Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

A new method for α -specific glucosylation and its application to one-pot synthesis of a branched α -glucan

Yanxin Zhang,^a Shihao Zhou,^a Xiaohan Wang,^a Han Zhang,^a Zhongwu Guo*^{ab} and Jian Gao*^a

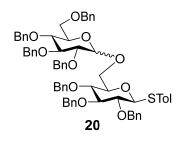
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, China
- b. Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United State
- * Corresponding author. E-mail: zguo@chem.ufl.edu; E-mail: jgao@sdu.edu.cn

Table of Contents

I. Experimental procedures	S2-24
II. NMR spectra of synthetic intermediates and final products	325-75

I. Experimental procedures

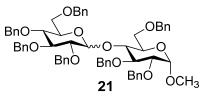
General methods: Chemical and materials were purchased from commercial sources and were used as received without further purification unless otherwise noted. Molecular sieve 4Å was flame-dried under high vacuum and cooled under an Argon atmosphere immediately before use. Analytical TLC was carried out on Silica Gel 60Å F254 plates with detection by a UV detector and/or by charring with 15% H_2SO_4 in EtOH (w/v). Mass spectrometry (MS) was performed on a high resolution ESI-TOF MS machine. NMR spectra were recorded on a 500 or 600 MHz machine with chemical shifts reported in ppm (δ) downfield from internal tetramethylsilane (TMS) reference. Signals are described as s (singlet), d (doublet), t (triplet), or m (multiplet), and the coupling constants are reported in Hz.


General procedures for preactivation-based glucosylation: A mixture of donor (0.10 mmol, 1.0 equiv) and freshly activated MS 4Å in anhydrous Et_2O (5 mL) was stirred at room temperature under Argon atmosphere for 1.0 h and then cooled to -78 °C. A solution of AgOTf (25.7 mg, 0.10 mmol, 1.0 equiv) in Et_2O (0.2 mL) was added to the reaction mixture. After stirring for fifteen minutes, p-ToISCI (14.5 μ L, 0.10 mmol, 1.0 equiv) was added to the reaction mixture through a microsyringe without touching the flask. Fifteen minutes later, a solution of acceptor (0.09 mmol, 0.9 equiv) in Et_2O (0.5 mL), which was precooled to -78 °C, was added to the reaction mixture dropwise. The reaction solution was allowed to warm up to room temperature slowly in 1.5 h and stirred for another 15 min. The reaction mixture was then quenched with Et_3N , diluted with Et_3Cl_2 (50 mL), and filtered. The filtrate was concentrated under vacuum, and the residue purified by silica gel column chromatography to give product.

p-Tolyl 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzyl-1-thio-β-D-glucopyranoside (19)

Donor **1** reacted with acceptor **5** by the general procedure for glycosylation to give product **19** (86 mg, 89% yield) as syrup after column purification (hexanes/ethyl acetate, 14:1): $\alpha/\beta = 4:1$ as determined by integrations of H-1' and SPhC H_3 signals with the stereochemistry determine by $J_{\rm H1',H2'}$ coupling constant. α -**19**: ¹H

NMR (600 MHz, CDCl₃) δ : 7.56 – 7.00 (m, 39H, Ph), 5.64 (d, J = 3.6 Hz, 1H, H-1'), 4.93 – 4.67 (m, 6H, Bn), 4.62 (d, J = 10.2 Hz, 1H, H-1), 4.60 – 4.43 (m, 7H, Bn), 4.31 (d, J = 12.0 Hz, 1H, Bn), 4.09 (t, J = 9.0 Hz, 1H, H-4), 3.95 – 3.83 (m, 2H, H-3', H-6a), 3.82 – 3.72 (m, 3H, H-3, H-5', H-6b), 3.68 – 3.62 (m, 1H, H-4'), 3.60 – 3.48 (m, 4H, H-2, H-2', H-5, H-6a'), 3.44 – 3.31 (m, 1H, H-6b'), 2.32 (s, 3H, PhCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 97.05 (C-1'), 87.34 (C-1), 86.78, 82.02, 80.86, 79.28, 78.70, 77.68, 72.52, 71.00, 69.10, 68.15, 21.15 (PhCH₃). HR ESI-TOF MS (m/z): calcd for C₆₈H₇₄NO₁₀S [M + NH₄]⁺, 1096.5033; found, 1096.5024.


p-Tolyl 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzyl-1-thio-β-D-glucopyranoside (20)

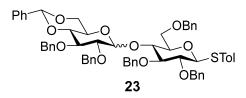
Donor **1** reacted with acceptor **6** by the general procedure for glycosylation to give product **20** (83 mg, 86% yield) as a syrup after column purification (hexanes/ethyl acetate, 14:1): $\alpha/\beta = 5:1$ as determined by integrations of H-1' and SPhC H_3 signals with the stereochemistry determine by $J_{\text{H1',H2'}}$ coupling constant. α -**20** (G. Wasonga, Y. Zeng, X. Huang, *Sci. China Chem.* **2011**, *54*, 66-73): ¹H NMR (600 MHz, CDCl₃) δ : 7.49 – 7.00

(m, 39H, Ph), 5.04 (d, J = 3.6 Hz, 1H, H-1'), 5.01 – 4.71 (m, 8H, Bn), 4.69 – 4.41 (m, 7H, Bn, H-1), 4.00 (t, J = 9.6 Hz, 1H, H-3'), 3.90 – 3.87 (m, 1H, H-5'), 3.85 (dd, J = 12.0, 4.8 Hz, 1H, H-6a), 3.78 (d, J = 12.0 Hz, 1H, H-6b), 3.74 – 3.59 (m, 6H, H-3, H-2', H-4, H-4', H-6a', H-6b'), 3.51 – 3.46 (m, 1H, H-5), 3.26 (t, J = 9.0 Hz, 1H, H-2), 2.22 (s, 3H, PhCH₃). HR ESI-TOF MS (m/z): calcd for C₆₈H₇₄NO₁₀S [M + NH₄]⁺, 1096.5033; found, 1096.5046.

Methyl 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- α -D-glucopyranoside (21)

Donor **1** reacted with acceptor **7** by the general procedure for glycosylation to give product **21** (83 mg, 93% yield) as a syrup after column purification (hexanes/ethyl acetate, 13:1): α/β = 3:1 as determined by integrations of H-1' and OC H_3 signals with the

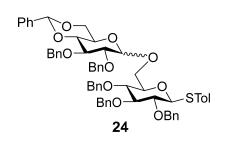
stereochemistry determine by $J_{\text{H1',H2'}}$ coupling constant. α -**21**: ¹H NMR (600 MHz, CDCl₃) δ : 7.50 – 7.05 (m, 35H, Ph), 5.73 (d, J = 3.6 Hz, 1H, H-1'), 5.07 (d, J = 11.4 Hz, 1H, Bn), 4.94 – 4.76 (m, 4H, Bn), 4.73 (d, J = 12.0 Hz, 1H, Bn), 4.67 – 4.50 (m, 6H, Bn, H-1), 4.48 – 4.38 (m, 2H, Bn), 4.30 (d, J = 12.0 Hz, 1H, Bn), 4.14 – 4.05 (m, 2H, H-3, H-4), 3.94 (t, J = 9.6 Hz, 1H, H-3'), 3.90 – 3.82 (m, 2H, H-5, H-6a), 3.76 – 3.60 (m, 4H, H-2, H-4', H-5', H-6b), 3.58 – 3.48 (m, 2H, H-2', H-6a'), 3.43 – 3.41 (m, 1H, H-6b'), 3.40 (s, 3H, OCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 97.78 (C-1), 96.65 (C-1'), 82.07, 82.05, 80.21, 79.46, 77.64, 72.27, 70.97, 69.53, 69.02, 68.15, 55.17 (OCH₃). HR ESI-TOF MS (m/z): calcd for C₆₂H₇₀NO₁₁ [M + NH₄]⁺, 1004.4949; found, 1004.4943.


Methyl 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzyl- α -D-glucopyranoside (22)

Donor **1** reacted with acceptor **8** by the general procedure for glycosylation to give product **22** (80 mg, 90% yield) as a syrup after column purification (hexanes/ethyl acetate, 13:1): $\alpha/\beta = 2:1$ as determined by integrations of H-1' and OC H_3 signals with the stereochemistry determined by $J_{\text{H1',H2'}}$ coupling constant. α -**22** (G. Wasonga, Y. Zeng, X. Huang, *Sci. China Chem.* **2011**, *54*, 66-73.): ¹H NMR (600 MHz, CDCl₃) δ : 7.37 – 7.10 (m, 35H, Ph), 4.98 (d, J =

 $3.6~\rm{Hz},~1H,~H-1'),~4.98-4.90~(m,~3H,~Bn),~4.84-4.79~(m,~2H,~Bn),~4.77~(d,~\textit{J}=12.0~\rm{Hz},~1H,~Bn)~,~4.71~(d,~\textit{J}=12.0~\rm{Hz},~2H,~Bn$

(d, J = 12.0 Hz, 1H, Bn), 4.68 – 4.63 (m, 3H, Bn), 4.61 – 4.55 (m, 2H, Bn), 4.55 (d, J = 3.6 Hz, 1H, H-1), 4.45 (d, J = 10.8 Hz, 1H, Bn), 4.42 (d, J = 12.0 Hz, 1H, Bn), 4.01 – 3.94 (m, 2H, H-3, H-3'), 3.83 – 3.75 (m, 3H, H-5, H-5', H-6a'), 3.74 – 3.70 (m, 1H, H-6a), 3.69 – 3.61 (m, 3H, H-4, H-4', H-6b'), 3.57 – 3.55 (m, 1H, H-6b), 3.54 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 3.44 (dd, J = 9.6, 3.6 Hz, 1H, H-2), 3.35 (s, 3H, OCH₃). HR ESI-TOF MS (m/z): calcd for C₆₂H₇₀NO₁₁ [M + NH₄]⁺, 1004.4949; found, 1004.4947.

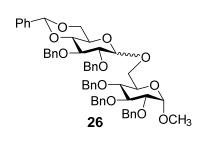

p-Tolyl 4,6-*O*-benzylidene-2,3-di-*O*-benzyl-D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl-1-thio- β -D-glucopyranoside (23)

Donor **2** reacted with acceptor **5** by the general procedure for glycosylation to give product **23** (81 mg, 91% yield) as a syrup after column purification (hexanes/ethyl acetate, 15:1): $\alpha/\beta = 4:1$ as determined by integrations of H-1' and SPhC H_3 signals with

the stereochemistry determine by $J_{\text{H1',H2'}}$ coupling constant. α -**23**: ¹H NMR (600 MHz, CDCl₃) δ : 7.80 – 6.95 (m, 34H, Ph), 5.67 (d, J = 3.6 Hz, 1H, H-1'), 5.53 (s, 1H, PhCH), 4.92 – 4.78 (m, 4H, Bn), 4.74 – 4.66 (m, 3H, Bn), 4.62 – 4.50 (m, 4H, Bn, H-1), 4.16 – 4.10 (m, 2H, H-4, H-6a'), 3.99 (t, J = 9.6 Hz, 1H, H-3'), 3.91 – 3.78 (m, 4H, H-3, H-5, H-6a,6b), 3.64 – 3.55 (m, 3H, H-4', H-5', H-6b'), 3.54 – 3.47 (m, 2H, H-2, H-2'), 2.32 (s, 3H, PhCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 101.11 (PhCH), 97.49 (C-1'), 87.28 (C-1), 86.91, 82.30, 80.84, 78.75, 78.61, 78.37, 71.62, 68.89, 65.57, 63.30, 21.14 (PhCH₃). HR ESI-TOF MS (m/z): calcd for C₆₁H₆₆NO₁₀S [M + NH₄]⁺, 1004.4407; found, 1004.4415.

p-Tolyl 4,6-*O*-benzylidene-2,3-di-*O*-benzyl-D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl-1-thio- β -D-glucopyranoside (24)

Donor **2** reacted with acceptor **6** by the general procedure for glycosylation to give product **24** (78 mg, 88% yield) as a syrup after column purification (hexanes/ethyl acetate, 15:1): α/β = 5:1 as determined by integrations of H-1' and SPhC H_3 signals with the stereochemistry determine by $J_{\text{H1',H2'}}$ coupling constant. α -**24**: ¹H NMR (600 MHz, CDCl₃) δ : 7.71 – 6.89 (m, 34H, Ph), 5.58 (s, 1H, PhCH),


5.05 (d, J = 3.6 Hz, 1H, H-1'), 4.95 – 4.74 (m, 8H, Bn), 4.70 – 4.56 (m, 3H, Bn, H-1), 4.30 (dd, J = 10.2, 4.8 Hz, 1H, H-6a'), 4.04 (t, J = 9.6 Hz, 1H, H-3'), 3.98 – 3.91 (m, 1H, H-5'), 3.87 (dd, J = 12.0, 4.2 Hz, 1H, H-6a), 3.80 (dd, J = 12.0, 1.8 Hz, 1H, H-6b), 3.76 – 3.62 (m, 4H, H-3, H-4', H-5, H-6b'), 3.61 – 3.57 (m, 1H, H-2'), 3.53 – 3.44 (m, 1H, H-4), 3.26 (t, J = 9.6 Hz, 1H, H-2), 2.23 (s, 3H, PhCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 101.36 (PhCH), 98.26 (C-1'), 88.39 (C-1), 86.65, 82.18, 81.12, 79.56, 78.83, 78.03, 77.40, 69.14, 66.20, 62.61, 21.06 (PhCH₃). HR ESI-TOF MS (m/z): calcd for C₆₁H₆₆NO₁₀S [M + NH₄]⁺, 1004.4407; found, 1004.4419.

