F1	02	2.838	FO
6	1/2+x,1/2-y,-z	02	F1	2.838	FO
7	-x,-y,-z	04	04	3.029	NO ₂ NO ₂
8	1-x,-y,-z	02	04	3.072	NO ₂ NO ₂
		06	05	3.000	
9	-1/2+x,y,1/2-z	N5	05	3.022	Οπ
		C2	05	3.251	
		05	06	3.000	
10	1/2+x,y,1/2-z	05	N5	3.022	Οπ
		05	C2	3.251	
11	$1/2 \times 1/2 \pm \sqrt{2}$	C4	N2	3.168	СИМ
	-1/2-x,-1/2+y,z	H4A	N2	2.461	C-11N
12	$1/2 \times 1/2 \pm 1/2$	N2	C4	3.168	СИМ
	-1/2-x, 1/2+y, Z	N2	H4A	2.461	C-11N
13	1/2-x,-1/2+y,z	01	06	2.876	NO ₂ NO ₂
14	1/2-x,1/2+y,z	06	01	2.876	NO ₂ NO ₂

Comments

It is seen that predominant contribution into intermolecular bonding for all three compounds is provided by C-H...O(N) and van-der-Waals interactions. In addition, short F...O and $NO_2...NO_2$ contacts are also observed. Each molecule in the crystal of all three compounds forms nearly the same numbers of intermolecular interactions. However in compound **13** and especially in compound **12** some of the closest neighbours are connected simultaneously by two different types of interactions. As a result, number of closest neighbours of a molecule in the crystals of **12** and **13** are equal to 10 and 12 respectively. In contrary, in compound **21**, intermolecular contacts are distributed over 14 neighbours thereby inducing less constrain for optimal packing.

Table 6S. Tightness of crystal packing as defined by Kitaigorodsky packing coefficient and Δ_{OED} criterion for compounds 12, 13, 21

Crystal packing tightness	compound 12	compound 13	compound 21
Kitaigorodsky packing coefficient	0.703	0.728	0.756
Δ_{OED} criterion	0.151	0.202	0.271

References

- 1S. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2009.
- 2S. G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122.

S25

S29

S51