Methyl 4,6-*O*-benzylidene-2,3-di-*O*-benzyl-D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzyl- α -D-glucopyranoside (25)

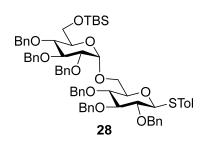
Donor **2** reacted with acceptor **7** by the general procedure for glycosylation to give product **25** (74 mg, 92% yield) as a syrup after column purification (hexanes/ethyl acetate, 15:1): α/β = 3:1 as determined by integrations of H-1' and OC H_3 signals with the stereochemistry determined by $J_{\text{H1'},\text{H2'}}$ coupling constant. α -**25**: ¹H

NMR (600 MHz, CDCl₃) δ : 7.68 – 7.06 (m, 30H, Ph), 5.78 (d, J = 3.6 Hz, 1H, H-1'), 5.56 (s, 1H, PhCH), 5.07 (d, J = 12.0 Hz, 1H, Bn), 4.93 (d, J = 11.4 Hz, 1H, Bn), 4.85 – 4.76 (m, 2H, Bn), 4.74 – 4.67 (m, 3H, Bn), 4.65 (d, J = 3.6 Hz, 1H, H-1), 4.63 – 4.55 (m, 3H, Bn), 4.24 – 4.10 (m, 3H, H-3, H-4, H-6a'), 4.02 (t, J = 9.6 Hz, 1H, H-3'), 3.94 – 3.83 (m, 3H, H-5, H-5', H-6a), 3.73 – 3.67 (m, 1H, H-6b), 3.66 – 3.61 (m, 3H, H-2, H-4', H-6b'), 3.57 – 3.51 (m, 1H, H-2'), 3.41 (s, 3H, OCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 101.12 (PhCH), 97.74 (C-1), 97.19 (C-1'), 82.31, 82.13, 80.26, 78.86, 78.76, 71.61, 69.34, 68.94, 68.79, 63.29, 55.20 (OCH₃). HR ESI-TOF MS (m/z): calcd for C₅₅H₆₂NO₁₁ [M + NH₄]+, 912.4323; found, 912.4343.

Methyl 4,6-*O*-benzylidene-2,3-di-*O*-benzyl-D-glucopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-*O*-benzyl- α -D-glucopyranoside (26)

Donor **2** reacted with acceptor **8** by the general procedure for glycosylation to give product **26** (72 mg, 90% yield) as a syrup after column purification (hexanes/ethyl acetate, 15:1): α/β = 6:1 as determined by integrations of H-1' and OC H_3 signals with the stereochemistry determined by $J_{H1',H2'}$ coupling constant. α -**26**: ¹H NMR (600 MHz, CDCl₃) δ : 7.50 – 7.15 (m, 30H, Ph), 5.53 (s, 1H, PhCH), 4.97 (d, J = 10.8 Hz, 1H,

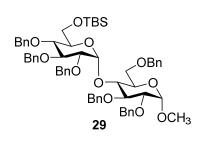
Bn), 4.92 (d, J = 3.6 Hz, 1H, H-1'), 4.91 - 4.86 (m, 2H, Bn), 4.83 - 4.79 (m, 2H, Bn), 4.75 - 4.65 (m, 3H, Bn), 4.63 (d, J = 10.8 Hz, 1H, Bn), 4.59 - 4.55 (m, 2H, H-1, Bn), 4.20 (dd, J = 10.2, 4.8 Hz, 1H, H-6a'), 4.02 - 3.96 (m, 2H, H-3, H-3'), 3.91 - 3.86 (m, 1H, H-5'), 3.81 - 3.66 (m, 4H, H-5, H-6a, H-6b, H-6b'), 3.64 - 3.56 (m, 2H, H-4, H-4'), 3.53 (dd, J = 9.6, 3.6 Hz, 1H, H-2), 3.43 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 3.34 (s, 3H, OC $_{3}$). ¹³C NMR (150 MHz, CDCl₃) δ : 101.27 (PhCH), 98.18 (C-1'), 97.96 (C-1), 82.15, 82.08, 80.03, 79.28, 77.90, 77.70, 70.33, 69.07, 66.32, 62.51, 55.19 (OCH₃). HR ESI-TOF MS ($_{2}$): calcd for $C_{55}H_{62}NO_{11}$ [M + NH₄]⁺, 912.4323; found, 912.4340.


p-Tolyl 2,3,4-tri-O-benzyl-6-O-tert-butyldimethylsilyl-α-D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzyl-1-thio-β-D-glucopyranoside (27)

Donor **3** reacted with acceptor **5** by the general procedure for glycosylation to give product **27** (88 mg, 89% yield) as a syrup after column purification (hexanes/ethyl acetate, 14:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.54 – 7.50 (m, 2H, Ph), 7.41 – 7.00 (m, 32H, Ph), 5.56 (d, J = 3.6 Hz, 1H, H-1'), 4.91 – 4.84 (m, 5H, Bn), 4.80 (d, J = 10.8 Hz,

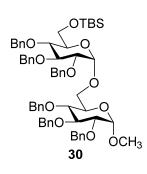
1H, Bn), 4.68 (d, J = 10.8 Hz, 1H, Bn), 4.64 (d, J = 9.6 Hz, 1H, H-1), 4.62 - 4.56 (m, 4H, Bn), 4.52 (d, J = 10.8 Hz, 1H, Bn), 4.68 (e, J = 10.8 Hz, 1H, H-1), 4.62 - 4.56 (m, 4H, Bn), 4.52 (d, J = 10.8 Hz, 1H, H-1), 4.62 - 4.56 (m, 4H, H-1), 4.62 - 4.56

= 12.0 Hz, 1H, Bn), 4.10 (t, J = 9.0 Hz, 1H, H-4), 3.98 – 3.89 (m, 2H, H-3', H-6a), 3.87 – 3.78 (m, 2H, H-3, H-6b), 3.72 (dd, J = 11.4, 3.0 Hz, 1H, H-6a'), 3.70 – 3.61 (m, 3H, H-4', H-5', H-6b'), 3.61 – 3.54 (m, 2H, H-2, H-5), 3.42 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 2.33 (s, 3H, PhCH₃), 0.89 (s, 9H, tBu), 0.03 (s, 3H, SiCH₃), 0.02 (s, 3H, SiCH₃). 13 C NMR (150 MHz, CDCl₃) δ : 138.71, 138.69, 138.67, 138.50, 138.00, 137.96, 137.69, 132.74, 129.68, 129.61, 128.38, 128.36, 128.29, 128.26, 127.98, 127.86, 127.69, 127.65, 127.58, 127.55, 127.38, 127.35, 127.17, 126.54, 96.57 (C-1'), 87.36 (C-1), 86.84, 81.86, 80.77, 79.85, 78.71, 77.56, 77.25, 77.04, 76.83, 75.67, 75.19, 75.02, 74.19, 73.35, 73.17, 72.44, 72.28, 69.21, 61.86, 25.98, 21.16, 18.35, -5.05, -5.34. HR ESI-TOF MS (m/z): calcd for C₆₇H₈₂NO₁₀SSi [M + NH₄]⁺, 1120.5429; found, 1120.5447.


p-Tolyl 2,3,4-tri-*O*-benzyl-6-*O*-tert-butyldimethylsilyl-α-D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl-1-thio-β-D-glucopyranoside (28)

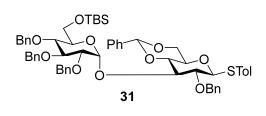
Donor **3** reacted with acceptor **6** by the general procedure for glycosylation to give product **28** (86 mg, 87% yield) as a syrup after column purification (hexanes/ethyl acetate, 14:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.48 (d, J = 8.4 Hz, 2H, Ph), 7.43 – 7.22 (m, 30H, Ph), 7.09 (d, J = 7.8 Hz, 2H, Ph), 5.05 (d, J = 3.6 Hz, 1H, H-1'), 4.97 (d, J =

10.8 Hz, 1H, Bn), 4.92 (d, J = 11.4 Hz, 1H, Bn), 4.90 – 4.86 (m, 2H, Bn), 4.85 – 4.80 (m, 3H, Bn), 4.78 (d, J = 12.0 Hz, 1H, Bn), 4.74 – 4.67 (m, 3H, Bn), 4.63 (d, J = 10.2 Hz, 1H, Bn), 4.56 (d, J = 9.6 Hz, 1H, H-1), 4.01 (t, J = 9.6 Hz, 1H, H-3'), 3.87 – 3.82 (m, 2H, H-6a, H-6a'), 3.81 – 3.77 (m, 2H, H-6b, H-6b'), 3.77 – 3.73 (m, 1H, H-5'), 3.71 (t, J = 9.6 Hz, 1H, H-4), 3.68 – 3.60 (m, 2H, H-3, H-4'), 3.54 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 3.49 – 3.45 (m, 1H, H-5), 3.26 (t, J = 9.6 Hz, 1H, H-2), 2.23 (s, 3H, PhCH₃), 0.91 (s, 9H, tBu), 0.08 (s, 3H, SiCH₃), 0.07 (s, 3H, SiCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 138.81, 138.72, 138.56, 138.51, 138.19, 138.07, 137.91, 133.27, 129.76, 129.67, 128.44, 128.43, 128.41, 128.38, 128.37, 128.32, 128.26, 128.14, 127.90, 127.84, 127.76, 127.72, 127.68, 127.59, 127.55, 127.52, 127.48, 97.03 (C-1'), 88.17 (C-1), 86.65, 81.73, 81.08, 80.57, 78.96, 77.58, 77.54, 75.78, 75.63, 75.46, 74.99, 74.95, 72.41, 71.65, 65.74, 62.17, 25.98, 21.08, 18.35, -5.05, -5.32. HR ESI-TOF MS (m/z): calcd for C₆₇H₈₂NO₁₀SSi [M + NH₄]*, 1120.5429; found, 1120.5442.


Methyl 2,3,4-tri-*O*-benzyl-6-*O*-tert-butyldimethylsilyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- α -D-glucopyranoside (29)

Donor **3** reacted with acceptor **7** by the general procedure for glycosylation to give product **29** (86 mg, 94% yield) as a syrup after column purification (hexanes/ethyl acetate, 14:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.52 – 6.97 (m, 30H, Ph), 5.61 (d, J = 3.6 Hz, 1H, H-1'), 5.03 (d, J = 11.4 Hz, 1H, Bn), 4.89 – 4.83 (m, 2H, Bn), 4.83 – 4.76 (m, 2H, Bn), 4.71 (d, J

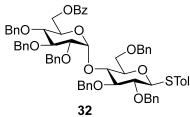
= 12.0 Hz, 1H, Bn), 4.65 (d, J = 10.8 Hz, 1H, Bn), 4.62 (d, J = 3.6 Hz, 1H, H-1), 4.60 – 4.50 (m, 5H, Bn), 4.08 – 4.05 (m, 2H, H-3, H-4), 3.92 (t, J = 8.4 Hz, 1H, H-3'), 3.88 – 3.83 (m, 2H, H-5', H-6a), 3.69 – 3.57 (m, 6H, H-2', H-4', H-5, H-6b, H-6a',6b'), 3.40 (dd, J = 10.2, 3.6 Hz, 1H, H-2), 3.38 (s, 3H, OCH₃), 0.86 (s, 9H, tBu), -0.01 (s, 6H, SiCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 139.07, 138.78, 138.74, 138.12, 138.03, 138.00, 128.41, 128.34, 128.32, 128.29, 128.22, 128.18, 128.00, 127.90, 127.80, 127.77, 127.58, 127.55, 127.36, 127.23, 127.03, 126.68, 97.74 (C-1), 96.04 (C-1'), 82.07, 81.88, 80.14, 79.95, 77.50, 75.69, 74.97, 74.19, 73.34, 73.16, 73.11, 72.17, 71.98, 69.42, 69.05, 61.84, 55.12, 25.95, 18.31, -5.07, -5.38. HR ESI-TOF MS (m/z): calcd for C₆₁H₇₈NO₁₁Si [M + NH₄]⁺, 1028.5344; found, 1028.5355.


Methyl 2,3,4-tri-O-benzyl-6-O-tert-butyldimethylsilyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzyl- α -D-glucopyranoside (30)

Donor **3** reacted with acceptor **8** by the general procedure for glycosylation to give product **30** (83 mg, 91% yield) as a syrup after column purification (hexanes/ethyl acetate, 14:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.69 – 7.00 (m, 30H, Ph), 5.00 (d, J = 10.2 Hz, 1H, Bn), 4.99 (d, J = 4.2 Hz, 1H, H-1'), 4.98 – 4.89 (m, 3H, Bn), 4.85 (d, J = 10.8 Hz, 1H, Bn), 4.81 (d, J = 10.2 Hz, 1H, Bn), 4.77 – 4.64 (m, 5H, Bn), 4.59 (d, J = 12.0 Hz, 1H, Bn), 4.58 (d, J = 3.6 Hz, 1H, H-1), 4.05 – 3.97 (m,

2H, H-3, H-3'), 3.85 (dd, J = 12.0, 4.8 Hz, 1H, H-6a), 3.83 – 3.72 (m, 4H, H-5', H-6b, H-6a',6b'), 3.72 – 3.67 (m, 2H, H-4', H-5), 3.58 (t, J = 9.6 Hz, 1H, H-4), 3.52 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 3.46 (dd, J = 9.6, 3.6 Hz, 1H, H-2), 3.38 (s, 3H, OC H_3), 0.90 (s, 9H, tBu), 0.05 (s, 3H, SiC H_3), 0.04 (s, 3H, SiC H_3). ¹³C NMR (150 MHz, CDCl₃) δ : 138.85, 138.79, 138.73, 138.58, 138.43, 138.21, 128.43, 128.39, 128.37, 128.35, 128.17, 128.03, 128.00, 127.85, 127.81, 127.69, 127.65, 127.57, 127.56, 127.53, 97.97 (C-1), 97.04 (C-1'), 82.15, 81.71, 80.40, 80.14, 77.80, 77.62, 75.74, 75.63, 75.03, 74.87, 73.42, 72.35, 71.67, 70.47, 65.74, 62.20, 55.14, 25.95, 18.32, -5.10, -5.35. HR ESI-TOF MS (m/z): calcd for C₆₁H₇₈NO₁₁Si [M + NH₄]⁺, 1028.5344; found, 1028.5348.

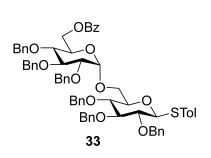
p-Tolyl 2,3,4-tri-O-benzyl-6-O-tert-butyldimethylsilyl-α-D-glucopyranosyl-(1 \rightarrow 3)-4,6-O-benzylidene-2-O-benzyl-1-thio-β-D-glucopyranoside (31)



Donor **3** reacted with acceptor **9** by the general procedure for glycosylation to give product **31** (78 mg, 86% yield) as a syrup after column purification (hexanes/ethyl acetate, 14:1) with the stereochemistry determined by $J_{\text{H1',H2'}}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.54 – 6.92 (m, 29H, Ph), 5.59 (d, J = 3.6

Hz, 1H, H-1'), 5.49 (s, 1H, PhC*H*), 5.02 - 4.95 (m, 2H, Bn), 4.92 (d, J = 10.8 Hz, 1H, Bn), 4.84 (d, J = 10.8 Hz, 1H, Bn), 4.75 (d, J = 10.2 Hz, 1H, H-1), 4.70 (d, J = 9.6 Hz, 1H, Bn), 4.65 - 4.56 (m, 2H, Bn), 4.43 - 4.32 (m, 2H, H-6a, Bn), 4.17 (t, J = 9.6 Hz, 1H, H-3), 4.02 (t, J = 9.6 Hz, 1H, H-3'), 3.95 - 3.91 (m, 1H, H-5'), 3.88 - 3.76 (m, 2H, H-4, H-6b), 3.65 (t, J = 9.6 Hz, 1H, H-4'), 3.58 (t, J = 10.2 Hz, 1H, H-2),

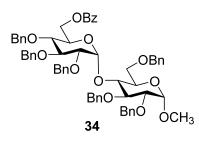
3.55-3.51 (m, 1H, H-5), 3.46-3.41 (m, 3H, H-2', H-6a',6b'), 2.38 (s, 3H, PhC H_3), 0.83 (s, 9H, tBu), -0.06 (s, 3H, SiC H_3), -0.07 (s, 3H, SiC H_3). 13 C NMR (150 MHz, CDCl₃) δ : 139.05, 138.79, 138.24, 137.85, 137.32, 136.91, 132.85, 129.88, 129.40, 129.10, 128.80, 128.45, 128.33, 128.23, 128.19, 128.13, 128.07, 127.79, 127.61, 127.54, 127.46, 127.44, 127.37, 126.38, 102.07 (PhCH), 96.03 (C-1'), 88.76 (C-1), 82.22, 81.84, 79.16, 78.92, 77.14, 76.64, 75.84, 75.76, 74.86, 71.42, 70.95, 69.83, 68.87, 61.40, 26.01, 21.18, 18.27, -5.25, -5.47. HR ESI-TOF MS (m/z): calcd for C₆₀H₇₄NO₁₀SSi [M + NH₄]⁺, 1028.4803; found, 1028.4832.


p-Tolyl 6-*O*-benzyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl-1-thio- β -D-glucopyranoside (32)

Donor **4** reacted with acceptor **5** by the general procedure for glycosylation to give product **32** (87 mg, 88% yield) as a syrup after column purification (hexanes/ethyl acetate, 12:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.03 – 7.99 (m, 2H, Ph), 7.60 – 7.03 (m, 37H, Ph), 5.56

(d, J = 3.6 Hz, 1H, H-1'), 4.92 – 4.88 (m, 4H, Bn), 4.85 (d, J = 10.2 Hz, 1H, Bn), 4.80 (d, J = 10.8 Hz, 1H, Bn), 4.64 (d, J = 9.6 Hz, 1H, H-1), 4.61 – 4.56 (m, 5H, Bn), 4.52 (d, J = 12.0 Hz, 1H, Bn), 4.41 – 4.39 (m, 2H, H-6a',6b'), 4.10 (t, J = 9.6 Hz, 1H, H-4), 4.06 – 4.02 (m, 1H, H-5'), 3.99 (t, J = 9.6 Hz, 1H, H-3'), 3.89 (dd, J = 11.4, 4.2 Hz, 1H, H-6a), 3.82 – 3.78 (m, 2H, H-3, H-6b), 3.62 – 3.55 (m, 2H, H-4', H-5), 3.52 (t, J = 9.6 Hz, 1H, H-2), 3.49 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 2.33 (s, 3H, PhCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 166.13, 138.67, 138.37, 138.18, 137.86, 137.83, 137.77, 133.02, 132.75, 129.97, 129.70, 129.68, 129.60, 128.46, 128.43, 128.39, 128.36, 128.32, 128.30, 128.27, 128.23, 128.09, 127.97, 127.95, 127.92, 127.85, 127.72, 127.63, 127.60, 127.51, 127.11, 126.44, 96.64 (C-1'), 87.51 (C-1), 86.57, 81.90, 80.75, 79.68, 78.74, 77.73, 75.76, 75.22, 74.13, 73.36, 73.28, 73.10, 69.64, 68.97, 63.42, 21.16. HR ESI-TOF MS (m/z): calcd for C₆₈H₇₂NO₁₁S [M + NH₄]⁺, 1110.4826; found, 1110.4823.

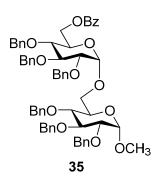
p-Tolyl 6-*O*-benzyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl-1-thio- β -D-glucopyranoside (33)



Donor **4** reacted with acceptor **6** by the general procedure for glycosylation to give product **33** (86 mg, 87% yield) as a syrup after column purification (hexanes/ethyl acetate, 12:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.02 (d, J = 7.8 Hz, 2H), 7.60 – 7.17 (m, 35H, Ph), 7.06 (d, J = 7.8 Hz, 2H, Ph), 5.03 (d, J = 3.0 Hz, 1H, H-1'), 5.02 (d, J = 11.4

Hz, 1H, Bn), 4.92 (d, J = 10.8 Hz, 1H, Bn), 4.91 - 4.86 (m, 2H, Bn), 4.86 - 4.79 (m, 4H, Bn), 4.74 (d, J = 12.0 Hz, 1H, Bn), 4.68 - 4.59 (m, 3H, Bn), 4.57 (d, J = 9.6 Hz, 1H, H-1), 4.54 (dd, J = 12.6, 1.8 Hz, 1H, H-6a'), 4.47 (dd, J = 12.0, 4.2 Hz, 1H, H-6b'), 4.08 - 4.05 (m, 1H, H-5'), 4.05 (t, J = 9.0 Hz, 1H, H-3'), 3.85 (dd, J = 11.4, 4.8 Hz, 1H, H-6a), 3.76 (dd, J = 12.0, 1.8 Hz, 1H, H-6b), 3.71 - 3.61 (m, 3H, H-3, H-

4, H-4'), 3.60 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 3.50 – 3.46 (m, 1H, H-5), 3.24 (t, J = 9.0 Hz, 1H, H-2), 2.21 (s, 3H, PhC H_3). ¹³C NMR (150 MHz, CDCl₃) δ : 166.20, 138.54, 138.52, 138.31, 138.09, 138.03, 137.94, 137.75, 133.02, 132.82, 130.01, 129.96, 129.76, 129.69, 128.49, 128.45, 128.44, 128.39, 128.37, 128.25, 128.16, 127.96, 127.83, 127.81, 127.75, 127.72, 127.66, 127.59, 127.57, 97.06 (C-1'), 88.48 (C-1), 86.62, 81.76, 81.13, 80.30, 78.65, 77.57, 75.89, 75.63, 75.46, 75.13, 75.00, 72.45, 68.92, 66.14, 63.42, 21.05. HR ESI-TOF MS (m/z): calcd for C₆₈H₇₂NO₁₁S [M + NH₄]⁺, 1110.4826; found, 1110.4831.


Methyl 6-*O*-benzyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- α -D-glucopyranoside (34)

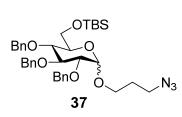
Donor **4** reacted with acceptor **7** by the general procedure for glycosylation to give product **34** (81 mg, 90% yield) as a syrup after column purification (hexanes/ethyl acetate, 12:1) with the stereochemistry determined by $J_{\text{H1',H2'}}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.01 (d, J = 7.8 Hz, 2H, Ph), 7.58 – 7.18 (m, 33H, Ph), 5.58 (d, J = 3.6 Hz, 1H, H-1'), 5.01 (d, J = 11.4 Hz, 1H, Bn), 4.95 – 4.89

(m, 2H, Bn), 4.86 - 4.79 (m, 2H, Bn), 4.70 (d, J = 12.0 Hz, 1H, Bn), 4.62 (d, J = 3.6 Hz, 1H, H-1), 4.61 - 4.50 (m, 6H, Bn), 4.39 (dd, J = 12.0, 2.4 Hz, 1H, H-6a'), 4.34 (dd, J = 12.0, 4.2 Hz, 1H, H-6b'), 4.09 (t, J = 9.0 Hz, 1H, H-3), 4.04 (t, J = 9.0 Hz, 1H, H-4), 4.02 - 3.96 (m, 2H, H-3', H-5'), 3.90 - 3.83 (m, 2H, H-5, H-6a), 3.67 - 3.63 (m, 1H, H-6b), 3.62 - 3.55 (m, 2H, H-2, H-4'), 3.48 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 3.39 (s, 3H, OC H_3). ¹³C NMR (150 MHz, CDCl₃) δ : 166.10, 139.05, 138.43, 137.96, 137.92, 137.85, 132.99, 130.02, 129.69, 128.45, 128.44, 128.36, 128.34, 128.30, 128.21, 128.18, 128.08, 128.03, 127.94, 127.88, 127.73, 127.69, 127.67, 127.58, 127.55, 127.02, 126.71, 97.79 (C-1), 96.33 (C-1'), 81.92, 81.82, 79.91, 79.78, 77.67, 75.80, 75.19, 74.30, 73.39, 73.36, 73.16, 73.12, 69.56, 68.87, 63.39, 55.18. HR ESI-TOF MS (m/z): calcd for C₆₂H₆₈NO₁₂ [M + NH₄]⁺, 1018.4742; found, 1018.4752.

Methyl 6-*O*-benzyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl- α -D-glucopyranoside (35)

Donor **4** reacted with acceptor **8** by the general procedure for glycosylation to give product **35** (83 mg, 92% yield) as a syrup after column purification (hexanes/ethyl acetate, 12:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.02 – 7.91 (m, 2H, Ph), 7.59 – 7.20 (m, 33H, Ph), 4.99 (d, J = 4.2 Hz, 1H, H-1'), 4.97 – 4.94 (m, 2H, Bn), 4.94 – 4.90 (m, 2H, Bn), 4.83 – 4.79 (m, 2H, Bn), 4.72 – 4.68 (m, 3H, Bn), 4.63 (d, J = 11.4 Hz, 1H, Bn), 4.60 (d, J = 10.8 Hz, 1H, Bn), 4.58 (d, J = 12.0 Hz, 1H,

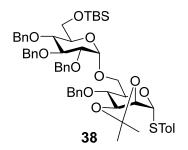
Bn), 4.56 (d, J = 3.6 Hz, 1H, H-1), 4.50 (dd, J = 12.0, 1.8 Hz, 1H, H-6a'), 4.39 (dd, J = 12.0, 4.2 Hz, 1H, H-6b'), 4.04 - 3.96 (m, 3H, H-3, H-3', H-5'), 3.84 - 3.77 (m, 2H, H-5, H-6a), 3.73 - 3.69 (m, 1H, H-6b), 3.63 - 3.58 (m, 2H, H-4, H-4'), 3.56 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 3.42 (dd, J = 9.6, 3.6 Hz, 1H, H-2), 3.36 (s, 3H, OC H_3). ¹³C NMR (150 MHz, CDCl₃) δ : 166.19, 138.76, 138.46, 138.29, 138.28, 138.11,


137.94, 133.04, 129.91, 129.63, 128.43, 128.41, 128.38, 128.34, 128.21, 128.01, 127.99, 127.93, 127.87, 127.81, 127.73, 127.71, 127.69, 127.61, 127.60, 97.89 (C-1), 96.88 (C-1'), 82.08, 81.69, 80.13, 80.09, 77.79, 77.49, 75.76, 75.74, 75.04, 73.34, 72.46, 70.33, 68.85, 65.99, 63.41, 55.19. HR ESI-TOF MS (m/z): calcd for $C_{62}H_{68}NO_{12}$ [M + NH_4]⁺, 1018.4742; found, 1018.4750.

p-Tolyl 6-*O*-benzyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 3)-4,6-*O*-benzylidene-2-*O*-benzyl-1-thio- β -D-glucopyranoside (36)

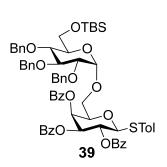
Donor **4** reacted with acceptor **9** by the general procedure for glycosylation to give product **36** (80 mg, 89% yield) as a syrup after column purification (hexanes/ethyl acetate, 12:1) with the stereochemistry determined by $J_{\text{H1',H2'}}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.93 (d, J = 7.2 Hz, 2H, Ph), 7.62 –

6.95 (m, 32H, Ph), 5.61 (d, J = 3.6 Hz, 1H, H-1'), 5.48 (s, 1H, PhCH), 5.09 – 5.05 (m, 2H, Bn), 4.92 (d, J = 10.8 Hz, 1H, Bn), 4.88 (d, J = 10.2 Hz, 1H, Bn), 4.74 (d, J = 9.6 Hz, 1H, H-1), 4.71 (d, J = 10.2 Hz, 1H, Bn), 4.61 (d, J = 12.0 Hz, 1H, Bn), 4.52 (d, J = 10.8 Hz, 1H, Bn), 4.38 (dd, J = 10.2, 4.2 Hz, 1H, H-6a), 4.33 (d, J = 12.0 Hz, 1H, Bn), 4.31 – 4.27 (m, 1H, H-5'), 4.21 – 4.16 (m, 2H, H-3, H-6a'), 4.06 (t, J = 9.6 Hz, 1H, H-3'), 4.02 (dd, J = 12.0, 4.2 Hz, 1H, H-6b'), 3.86 (t, J = 9.6 Hz, 1H, H-4), 3.81 (t, J = 10.2 Hz, 1H, H-6b), 3.61 (t, J = 9.6 Hz, 1H, H-2), 3.57 (t, J = 9.6 Hz, 1H, H-4'), 3.54 – 3.47 (m, 2H, H-2', H-5), 2.40 (s, 3H, PhCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 166.09, 138.55, 138.32, 138.16, 137.54, 137.09, 136.85, 132.85, 132.82, 129.95, 129.93, 129.72, 129.50, 129.22, 128.66, 128.48, 128.43, 128.34, 128.26, 128.18, 128.11, 128.06, 127.94, 127.74, 127.71, 127.58, 127.51, 126.47, 102.31 (PhCH), 95.88 (C-1'), 89.10 (C-1), 82.07, 81.74, 78.73, 77.58, 76.93, 75.92, 75.88, 75.35, 71.13, 69.88, 68.86, 68.68, 63.00, 21.21. HR ESI-TOF MS (m/z): calcd for C₆₁H₆₄NO₁₁S [M + NH₄]⁺, 1018.4200; found, 1018.4195.


3-Azidopropyl 2,3,4-tri-*O*-benzyl-6-*O*-tert-butyldimethylsilyl- α -D-glucopyranoside (37)

Donor **3** reacted with acceptor **10** by the general procedure for glycosylation to give product **37** (49 mg, 84% yield) as a syrup after column purification (hexanes/ethyl acetate, 12:1): α/β = 12:1 as determined by integrations of H-1 and TBS signals with the stereochemistry determined by $J_{\text{H1,H2}}$ coupling constant. α -**37**: ¹H NMR (600 MHz, CDCl₃) δ : 7.46 – 7.17 (m,

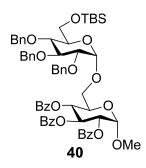
15H, Ph), 4.96 (d, J = 10.8 Hz, 1H, Bn), 4.88 (d, J = 10.8 Hz, 1H, Bn), 4.82 (d, J = 10.8 Hz, 1H, Bn), 4.78 (d, J = 12.0 Hz, 1H, Bn), 4.72 (d, J = 3.6 Hz, 1H, H-1), 4.66 – 4.62 (m, 2H, Bn), 3.97 (t, J = 9.6 Hz, 1H, H-3), 3.80 – 3.77 (m, 1H, H-6a), 3.75 – 3.70 (m, 1H, H-5), 3.63 – 3.58 (m, 1H, H-6b), 3.54 (t, J = 9.6 Hz, 1H, H-4), 3.50 (dd, J = 9.6, 3.6 Hz, 1H, H-2), 3.47 – 3.34 (m, 4H, OC H_2 CH $_2$, C H_2 N $_3$), 1.93 – 1.81 (m, 2H, CH $_2$ CH $_2$ CH $_2$), 0.88 (s, 9H, tBu), 0.04 (s, 3H, SiC H_3), 0.03 (s, 3H, SiC H_3). ¹³C NMR (150 MHz, CDCI $_3$) δ : 138.76, 138.38, 138.30, 128.44, 128.40, 128.33, 128.04, 127.92, 127.88, 127.84, 127.74, 127.62, 96.91 (C-1), 82.03, 80.41, 77.68, 75.80, 75.09, 73.25, 71.75, 64.47, 62.21, 48.38, 28.87, 25.91, 18.30, -5.17, -5.38. HR ESI-TOF MS (m/z): calcd for C $_{36}H_{53}N_4O_6$ Si [M + NH $_4$] $_7$, 665.3734; found, 665.3735.


p-Tolyl 2,3,4-tri-*O*-benzyl-6-*O*-tert-butyldimethylsilyl- α -D-glucopyranosyl-(1 \rightarrow 6)-4-*O*-benzyl-2,3-di-*O*-isopropylidene-1-thio- α -D-mannopyranoside (38)

Donor **3** reacted with acceptor **11** by the general procedure for glycosylation to give product **38** (79 mg, 91% yield) as a syrup after column purification (hexanes/ethyl acetate, 14:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.47 – 7.09 (m, 24H, Ph), 5.71 (s, 1H, H-1), 4.96 (d, J = 11.4 Hz, 1H, Bn), 4.93 (d, J = 10.8 Hz, 1H, Bn), 4.90 (d, J = 10.8 Hz, 1H, Bn), 4.83 (d, J = 3.6 Hz,

1H, H-1'), 4.76 (d, J = 10.8 Hz, 1H, Bn), 4.72 – 4.63 (m, 4H, Bn), 4.42 – 4.35 (m, 3H, H-2, H-3, H-5), 4.01 (t, J = 9.6 Hz, 1H, H-3'), 3.90 (dd, J = 11.4, 5.4 Hz, 1H, H-6a), 3.81 (dd, J = 11.4, 4.2 Hz, 1H, H-6a'), 3.77 (dd, J = 11.4, 1.8 Hz, 1H, H-6b'), 3.76 – 3.68 (m, 2H, H-5', H-4), 3.68 (dd, J = 11.4, 1.8 Hz, 1H, H-6b), 3.59 (t, J = 9.6 Hz, 1H, H-4'), 3.50 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 2.18 (s, 3H, PhCH₃), 1.46 (s, 3H, CCH₃), 1.39 (s, 3H, CCH₃), 0.90 (s, 9H, tBu), 0.05 (s, 6H, SiCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 138.88, 138.83, 138.72, 138.24, 137.69, 132.28, 130.15, 129.90, 129.05, 128.34, 128.33, 128.24, 128.11, 127.99, 127.79, 127.72, 127.66, 127.54, 127.53, 127.44, 125.31, 109.51 (CH₃CCH₃), 97.36 (C-1'), 84.86 (C-1), 81.84, 80.30, 78.45, 77.66, 76.63, 76.16, 75.64, 74.95, 73.03, 72.33, 71.59, 69.86, 66.67, 62.23, 27.90, 26.55, 25.98, 20.99, 18.34, -5.08, -5.38. HR ESI-TOF MS (m/z): calcd for C₅₆H₇₄NO₁₀SSi [M + NH₄]+, 980.4803; found, 980.4813.

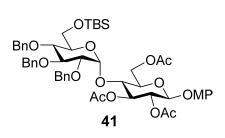
p-Tolyl 2,3,4-tri-O-benzyl-6-O-tert-butyldimethylsilyl-α-D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzoyl-1-thio-β-D-galactopyranoside (39)



Donor **3** reacted with acceptor **12** by the general procedure for glycosylation to give product **39** (96 mg, 93% yield) as a syrup after column purification (hexanes/ethyl acetate, 15:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (500 MHz, CDCl₃) δ : 7.99 (d, J = 8.0 Hz, 2H, Ph), 7.92 (d, J = 8.0 Hz, 2H, Ph), 7.76 (d, J = 8.5 Hz, 2H, Ph), 7.64 – 7.20 (m, 26H, Ph), 7.13 (d, J = 7.5 Hz, 2H, Ph), 5.93 (d, J = 3.0 Hz, 1H, H-4), 5.72 (t, J = 10.0 Hz, 1H, H-2), 5.55 (dd, J = 10.0, 3.5 Hz, 1H, H-3), 4.95 (d, J = 10.5 Hz,

1H, Bn), 4.93 - 4.88 (m, 2H, Bn, H-1), 4.81 (d, J = 11.0 Hz, 1H, Bn), 4.71 (d, J = 3.0 Hz, 1H, H-1'), 4.70 - 4.67 (m, 3H, Bn), 4.22 (t, J = 5.5 Hz, 1H, H-5), 3.98 (t, J = 9.5 Hz, 1H, H-3'), 3.92 - 3.86 (m, 2H, H-6a, H-6a'), 3.84 - 3.78 (m, 2H, H-5', H-6b'), 3.61 (t, J = 9.5 Hz, 1H, H-4'), 3.56 (dd, J = 10.0, 5.0 Hz, 1H, H-6b), 3.46 (dd, J = 10.0, 3.5 Hz, 1H, H-2'), 2.29 (s, 3H, PhC H_3), 0.87 (s, 9H, tBu), 0.01 (s, 6H, SiC H_3). 13 C NMR (125 MHz, CDCl₃) δ : 165.44, 165.39, 165.19, 138.87, 138.63, 138.54, 138.16, 134.52, 133.44, 133.24, 133.13, 130.02, 129.82, 129.74, 129.67, 129.44, 129.10, 128.89, 128.49, 128.46, 128.44, 128.39, 128.38, 128.31, 128.22, 128.03, 127.96, 127.84, 127.81, 127.76, 127.73, 127.57, 127.53, 97.12 (C-1'), 86.27 (C-1), 81.90, 80.19, 77.47, 76.33, 75.81, 74.97, 73.16, 73.14, 71.86, 68.96, 68.06, 66.48, 62.07,

25.94, 21.24, 18.30, -5.15, -5.41. HR ESI-TOF MS (m/z): calcd for C₆₇H₇₆NO₁₃SSi [M + NH₄]⁺, 1162.4807; found, 1162.4805.


Methyl 2,3,4-tri-*O*-benzyl-6-*O*-tert-butyldimethylsilyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl- α -D-glucopyranoside (40)

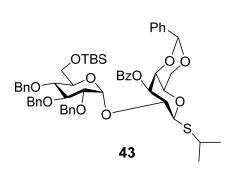
Donor **3** reacted with acceptor **13** by the general procedure for glycosylation to give product **40** (85 mg, 90% yield) as a syrup after column purification (hexanes/ethyl acetate, 10:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (500 MHz, CDCl₃) δ : 8.02 – 7.20 (m, 30H, Ph), 6.16 (t, J = 9.5 Hz, 1H, H-3), 5.55 (t, J = 10.0 Hz, 1H, H-4), 5.24 (dd, J = 10.0, 3.5 Hz, 1H, H-2), 5.23 (d, J = 3.5 Hz, 1H, H-1), 4.91 (d, J = 10.5 Hz, 1H, Bn), 4.89 (d, J = 10.0 Hz, 1H, Bn), 4.79 (d, J = 11.0 Hz, 1H, Bn), 4.78 (d, J = 12.5 Hz, 1H, Bn),

4.73 (d, J = 3.5 Hz, 1H, H-1'), 4.68 – 4.63 (m, 2H, Bn), 4.36 – 4.31 (m, 1H, H-5), 4.00 (t, J = 9.5 Hz, 1H, H-3'), 3.87 (dd, J = 11.0, 7.0 Hz, 1H, H-6a), 3.78 – 3.66 (m, 3H, H-6a',6b', H-6b), 3.61 – 3.55 (m, 2H, H-4', H-5'), 3.49 (dd, J = 10.0, 3.5 Hz, 1H, H-2'), 3.46 (s, 3H, OC H_3), 0.89 (s, 9H, tBu), 0.02 (s, 3H, SiC H_3), 0.01 (s, 3H, SiC H_3). ¹³C NMR (125 MHz, CDCI₃) δ : 165.82, 165.81, 165.24, 138.84, 138.50, 133.30, 133.02, 129.93, 129.91, 129.67, 129.29, 129.12, 129.06, 128.39, 128.38, 128.36, 128.33, 128.30, 128.24, 128.11, 127.81, 127.68, 127.60, 127.53, 127.47, 96.95, 96.71, 81.70, 80.37, 77.53, 75.62, 74.74, 73.07, 72.26, 71.59, 70.65, 69.68, 68.61, 66.37, 61.97, 55.56, 25.94, 18.30, -5.17, -5.41. HR ESI-TOF MS (m/z): calcd for C₆₁H₇₂NO₁₄Si [M + NH₄]⁺, 1070.4722; found, 1070.4743.

p-Methoxyphenyl 2,3,4-tri-*O*-benzyl-6-*O*-tert-butyldimethylsilyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-acetyl- β -D-glucopyranoside (41)

Donor **3** reacted with acceptor **14** by the general procedure for glycosylation to give product **41** (62 mg, 72% yield) as a syrup after column purification (hexanes/ethyl acetate, 10:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (500 MHz, CDCl₃) δ : 7.41 – 6.80 (m, 19H, Ph), 5.36 (t, J = 9.5 Hz, 1H, H-3), 5.20 (dd, J = 9.5, 7.5 Hz, 1H, H-2), 4.93 (d, J = 7.5 Hz, 1H, H-1),

4.88 – 4.83 (m, 2H, Bn), 4.82 (d, J = 11.0 Hz, 1H, Bn), 4.76 (d, J = 3.5 Hz, 1H, H-1'), 4.75 (d, J = 11.5 Hz, 1H, Bn), 4.66 – 4.62 (m, 2H, Bn), 4.59 (dd, J = 12.0, 2.0 Hz, 1H, H-6a), 4.31 (dd, J = 12.5, 5.0 Hz, 1H, H-6b), 3.93 – 3.86 (m, 2H, H-3', H-4), 3.81 – 3.77 (m, 4H, H-6a', PhOCH3), 3.74 (dd, J = 11.5, 2.0 Hz, 1H, H-6b'), 3.70 – 3.64 (m, 2H, H-5, H-5'), 3.56 (t, J = 9.5 Hz, 1H, H-4'), 3.40 (dd, J = 10.0, 3.5 Hz, 1H, H-2'), 2.08 (s, 3H, COCH3), 2.02 (s, 3H, COCH3), 1.94 (s, 3H, COCH3), 0.89 (s, 9H, tBu), 0.04 (s, 3H, SiCH3), 0.02 (s, 3H, SiCH3). t3C NMR (125 MHz, CDCt3) t5: 170.13, 170.04, 169.63, 155.69, 150.97, 138.63, 138.41, 138.02, 128.55, 128.43, 128.40, 128.38, 128.21, 128.11, 128.05, 127.78, 127.67, 127.66, 118.70, 114.52, 100.09 (C-1), 99.11 (C-1'), 81.17, 80.44, 77.33, 76.18, 75.77, 74.99, 73.82, 73.60, 73.41,

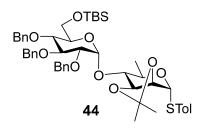

73.11, 71.64, 62.86, 61.89, 55.65, 25.92, 20.91, 20.78, 20.73, 18.34, -5.23, -5.43. HR ESI-TOF MS (m/z): calcd for $C_{52}H_{70}NO_{15}Si$ [M + NH₄]⁺, 976.4515; found, 976.4533.

p-Tolyl 2,3,4-tri-*O*-benzyl-6-*O*-tert-butyldimethylsilyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2-deoxy-2-phthalimido-3,6-di-*O*-benzyl-1-thio- β -D-glucopyranoside (42)

Donor **3** reacted with acceptor **15** by the general procedure for glycosylation to give product **42** (90 mg, 88% yield) as a syrup after column purification (hexanes/ethyl acetate, 12:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.75 (d, J = 6.6 Hz, 1H, Ph), 7.69 – 7.63 (m, 3H, Ph), 7.39 – 7.13 (m, 22H, Ph), 6.98 (d, J = 7.8 Hz, 2H, Ph), 6.91 – 6.76 (m,

5H, Ph), 5.45 (d, J = 10.2 Hz, 1H, H-1), 5.41 (d, J = 3.6 Hz, 1H, H-1'), 4.90 – 4.86 (m, 2H, Bn), 4.83 – 4.77 (m, 2H, Bn), 4.69 (d, J = 10.8 Hz, 1H, Bn), 4.65 – 4.56 (m, 4H, Bn), 4.50 (dd, J = 10.2, 8.4 Hz, 1H, H-3), 4.37 (d, J = 12.0 Hz, 1H, Bn), 4.32 (t, J = 10.2 Hz, 1H, H-2), 4.15 (t, J = 8.4 Hz, 1H, H-4), 4.05 (dd, J = 11.4, 3.6 Hz, 1H, H-6a), 3.98 (t, J = 9.6 Hz, 1H, H-3'), 3.87 (dd, J = 10.8, 1.2 Hz, 1H, H-6a'), 3.78 – 3.73 (m, 2H, H-5', H-6b), 3.73 – 3.69 (m, 1H, H-5), 3.68 – 3.61 (m, 2H, H-4', H-6b'), 3.47 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 2.28 (s, 3H, PhCH₃), 0.89 (s, 9H, tBu), 0.02 (s, 3H, SiCH₃), 0.01 (s, 3H, SiCH₃). t3C NMR (150 MHz, CDCl₃) t5: 168.10, 167.35, 138.64, 138.59, 138.54, 138.15, 138.02, 137.89, 133.39, 129.51, 128.40, 128.35, 128.31, 128.26, 128.07, 128.05, 127.98, 127.89, 127.86, 127.66, 127.63, 127.59, 127.57, 127.46, 127.38, 126.94, 97.38 (C-1'), 83.31 (C-1), 81.76, 81.10, 80.16, 79.33, 77.54, 75.70, 75.62, 75.07, 73.93, 73.41, 73.21, 72.47, 69.10, 61.98, 54.58, 25.96, 21.14, 18.33, -5.09, -5.36. HR ESI-TOF MS (m/z): calcd for C₆₈H₇₉N₂O₁₁SSi [M + NH₄]*, 1159.5174; found, 1159.5175.

Isopropyl 2,3,4-tri-*O*-benzyl-6-*O*-tert-butyldimethylsilyl- α -D-glucopyranosyl-(1 \rightarrow 2)-3-*O*-benzyl-4,6-*O*-benzylidene-1-thio- β -D-galactopyranoside (43)



Donor **3** reacted with acceptor **16** by the general procedure for glycosylation to give product **43** (76 mg, 86% yield) as a syrup after column purification (hexanes/ethyl acetate, 12:1) with the stereochemistry determined by $J_{\text{H1',H2'}}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.02 – 7.98 (m, 2H, Ph), 7.53 – 7.17 (m, 21H, Ph), 7.00 – 6.90 (m, 2H, Ph), 5.75 (d, J = 3.6 Hz, 1H, H-1'), 5.48 (s, 1H, PhC*H*), 5.34 (dd, J = 9.6, 3.6 Hz, 1H, H-3), 4.92 (d, J = 12.0 Hz,

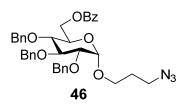
1H, Bn), 4.84 (d, J = 10.8 Hz, 1H, Bn), 4.74 (d, J = 9.0 Hz, 1H, H-1), 4.70 – 4.62 (m, 3H, Bn), 4.49 (d, J = 3.6 Hz, 1H, H-4), 4.45 (t, J = 9.6 Hz, 1H, H-2), 4.43 (d, J = 10.8 Hz, 1H, Bn), 4.35 (dd, J = 12.6, 1.2 Hz, 1H, H-6a), 4.03 (dd, J = 12.6, 1.8 Hz, 1H, H-6b), 3.81 (t, J = 9.6 Hz, 1H, H-3'), 3.73 – 3.69 (m, 1H, H-5'), 3.60 – 3.57 (m, 1H, H-5), 3.50 (dd, J = 11.4, 1.8 Hz, 1H, H-6a'), 3.46 (t, J = 9.6 Hz, 1H, H-4'), 3.44 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 3.42 – 3.33 (m, 1H, SCH), 3.31 (dd, J = 11.4, 3.6 Hz, 1H, H-6b'), 1.37 (d, J = 6.6 Hz, 3H, CHCH₃), 1.31 (d, J = 6.6 Hz, 3H, CHCH₃), 0.80 (s, 9H, tBu), -0.06 (s, 3H, SiCH₃), -0.07 (s,

3H, SiC H_3). ¹³C NMR (150 MHz, CDCl₃) δ : 166.16, 138.88, 138.81, 138.27, 137.86, 133.14, 129.95, 129.84, 128.84, 128.29, 128.25, 128.08, 128.05, 128.02, 127.94, 127.56, 127.44, 127.13, 127.08, 126.23, 100.85 (PhCH), 96.08 (C-1'), 84.03 (C-1), 81.18, 80.11, 77.10, 75.62, 74.73, 74.15, 73.77, 73.13, 71.54, 69.89, 69.32, 69.15, 61.80, 34.43, 25.88, 24.48, 23.67, 18.26, -5.22, -5.41. HR ESI-TOF MS (m/z): calcd for C₅₆H₇₂NO₁₁SSi [M + NH₄]⁺, 994.4595; found, 994.4603.

p-Tolyl 2,3,4-tri-*O*-benzyl-6-*O*-tert-butyldimethylsilyl-α-D-glucopyranosyl-(1 \rightarrow 4)-6-deoxy-2,3-di-*O*-isopropylidene-1-thio-α-D-mannopyranoside (44)

Donor **3** reacted with acceptor **17** by the general procedure for glycosylation to give product **44** (69 mg, 89% yield) as a syrup after column purification (hexanes/ethyl acetate, 12:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.45 – 7.26 (m, 17H, Ph), 7.13 (d, J = 7.8 Hz, 2H, Ph), 5.67 (d, J = 3.0 Hz, 1H, H-1'), 5.66 (s, 1H, H-1), 4.98 (d, J = 10.8 Hz, 1H, Bn), 4.88 (d, J =

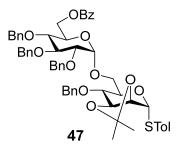
11.4 Hz, 1H, Bn), 4.86 - 4.79 (m, 2H, Bn), 4.74 (d, J = 11.4 Hz, 1H, Bn), 4.67 (d, J = 10.8 Hz, 1H, Bn), 4.36 (dd, J = 7.2, 5.4 Hz, 1H, H-3), 4.32 (d, J = 5.4 Hz, 1H, H-2), 4.23 (dq, J = 9.6, 6.0 Hz, 1H, H-5), 3.93 (t, J = 9.6 Hz, 1H, H-3'), 3.84 (dd, J = 11.4, 4.2 Hz, 1H, H-6a'), 3.75 (dd, J = 11.4, 1.8 Hz, 1H, H-6b'), 3.70 - 3.63 (m, 2H, H-5', H-4), 3.57 (t, J = 9.6 Hz, 1H, H-4'), 3.54 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 2.33 (s, 3H, PhC H_3), 1.54 (s, 3H, CC H_3), 1.37 (s, 3H, CC H_3), 1.21 (d, J = 6.0 Hz, 3H, H-6), 0.87 (s, 9H, tBu), 0.03 (s, 3H, SiC H_3), 0.02 (s, 3H, SiC H_3). 1^3 C NMR (150 MHz, CDCl₃) δ : 138.81, 138.46, 138.12, 137.84, 132.56, 129.80, 129.57, 128.41, 128.40, 128.15, 128.07, 128.04, 127.78, 127.74, 127.61, 109.45 (CH₃CCH₃), 95.15 (C-1'), 84.14 (C-1), 81.71, 80.13, 78.56, 77.66, 77.42, 76.80, 75.85, 75.20, 72.97, 72.12, 65.58, 62.14, 28.00, 26.59, 25.94, 21.14, 18.36, 18.35, -5.15, -5.40. HR ESI-TOF MS (m/z): calcd for C₄₉H₆₈NO₉SSi [M + NH₄]⁺, 874.4384; found, 874.4390.


Diosgenyl 2,3,4-tri-*O*-benzyl-6-*O*-tert-butyldimethylsilyl-α-D-glucopyranoside (45)

Donor **3** reacted with acceptor **18** by the general procedure for glycosylation to give product **45** (80 mg, 92% yield) as a syrup after column purification (hexanes/ethyl acetate, 25:1) with the stereochemistry determined by $J_{\rm H1,H2}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.40 – 7.13 (m, 15H, Ph), 5.35 – 5.31 (m,

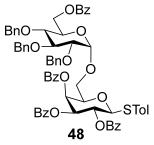
1H), 5.01 (d, J = 10.8 Hz, 1H, Bn), 4.92 (d, J = 3.6 Hz, 1H, H-1), 4.90 (d, J = 10.8 Hz, 1H, Bn), 4.83 (d, J = 10.8 Hz, 1H, Bn), 4.78 (d, J = 12.0 Hz, 1H, Bn), 4.69 – 4.63 (m, 2H, Bn), 4.42 (q, J = 7.2 Hz, 1H), 4.03 (t, J = 9.6 Hz, 1H), 3.82 – 3.72 (m, 3H), 3.54 – 3.47 (m, 4H), 3.39 (t, J = 11.4 Hz, 1H), 2.48 – 2.41 (m, 1H), 2.31 – 2.25 (m, 1H), 2.05 – 1.42 (m, 15H), 1.35 – 0.92 (m, 13H), 0.89 (s, 9H, tBu), 0.83 – 0.78 (m, 6H), 0.05 (s, 3H, SiCH₃), 0.04 (s, 3H, SiCH₃). 13 C NMR (150 MHz, CDCl₃) δ : 140.83, 138.90, 138.43, 138.33, 129.02, 128.44, 128.40, 128.22, 128.10, 128.06, 127.98, 127.82, 127.74, 127.59, 125.29, 121.44,

109.27, 93.96 (C-1), 82.12, 80.83, 80.24, 78.03, 77.26, 77.05, 76.83, 75.80, 75.64, 75.11, 73.07, 71.64, 66.84, 62.46, 62.11, 56.52, 50.04, 41.61, 40.27, 39.79, 37.05, 36.95, 32.08, 31.86, 31.44, 31.40, 30.31, 28.81, 27.25, 25.98, 21.48, 20.86, 19.46, 18.33, 17.16, 16.31, 14.56, -5.11, -5.34. HR ESI-TOF MS (m/z): calcd for C₆₀H₈₈NO₈Si [M + NH₄]⁺, 978.6279; found, 978.6285.


3-Azidopropyl 6-*O*-benzoyl-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside (46)

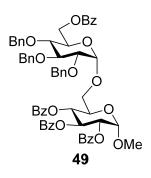
Donor **4** reacted with acceptor **10** by the general procedure for glycosylation to give product **46** (50 mg, 87% yield) as a syrup after column purification (hexanes/ethyl acetate, 9:1) with the stereochemistry determined by $J_{\rm H1,H2}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.02 – 7.98 (m, 2H, Ph), 7.58 – 7.22 (m, 18H, Ph), 5.02 (d, J = 10.8 Hz, 1H, Bn),

4.92 (d, J = 10.8 Hz, 1H, Bn), 4.85 (d, J = 10.8 Hz, 1H, Bn), 4.80 (d, J = 12.0 Hz, 1H, Bn), 4.73 (d, J = 3.6 Hz, 1H, H-1), 4.65 (d, J = 12.0 Hz, 1H, Bn), 4.62 (d, J = 10.8 Hz, 1H, Bn), 4.55 (dd, J = 12.0, 2.4 Hz, 1H, H-6a), 4.47 (dd, J = 12.0, 4.8 Hz, 1H, H-6b), 4.04 (t, J = 9.6 Hz, 1H, H-3), 3.97 – 3.92 (m, 1H, H-5), 3.79 – 3.72 (m, 1H, OC H_2 CH $_2$), 3.61 (t, J = 9.6 Hz, 1H, H-4), 3.58 (dd, J = 9.6, 3.6 Hz, 1H, H-2), 3.49 – 3.33 (m, 3H, C H_2 N $_3$, OC H_2 CH $_2$), 1.97 – 1.83 (m, 2H, CH $_2$ CH $_2$). ¹³C NMR (150 MHz, CDCl $_3$) δ : 166.19, 138.50, 138.11, 137.68, 133.09, 129.84, 129.63, 128.51, 128.49, 128.38, 128.13, 128.08, 127.98, 127.95, 127.77, 97.00 (C-1), 81.99, 80.25, 77.62, 75.91, 75.27, 73.34, 69.01, 64.79, 63.43, 48.26, 28.82. HR ESI-TOF MS (m/z): calcd for C $_3$ 7H $_4$ 3N $_4$ O $_7$ [M + NH $_4$] $_7$, 655.3132; found, 655.3134.


p-Tolyl 6-O-benzoyl-2,3,4-tri-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 6)-4-O-benzyl-2,3-di-O-isopropylidene-1-thio- α -D-mannopyranoside (47)

Donor **4** reacted with acceptor **11** by the general procedure for glycosylation to give product **47** (77 mg, 90% yield) as a syrup after column purification (hexanes/ethyl acetate, 10:1) with the stereochemistry determined by $J_{\text{H1',H2'}}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.00 (d, J = 8.4 Hz, 2H, Ph), 7.59 – 6.99 (m, 27H, Ph), 5.71 (s, 1H, H-1), 5.00 – 4.91 (m, 3H, Bn), 4.82 (d, J = 3.6 Hz, 1H, H-1'), 4.78 (d, J = 10.2 Hz, 1H,

Bn), 4.69 (s, 2H, Bn), 4.65 – 4.61 (m, 2H, Bn), 4.50 (dd, J = 12.0, 2.4 Hz, 1H, H-6a'), 4.46 (dd, J = 12.0, 4.2 Hz, 1H, H-6b'), 4.43 – 4.34 (m, 3H, H-2, H-3, H-5), 4.03 (t, J = 9.6 Hz, 1H, H-3'), 4.02 – 3.97 (m, 1H, H-5'), 3.91 (dd, J = 11.4, 5.4 Hz, 1H, H-6a), 3.72 (dd, J = 10.2, 6.6 Hz, 1H, H-4), 3.67 – 3.61 (m, 2H, H-4', H-6b), 3.55 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 2.17 (s, 3H, PhCH₃), 1.47 (s, 3H, CCH₃), 1.39 (s, 3H, CCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 166.22, 138.57, 138.46, 138.12, 138.02, 137.80, 133.58, 133.01, 132.33, 130.15, 129.95, 129.92, 129.91, 129.66, 128.45, 128.43, 128.41, 128.35, 128.31, 128.17, 128.00, 127.97, 127.86, 127.83, 127.80, 127.74, 127.71, 127.58, 109.56 (CH₃CCH₃), 97.40 (C-1'), 84.88 (C-1), 81.82, 80.03, 78.43, 77.58, 76.59, 76.05, 75.78, 75.19, 73.02, 72.40, 69.76, 68.85, 67.01, 63.43, 27.92, 26.55, 21.00. HR ESI-TOF MS (m/z): calcd for C₅₇H₆₄NO₁₁S [M + NH₄]⁺, 970.4200; found, 970.4224.

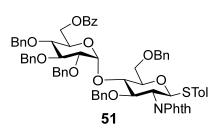

p-Tolyl 6-*O*-benzoyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzoyl-1-thio- β -D-galactopyranoside (48)

Donor **4** reacted with acceptor **12** by the general procedure for glycosylation to give product **48** (95 mg, 94% yield) as a syrup after column purification (hexanes/ethyl acetate, 10:1) with the stereochemistry determined by $J_{\text{H1',H2'}}$ coupling constant. ¹H NMR (500 MHz, CDCl₃) δ : 8.06 (d, J = 7.5 Hz, 2H, Ph), 8.02 (d, J = 8.0 Hz, 2H, Ph), 7.89 (d, J = 8.5 Hz, 2H, Ph), 7.89 (d, J = 8.5 Hz, 2H, Ph), 5.96 (d, J = 7.5 Hz, 2H, Ph)

3.5 Hz, 1H, H-4), 5.76 (t, J = 10.0 Hz, 1H, H-2), 5.59 (dd, J = 10.0, 3.5 Hz, 1H, H-3), 5.02 (d, J = 10.5 Hz, 1H, Bn), 4.96 (d, J = 8.0 Hz, 1H, H-1), 4.94 (d, J = 9.5 Hz, 1H, Bn), 4.85 (d, J = 9.5 Hz, 1H, Bn), 4.74 (d, J = 3.5 Hz, 1H, H-1'), 4.71 (s, 2H, Bn), 4.67 (d, J = 10.5 Hz, 1H, Bn), 4.60 (dd, J = 12.0, 3.5 Hz, 1H, H-6a'), 4.56 (dd, J = 12.0, 4.0 Hz, 1H, H-6b'), 4.28 (t, J = 6.0 Hz, 1H, H-5), 4.21 – 4.17 (m, 1H, H-5'), 4.06 (t, J = 9.5 Hz, 1H, H-3'), 3.96 (dd, J = 9.5, 6.0 Hz, 1H, H-6a), 3.65 (t, J = 9.5 Hz, 1H, H-4'), 3.62 – 3.57 (m, 2H, H-2', H-6b), 2.30 (s, 3H, PhCH₃). ¹³C NMR (125 MHz, CDCl₃) δ : 166.24, 165.49, 165.43, 165.21, 138.63, 138.62, 137.97, 137.85, 134.52, 133.50, 133.28, 133.18, 133.08, 130.00, 129.90, 129.84, 129.75, 129.74, 129.73, 129.43, 128.95, 128.87, 128.52, 128.49, 128.42, 128.27, 128.25, 128.06, 127.98, 127.84, 127.74, 127.57, 97.13 (C-1'), 86.43 (C-1), 81.96, 80.01, 77.50, 76.27, 75.94, 75.22, 73.24, 73.14, 69.27, 68.96, 68.07, 66.95, 63.46, 21.26. HR ESI-TOF MS (m/z): calcd for C₆₈H₆₆NO₁₄S [M + NH₄]⁺, 1152.4204; found, 1152.4208.

Methyl 6-*O*-benzoyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-glucopyranoside (49)

Donor **4** reacted with acceptor **13** by the general procedure for glycosylation to give product **49** (86 mg, 92% yield) as a syrup after column purification (hexanes/ethyl acetate, 8:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (500 MHz, CDCl₃) δ : 8.06 – 7.21 (m, 35H, Ph), 6.17 (t, J = 10.0 Hz, 1H, H-3), 5.52 (t, J = 10.0 Hz, 1H, H-4), 5.26 (d, J = 3.5 Hz, 1H, H-1), 5.19 (dd, J = 10.0, 3.5 Hz, 1H, H-2), 5.00 (d, J = 11.0 Hz, 1H, Bn), 4.95 (d, J = 11.0 Hz, 1H, Bn), 4.85 (d, J = 11.0 Hz, 1H, Bn), 4.81 (d, J = 12.5 Hz, 1H, Bn),

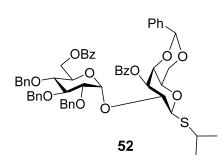

4.76 (d, J = 3.5 Hz, 1H, H-1'), 4.68 (d, J = 12.5 Hz, 1H, Bn), 4.64 (d, J = 11.0 Hz, 1H, Bn), 4.51 (d, J = 12.0 Hz, 1H, H-6a'), 4.38 – 4.30 (m, 2H, H-5, H-6b'), 4.12 – 4.05 (m, 2H, H-3', H-5'), 3.90 (dd, J = 11.0, 6.5 Hz, 1H, H-6a), 3.61 – 3.55 (m, 3H, H-2', H-4', H-6b), 3.49 (s, 3H, OC H_3). ¹³C NMR (125 MHz, CDCl₃) δ : 166.13, 165.80, 165.74, 165.23, 138.62, 138.31, 138.06, 133.39, 133.32, 133.06, 133.02, 130.02, 129.94, 129.90, 129.69, 129.29, 129.14, 128.98, 128.49, 128.46, 128.43, 128.41, 128.27, 128.15, 127.92, 127.90, 127.85, 127.77, 127.69, 96.88, 96.82, 81.73, 80.28, 77.64, 75.77, 74.94, 73.15, 72.19, 70.62, 69.55, 68.98, 68.59, 66.58, 63.43, 55.64. HR ESI-TOF MS (m/z): calcd for $C_{62}H_{62}NO_{15}$ [M + NH₄]⁺, 1060.4119; found, 1060.4149.

p-Methoxyphenyl 6-*O*-benzoyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-acetyl- β -D-glucopyranoside (50)

Donor **4** reacted with acceptor **14** by the general procedure for glycosylation to give product **50** (64 mg, 75% yield) as a syrup after column purification (hexanes/ethyl acetate, 8:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (500 MHz, CDCl₃) δ : 8.04 – 6.79 (m, 24H, Ph), 5.38 (t, J = 9.5 Hz, 1H, H-3), 5.18 (dd, J = 9.5, 8.0 Hz, 1H, H-2), 4.93 (d, J = 7.5 Hz, 1H, H-1), 4.91

(d, J = 11.0 Hz, 1H, Bn), 4.88 (d, J = 11.0 Hz, 1H, Bn), 4.84 (d, J = 10.5 Hz, 1H, Bn), 4.82 (d, J = 3.5 Hz, 1H, H-1'), 4.76 (d, J = 12.0 Hz, 1H, Bn), 4.66 (d, J = 12.0 Hz, 1H, Bn), 4.62 – 4.57 (m, 2H, Bn, H-6a), 4.54 (dd, J = 12.0, 2.0 Hz, 1H, H-6a'), 4.42 (dd, J = 12.0, 4.5 Hz, 1H, H-6b'), 4.28 (dd, J = 12.0, 5.0 Hz, 1H, H-6b), 4.05 – 4.00 (m, 1H, H-5'), 3.97 (t, J = 9.5 Hz, 1H, H-3'), 3.89 (t, J = 9.5 Hz, 1H, H-4), 3.78 (s, 3H, PhOCH₃), 3.72 – 3.67 (m, 1H, H-5), 3.57 (t, J = 9.5 Hz, 1H, H-4'), 3.49 (dd, J = 10.0, 3.5 Hz, 1H, H-2'), 2.09 (s, 3H, COCH₃), 1.99 (s, 3H, COCH₃), 1.95 (s, 3H, COCH₃). ¹³C NMR (125 MHz, CDCI₃) δ : 170.13, 170.05, 169.57, 166.08, 155.72, 150.92, 138.36, 137.82, 137.66, 133.10, 129.84, 129.66, 128.64, 128.51, 128.45, 128.40, 128.23, 128.19, 128.11, 128.00, 127.90, 127.82, 118.73, 114.53, 100.03 (C-1), 98.73 (C-1'), 81.23, 80.33, 77.48, 76.34, 75.86, 75.12, 73.86, 73.50, 73.37, 71.56, 70.42, 63.38, 62.56, 55.65, 20.93, 20.77, 20.72. HR ESI-TOF MS (m/z): calcd for C₅₃H₅₆O₁₆Na [M + Na]⁺, 971.3466; found, 971.3496.

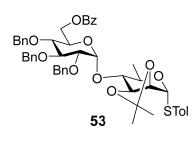
p-Tolyl 6-*O*-benzoyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2-deoxy-2-phthalimido-3,6-di-*O*-benzyl-1-thio- β -D-glucopyranoside (51)



Donor **4** reacted with acceptor **15** by the general procedure for glycosylation to give product **51** (86 mg, 84% yield) as a syrup after column purification (hexanes/ethyl acetate, 11:1) with the stereochemistry determined by $J_{\text{H1',H2'}}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.12 – 8.05 (m, 1H, Ph), 8.02 – 7.95 (m, 2H, Ph), 7.76 – 7.12 (m, 28H, Ph), 7.02 – 6.71 (m, 7H, Ph), 5.41 (d, J = 10.2 Hz, 1H,

H-1), 5.36 (d, J = 3.6 Hz, 1H, H-1'), 4.98 – 4.87 (m, 2H, Bn), 4.80 – 4.74 (m, 2H, Bn), 4.63 – 4.58 (m, 3H, Bn), 4.54 – 4.51 (m, 2H, Bn), 4.48 (dd, J = 10.2, 9.0 Hz, 1H, H-3), 4.44 (dd, J = 12.0, 2.4 Hz, 1H, H-6a'), 4.39 (dd, J = 12.0, 4.8 Hz, 1H, H-6b'), 4.33 (d, J = 12.0 Hz, 1H, Bn), 4.28 (t, J = 10.2 Hz, 1H, H-2), 4.13 (t, J = 9.6 Hz, 1H, H-4), 4.11 – 4.08 (m, 1H, H-5'), 4.02 – 3.98 (m, 2H, H-3', H-6a), 3.75 (dd, J = 11.4, 1.8 Hz, 1H, H-6b), 3.69 – 3.63 (m, 1H, H-5), 3.57 (t, J = 9.6 Hz, 1H, H-4'), 3.51 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 2.27 (s, 3H, PhCH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 166.11, 138.27, 138.23, 138.16, 138.05, 137.82, 137.73, 133.64, 133.38, 133.03, 130.15, 129.90, 129.63, 129.51, 128.86, 128.47, 128.44, 128.39, 128.36, 128.23, 128.04, 127.88, 127.86, 127.72, 127.70, 127.66, 127.46, 127.43, 126.90, 126.26, 97.30 (C-1'), 83.45 (C-1), 81.71, 80.76, 79.99, 79.30, 77.70, 76.44, 75.75, 75.20, 73.94, 73.26, 73.25, 69.79, 68.76,

63.49, 54.53, 21.13. HR ESI-TOF MS (m/z): calcd for C₆₉H₆₉N₂O₁₂S [M + NH₄]⁺, 1149.4571; found, 1149.4579.


Isopropyl 6-*O*-benzoyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 2)-3-*O*-benzoyl-4,6-*O*-benzylidene-1-thio- β -D-galactopyranoside (52)

Donor **4** reacted with acceptor **16** by the general procedure for glycosylation to give product **52** (74 mg, 85% yield) as a syrup after column purification (hexanes/ethyl acetate, 10:1) with the stereochemistry determined by $J_{\text{H1',H2'}}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 7.99 (d, J = 7.8 Hz, 2H, Ph), 7.91 (d, J = 7.8 Hz, 2H, Ph), 7.51 – 7.44 (m, 4H, Ph), 7.43 – 7.39 (m, 2H, Ph), 7.36 – 7.14 (m, 18H, Ph), 6.91 – 6.87 (m, 2H, Ph), 5.80 (d, J = 3.6 Hz, 1H, H-1'), 5.50

(s, 1H, PhC*H*), 5.40 (dd, J = 9.6, 3.6 Hz, 1H, H-3), 4.95 (d, J = 11.4 Hz, 1H, Bn), 4.90 (d, J = 10.8 Hz, 1H, Bn), 4.76 (d, J = 9.0 Hz, 1H, H-1), 4.71 – 4.65 (m, 3H, Bn), 4.49 (d, J = 4.2 Hz, 1H, H-4), 4.46 (t, J = 9.6 Hz, 1H, H-2), 4.37 – 4.30 (m, 2H, H-6a, Bn), 4.23 (d, J = 12.0 Hz, 1H, H-6a'), 4.06 – 4.02 (m, 1H, H-6b), 4.01 – 3.97 (m, 1H, H-5'), 3.90 – 3.85 (m, 2H, H-3', H-6b'), 3.61 – 3.58 (m, 1H, H-5), 3.52 (dd, J = 9.6, 3.6 Hz, 1H, H-2'), 3.48 (t, J = 9.6 Hz, 1H, H-4'), 3.39 – 3.33 (m, 1H, SC*H*), 1.34 (d, J = 6.6 Hz, 3H, CHC*H*₃), 1.29 (d, J = 6.6 Hz, 3H, CHC*H*₃). ¹³C NMR (150 MHz, CDCl₃) δ : 166.17, 166.12, 138.50, 138.06, 137.99, 137.70, 133.38, 132.91, 129.78, 129.73, 129.69, 129.51, 128.91, 128.41, 128.35, 128.30, 128.17, 128.10, 128.09, 127.92, 127.67, 127.62, 127.42, 127.38, 126.17, 100.95 (PhCH), 95.99 (C-1'), 83.89 (C-1), 81.14, 79.88, 77.21, 75.78, 74.55, 74.48, 73.87, 73.13, 70.42, 69.37, 69.13, 68.88, 63.26, 34.57, 24.33, 23.68. HR ESI-TOF MS (m/z): calcd for $C_{57}H_{62}NO_{12}S$ [M + NH₄]*, 984.3993; found, 984.4005.

p-Tolyl 6-O-benzoyl-2,3,4-tri-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-6-deoxy-2,3-di-O-isopropylidene-1-thio- α -D-mannopyranoside (53)

Donor **4** reacted with acceptor **17** by the general procedure for glycosylation to give product **53** (66 mg, 87% yield) as a syrup after column purification (hexanes/ethyl acetate, 14:1) with the stereochemistry determined by $J_{\text{H1',H2'}}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.00 (d, J = 7.8 Hz, 2H, Ph), 7.57 – 7.04 (m, 22H, Ph), 5.67 (d, J = 4.2 Hz, 1H, H-1'), 5.66 (s, 1H, H-1), 5.04 (d, J = 10.2 Hz, 1H, Bn), 4.92 (d, J = 10.8 Hz,

1H, Bn), 4.88 - 4.82 (m, 2H, Bn), 4.75 (d, J = 11.4 Hz, 1H, Bn), 4.61 (d, J = 10.8 Hz, 1H, Bn), 4.51 (dd, J = 12.0, 2.4 Hz, 1H, H-6a'), 4.46 (dd, J = 12.0, 4.8 Hz, 1H, H-6b'), 4.35 (t, J = 6.0 Hz, 1H, H-3), 4.31 (d, J = 5.4 Hz, 1H, H-2), 4.28 - 4.21 (m, 1H, H-5), 4.08 - 4.03 (m, 1H, H-5'), 4.01 (t, J = 9.6 Hz, 1H, H-3'), 3.70 - 3.57 (m, 3H, H-2', H-4, H-4'), 2.34 (s, 3H, PhC H_3), 1.44 (s, 3H, CC H_3), 1.34 (s, 3H, CC H_3), 1.26 (d, J = 6.0 Hz, 3H, H-6). ¹³C NMR (150 MHz, CDCl₃) δ : 166.25, 138.53, 137.95, 137.94, 137.68, 133.05, 132.64, 129.85, 129.79, 129.71, 129.65, 129.46, 128.49, 128.38, 128.19, 128.08, 127.99, 127.90, 127.77,

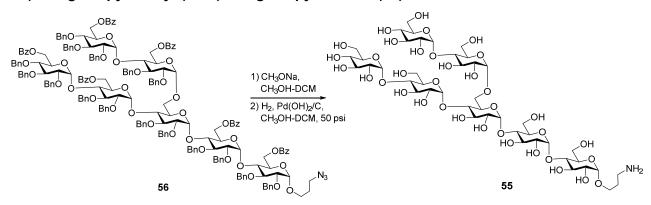
109.53 (CH₃CCH₃), 95.29 (C-1'), 84.18 (C-1), 81.75, 79.90, 78.35, 78.33, 77.72, 76.69, 75.94, 75.33, 73.05, 69.36, 65.39, 63.73, 27.93, 26.48, 21.17, 18.37. HR ESI-TOF MS (m/z): calcd for C₅₀H₅₈NO₁₀S [M + NH₄]⁺, 864.3781; found, 864.3783.

Diosgenyl 6-*O*-benzoyl-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside (54)

Donor **4** reacted with acceptor **18** by the general procedure for glycosylation to give product **54** (80 mg, 93% yield) as a syrup after column purification (hexanes/ethyl acetate, 15:1): $\alpha/\beta = 10:1$ as determined by integrations of H-1 and CH_3 signals with the stereochemistry determine by $J_{H1,H2}$ coupling constant.

α-**54**: ¹H NMR (600 MHz, CDCl₃) δ: 8.00 – 7.97 (m, 2H, Ph), 7.56 – 7.52 (m, 1H, Ph), 7.42 – 7.19 (m, 17H, Ph), 5.23 (d, J = 5.4 Hz, 1H), 5.04 (d, J = 10.8 Hz, 1H, Bn), 4.92 (d, J = 11.4 Hz, 1H, Bn), 4.91 (d, J = 3.6 Hz, 1H, H-1), 4.84 (d, J = 10.8 Hz, 1H, Bn), 4.78 (d, J = 12.0 Hz, 1H, Bn), 4.67 (d, J = 12.0 Hz, 1H, Bn), 4.61 (d, J = 10.8 Hz, 1H, Bn), 4.56 – 4.52 (m, 1H, H-6a), 4.48 – 4.40 (m, 2H, H-6b, H-4), 4.12 – 4.05 (m, 2H, H-3, H-5), 3.58 – 3.53 (m, 2H, H-2), 3.50 – 3.44 (m, 2H), 3.39 (t, J = 10.8 Hz, 1H), 2.50 – 2.40 (m, 1H), 2.33 – 2.28 (m, 1H), 2.03 – 1.40 (m, 15H), 1.35 – 0.75 (m, 19H). ¹³C NMR (150 MHz, CDCl₃) δ: 166.26, 140.59, 138.63, 138.10, 137.72, 132.97, 129.85, 129.71, 128.52, 128.47, 128.43, 128.41, 128.37, 128.32, 128.20, 128.15, 128.11, 128.07, 128.00, 127.97, 127.94, 127.72, 121.53, 109.27, 94.38 (C-1), 82.07, 80.80, 80.05, 77.98, 76.58, 75.89, 75.28, 73.13, 68.85, 66.84, 63.77, 62.09, 56.52, 49.99, 41.59, 40.26, 39.86, 39.76, 37.00, 36.89, 32.10, 31.85, 31.41, 31.38, 30.30, 28.80, 27.39, 20.82, 19.38, 19.35, 17.15, 16.29, 14.55. HR ESI-TOF MS (m/z): calcd for C₆₁H₇₈NO₉ [M + NH₄]⁺, 968.5677; found, 968.5682.

3-Azidopropyl 6-O-benzyl- α -D-glucopyranosyl- $(1 \rightarrow 4)$ -6-O-benzyl- α -D-glucopyranoside (58)


After the mixture of donor **62** (350 mg, 0.51 mmol) and freshly activated MS 4Å in anhydrous diethyl ether (20 mL) was stirred at room temperature for 1.0 h and then cooled to -78 °C, a solution of AgOTf (132 mg, 0.51 mmol) in diethyl ether (1.5 mL) was added. The mixture was stirred for 15 min, and *p*-

ToISCI (74 µL, 0.51 mmol) was added through a microsyringe without touching the flask. Fifteen minutes later, a solution of acceptor 61 (262 mg, 0.46 mmol) in anhydrous diethyl ether (2.0 mL), which was precooled to -78 °C, was added. The reaction was warmed up to room temperature slowly in 1.5 h and stirred for another 15 min, before it was cooled to -78 °C again. Next, the AgOTf (118 mg, 0.46 mmol) in anhydrous diethyl ether (1.0 mL), p-TolSCI (66 µL, 0.46 mmol), and precooled 10 (46 mg, 0.46 mmol) were added sequentially. The reaction mixture was warmed up to room temperature slowly and stirred for another 15 min before it was quenched with Et₃N, diluted with CH₂Cl₂, and filtered. The filtrate was concentrated under vacuum, and the residue purified by flash silica gel column chromatography (hexanes/ethyl acetate, 8:1) to provide 63. To the solution of 63 in acetonitrile/CH₂Cl₂ (V/V, 1:3, 4 mL) was added triethylamine trihydrofluoride (1 mL). The reaction solution was stirred at room temperature for overnight. The mixture was diluted with ethyl acetate (20 mL) and washed with saturated aq. NaHCO3 solution and brine, the organic layer was dried with Na₂SO₄ and concentrated. Purification of the residue on a silica gel column (hexanes/ethyl acetate, 7:1) provided product 58 (279 mg, 61% for three steps) as a syrup. ¹H NMR (600 MHz, CDCl₃) δ: 8.08 – 7.96 (m, 4H, Ph), 7.60 – 7.51 (m, 2H, Ph), 7.47 – 7.37 (m, 4H, Ph), 7.31 - 7.15 (m, 20H, Ph), 5.71 (d, J = 3.6 Hz, 1H, H-1'), 5.02 (d, J = 11.4 Hz, 1H, Bn), 4.89(d, J = 10.8 Hz, 1H, Bn), 4.82 - 4.75 (m, 2H, Bn), 4.72 (d, J = 3.6 Hz, 1H, H-1), 4.71 (dd, J = 12.0, 2.4)Hz, 1H, H-6a), 4.65 (d, J = 12.0 Hz, 1H, Bn), 4.61 (d, J = 12.0 Hz, 1H, Bn), 4.58 (dd, J = 12.0, 3.6 Hz, 1H, H-6a'), 4.55 - 4.52 (m, 3H, Bn, H-6b), 4.28 (dd, J = 12.0, 2.4 Hz, 1H, H-6b'), 4.10 (t, J = 9.0 Hz, 1H, H-3'), 4.09 - 4.05 (m, 1H, H-5), 4.00 (dd, J = 9.6, 8.4 Hz, 1H, H-4), 3.90 - 3.87 (m, 1H, H-5'), 3.86 (t, J =9.6 Hz, 1H, H-3), 3.77 - 3.71 (m, 1H, OC H_2 CH₂), 3.58 (dd, J = 9.0, 3.6 Hz, 1H, H-2), 3.51 (t, J = 9.6 Hz, 1H, H-4'), 3.47 - 3.38 (m, 4H, H-2', OC H_2 CH₂, N₃C H_2), 2.77 (s, 1H, OH), 1.94 – 1.87 (m, 2H, CH₂CH₂CH₂). ¹³C NMR (150 MHz, CDCl₃) δ : 166.87, 166.15, 138.83, 138.40, 137.83, 137.76, 133.25, 133.15, 129.82, 129.71, 129.67, 129.64, 128.51, 128.48, 128.34, 128.32, 128.31, 128.25, 128.02, 128.00, 127.97, 127.83, 127.65, 127.58, 127.13, 126.57, 97.12 (C-1'), 96.58 (C-1), 81.46, 80.86, 80.41, 78.91, 75.60, 74.17, 73.60, 73.37, 73.22, 71.12, 70.20, 68.39, 64.89, 63.79, 63.42, 48.25, 28.78. HR ESI-TOF MS (m/z): calcd for $C_{57}H_{59}N_3O_{13}Na$ [M + Na]⁺, 1016.3946; found, 1016.3933.

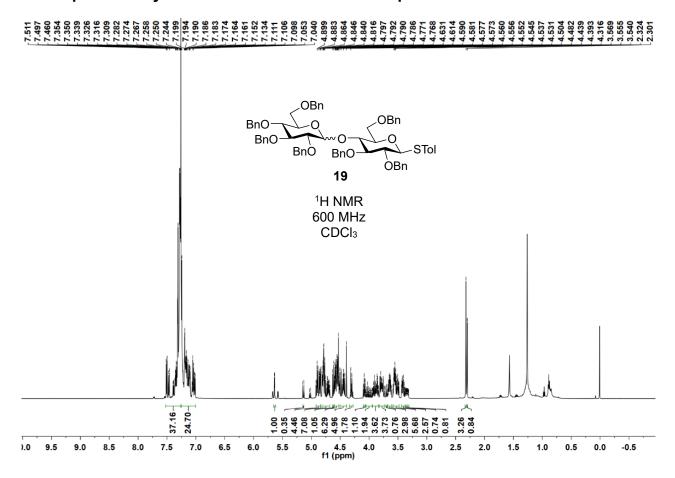
3-Azidopropyl 4,6-di-O-[6-O-benzoyl-2,3,4-tri-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-6-O-benzoyl-2,3-di-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-6-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-6-O-benzoyl-2,3-di-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-6-O-benzoyl-2,3-di-O-benzyl- α -D-glucopyranoside (56)

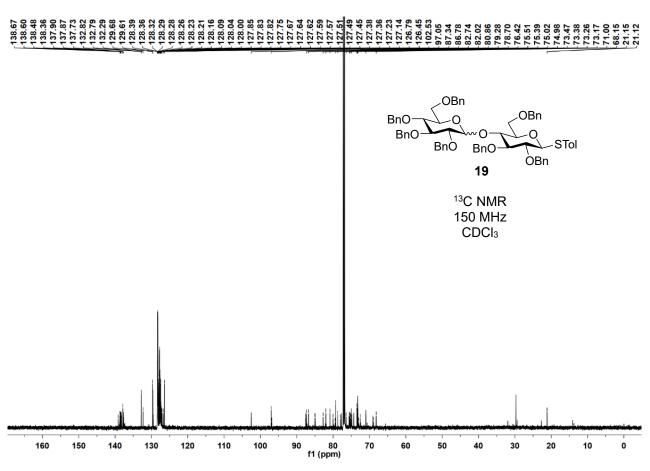
After the mixture of donor 4 (128 mg, 194 µmol) and freshly activated MS 4Å in anhydrous diethyl ether (10 mL) was stirred at room temperature for 1.0 h and then cooled to -78 °C, a solution of AgOTf (50 mg, 194 µmol) in diethyl ether (0.5 mL) was added. The mixture was stirred for 15 min, and p-ToISCI (28 µL, 194 µmol) was added through a microsyringe without touching the flask. Fifteen minutes later, a solution of precooled acceptor 61 (100 mg, 176 µmol) in anhydrous diethyl ether (1.5 mL) was added. The reaction was warmed up to room temperature slowly in 1.5 h and stirred for another 15 min, before it was cooled to -78 °C. Next, the AgOTf (45 mg, 176 µmol) in anhydrous diethyl ether (0.5 mL), p-ToISCI (25 μL, 176 μmol), and precooled **59** (37 mg, 80 μmol) were added sequentially. The reaction mixture was warmed up to room temperature slowly in 1.5 h and stirred for another 15 min before it was cooled to -78 °C again. Then, the AgOTf (21 mg, 80 μmol) in anhydrous diethyl ether (0.2 mL), p-TolSCl (12 μL, 80 µmol), and precooled 58 (79 mg, 80 µmol) were added in the same sequence. The reaction was warmed up to room temperature slowly and stirred for another 15 min before it was quenched with Et₃N, diluted with CH₂Cl₂, and filtered. The filtrate was concentrated under vacuum, and the residue purified by flash silica gel column chromatography (hexanes/ethyl acetate, 8:1) to provide 56 (143 mg, 54% yield for one-pot three step reactions) as a white syrup. ¹H NMR (600 MHz, CDCl₃) δ : 8.16 – 8.09 (m, 3H, Ph), 8.08 - 7.99 (m, 4H, Ph), 7.95 - 7.89 (m, 4H, Ph), 7.58 - 6.85 (m, 99H, Ph), 5.86 (d, J = 3.6 Hz, 1H, H-1^A), 5.68 (d, J = 3.6 Hz, 1H, H-1^B), 5.62 (d, J = 3.6 Hz, 1H, H-1^C), 5.59 (d, J = 3.6 Hz, 1H, H-1^D), 5.36 (d, J = 3.0 Hz, 1H, H-1^E), 5.29 (d, J = 3.6 Hz, 1H, H-1^F), 5.17 (d, J = 10.8 Hz, 1H, Bn), 5.05 – 4.97 (m, 2H), 4.90 - 4.79 (m, 7H), 4.78 - 4.74 (m, 3H), 4.72 (d, J = 3.6 Hz, 1H, H-1^G), 4.70 - 4.65 (m, 4H), 4.65 - 4.58(m, 4H), 4.58 - 4.43 (m, 13H), 4.41 - 4.29 (m, 5H), 4.26 - 4.19 (m, 4H), 4.19 - 4.03 (m, 10H), 4.02 -3.88 (m, 8H), 3.80 (d, J = 10.2 Hz, 1H), 3.75 – 3.69 (m, 1H), 3.65 (t, J = 9.6 Hz, 1H), 3.62 – 3.57 (m, 3H), 3.57 - 3.35 (m, 10H), 3.16 (dd, J = 9.6, 3.6 Hz, 1H), 1.93 - 1.81 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ : 166.12, 166.04, 165.96, 165.86, 165.73, 139.17, 138.89, 138.73, 138.63, 138.40, 138.15, 137.94, 137.90, 137.89, 137.82, 137.71, 137.68, 137.57, 133.45, 133.30, 133.18, 133.04, 132.88, 132.84, 130.04, 129.97, 129.95, 129.91, 129.84, 129.81, 129.76, 129.73, 129.70, 129.66, 129.64, 129.62, 129.58, 128.66, 128.54, 128.52, 128.49, 128.45, 128.40, 128.38, 128.34, 128.32, 128.31, 128.27, 128.25, 128.22, 128.18, 128.15, 128.08, 128.04, 128.00, 127.98, 127.95, 127.94, 127.92, 127.85, 127.75, 127.74, 127.71, 127.67, 127.53, 127.50, 127.48, 127.42, 127.37, 127.25, 127.23, 127.20, 127.16, 127.03, 126.85, 126.81, 126.72, 126.68, 126.50, 126.26, 96.96 (C-1 $^{\text{D}}$), 96.93 (C-1 $^{\text{A}}$), 96.90 (C-1 $^{\text{B}}$), 96.71 (C-1 $^{\text{E}}$), 96.63 (C-1 $^{\text{G}}$), 96.54 (C-1 $^{\text{C}}$), 96.25 (C-1 $^{\text{F}}$), 81.88, 81.62, 81.34, 81.21, 80.85, 80.31, 80.19, 79.91, 79.64, 79.35, 79.05, 78.88, 78.26, 77.63, 77.57, 75.75, 75.63, 75.33, 74.96, 74.90, 74.77, 74.40, 73.85, 73.72, 73.57, 73.34, 73.26, 72.49, 72.30, 72.24, 71.95, 69.97, 69.80, 69.44, 69.38, 68.62, 67.87, 64.89, 63.98, 63.86, 63.61, 63.31, 63.03, 62.97, 48.28, 28.81. HR ESI-TOF MS (m/z): calcd for $C_{199}H_{201}N_4O_{42}$ [M + NH₄] $^{+}$, 3318.3715; found, 3318.3709.

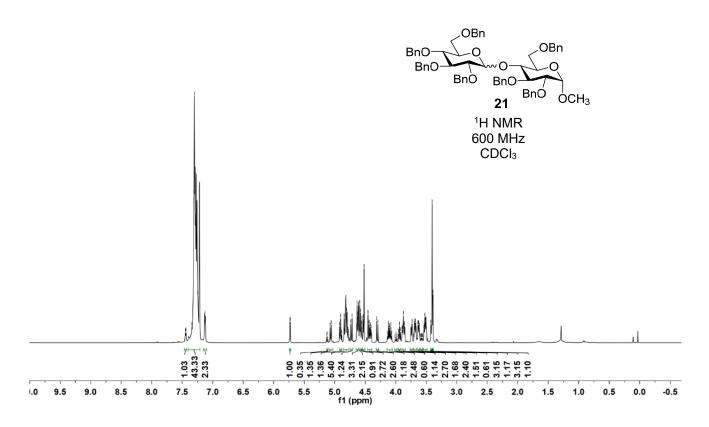
3-Aminopropyl 4,6-di-O-[α -D-glucopyranosyl-(1 \rightarrow 4)- α -D-glucopyranosyl]- α -D-glucopyranosyl-(1 \rightarrow 4)- α -D-glucopyranosyl-(1 \rightarrow

To a solution of 56 (50 mg, 15 µmol) in CH₃OH/CH₂Cl₂ (V/V, 3:1, 10 mL) was added sodium methoxide (1 mL, 1.0 M in methanol). The reaction mixture was stirred at room temperature for 3 hours and then neutralized by Amberlite® IR120 hydrogen form. The resin was removed by filtration and the filtrate was concentrated under vacuum. The residue was dissolved in a mixed solvent of CH₃OH/CH₂Cl₂ (V/V, 9:1, 10 mL), and a catalytic amount of 20 wt% Pd(OH)₂/C was added. The reaction mixture was stirred for 36 h under H₂ atmosphere in 50 psi. The progress of the reaction was monitored by MALDI-TOF mass spectrometer. Upon completion, the reaction mixture was filtrated and the filtrate was purified on a Sephadex G-25 gel column with H₂O as the eluent to produce the synthetic target **55** (16 mg, 85% over two steps) as a white foam. ¹H NMR (600 MHz, D₂O) δ : 5.23 (d, J = 4.2 Hz, 1H, H-1^A), 5.21 (d, J = 3.6Hz, 1H, H-1^B), 5.18 (d, J = 4.2 Hz, 1H, H-1^C), 5.16 (d, J = 3.6 Hz, 1H, H-1^D), 5.14 (d, J = 3.6 Hz, 1H, H-1^D), 5.15 (d, J = 3.6 Hz, 1H, H-1^D), 5.15 (d, J = 3.6 Hz, 1H, H-1^D), 5.14 (d, J = 3.6 Hz, 1H, H-1^D), 5.15 (d, J = 3.6 Hz, 1H, H-1^D), 5.15 (d, J = 3.6 Hz, 1H, H-1^D), 5.16 (d, J = 3.6 Hz, 1H, H-1^D), 5.16 (d, J = 3.6 Hz, 1H, H-1^D), 5.16 (d, J = 3.6 Hz, 1H, H-1^D), 5.17 (d, J = 3.6 Hz, 1H, H-1^D), 5.18 (d, J 1^{E}), 4.78 (d, J = 3.6 Hz, 1H, H- 1^{F}), 4.75 (d, J = 4.2 Hz, 1H, H- 1^{G}), 3.87 – 3.37 (m, 42H), 3.25 – 3.21 (m, 2H), 3.04 - 2.92 (m, 2H), 1.87 - 1.78 (m, 2H). ¹³C NMR (150 MHz, D_2O) δ : 99.86 (C-1^E), 99.81 (C-1^C), 99.75 (C-1^D), 99.56 (C-1^B), 99.32 (C-1^A), 98.37 (C-1^F), 98.00 (C-1^G), 78.59, 77.65, 77.24, 76.64, 76.54, 73.37, 73.23, 73.20, 73.11, 72.88, 72.79, 72.71, 72.59, 71.69, 71.56, 71.52, 71.26, 71.23, 71.20, 71.17, 71.00, 70.77, 70.23, 70.22, 70.12, 69.16, 69.15, 67.32, 65.75, 60.53, 60.43, 60.36, 60.34, 60.32, 60.23, 37.67, 26.37. HR ESI-TOF MS (m/z): calcd for $C_{45}H_{80}NO_{36}$ [M + H]⁺, 1210.4460, found, 1210.4484.

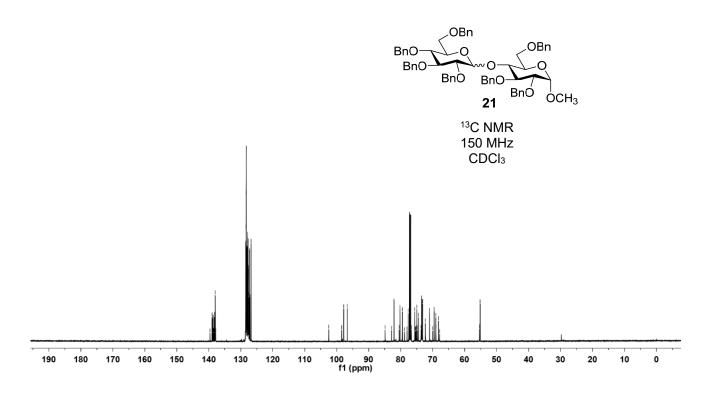
p-Tolyl 6-O-benzoyl-2,3,4-tri-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-6-O-benzoyl-2,3-di-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3-di-O-benzyl-1-thio- β -D-glucopyranoside (64)

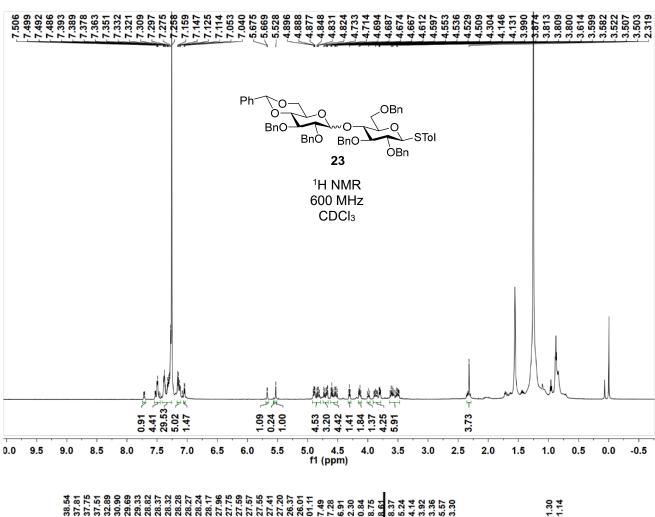

Donor 60 (300 mg, 0.27 mmol) reacted with acceptor 59 (115 mg, 0.25 mmol) by the general procedure for glycosylation to give product 64 (286 mg, 80%) as a syrup after column purification (hexanes/ethyl acetate, 6:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.04 (d, J = 8.4 Hz, 2H, Ph), 7.97 (d, J = 8.4 Hz, 2H, Ph), 7.57 – 6.96 (m, 45H, Ph), 5.60 (d, J = 3.6Hz, 1H, H-1"), 5.01 (d, J = 11.4 Hz, 1H, Bn), 4.87 (d, J = 3.0 Hz, 1H, H-1'), 4.93 – 4.80 (m, 6H, Bn), 4.76 (d, J = 10.8 Hz, 1H, Bn), 4.72 - 4.52 (m, 9H, H-1, H-6a',6b', Bn), 4.39 (dd, J = 12.0, 1.8 Hz, 1H, H-6a''),4.33 (dd, J = 12.0, 3.6 Hz, 1H, H-6b"), 4.20 – 4.04 (m, 2H, H-3', H-5'), 4.04 – 3.94 (m, 4H, H-3", H-4', H-5", H-6a), 3.73 (t, J = 9.6 Hz, 1H, H-4), 3.62 - 3.57 (m, 3H, H-2', H-4", H-6b), 3.54 (t, J = 9.0 Hz, 1H, H-3), 3.51 - 3.46 (m, 2H, H-5, H-2"), 3.33 (t, J = 9.6 Hz, 1H, H-2), 3.06 - 2.98 (m, 1H, OH), 2.25 (s, 3H, PhC H_3). ¹³C NMR (150 MHz, CDCl₃) δ : 166.13, 165.96, 138.95, 138.60, 138.34, 138.06, 137.87, 137.80, 137.77, 133.13, 132.95, 132.64, 129.92, 129.88, 129.78, 129.76, 129.72, 129.66, 128.55, 128.52, 128.51, 128.47, 128.44, 128.41, 128.36, 128.33, 128.31, 128.25, 128.18, 127.96, 127.92, 127.85, 127.81, 127.78, 127.68, 127.57, 127.52, 127.03, 126.56, 97.35 (C-1"), 97.01 (C-1'), 88.28 (C-1), 86.12, 81.70, 81.29, 80.28, 80.16, 79.48, 77.63, 77.26, 75.74, 75.49, 75.35, 75.02, 74.62, 74.31, 73.44, 72.94, 72.13, 70.04, 68.41, 68.07, 63.82, 63.25, 21.10. HR ESI-TOF MS (m/z): calcd for C₈₈H₉₂NO₁₇S [M + NH₄]⁺, 1466.6086; found, 1466.6102.

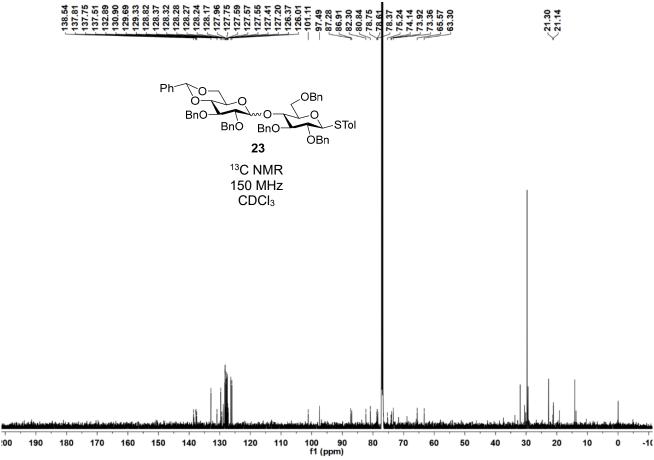

p-Tolyl 4,6-di-O-[6-O-benzoyl-2,3,4-tri-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-6-O-benzoyl-2,3-di-O-benzyl- α -D-glucopyranosyl]-2,3-di-O-benzyl-1-thio- β -D-glucopyranoside (57)

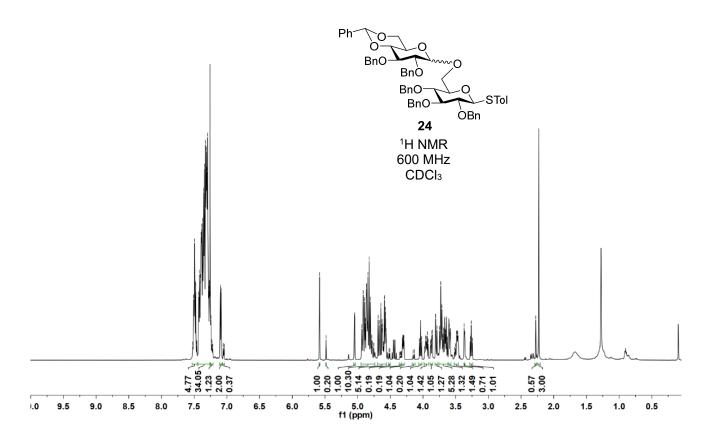

Donor **60** (180 mg, 0.16 mmol) reacted with acceptor **64** (214 mg, 0.15 mmol) by the general procedure for glycosylation to give product **57** (316 mg, 88%) as a syrup after column purification

(hexanes/ethyl acetate, 8:1) with the stereochemistry determined by $J_{\rm H1',H2'}$ coupling constant. ¹H NMR (600 MHz, CDCl₃) δ : 8.05 (d, J = 7.8 Hz, 2H, Ph), 8.01 (d, J = 7.8 Hz, 2H, Ph), 7.94 (d, J = 8.4 Hz, 4H, Ph), 7.53 - 6.91 (m, 76H, Ph), 5.63 (d, J = 3.6 Hz, 1H, $H-1^A$), 5.58 (d, J = 3.6 Hz, 1H, $H-1^B$), 5.36 (d, J = 3.6 Hz, 1H, 1H), 1H3.0 Hz, 1H, H-1°), 5.24 (d, J = 3.0 Hz, 1H, H-1°), 5.09 (d, J = 11.4 Hz, 1H, Bn), 4.95 (d, J = 11.4 Hz, 1H, Bn), 4.90 - 4.64 (m, 13H, Bn), 4.68 - 4.44 (m, 12H, $H-1^{E}$, Bn), 4.42 - 4.16 (m, 8H), 4.15 - 3.83 (m, 11H), $3.69 (t, J = 8.4 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H, H-3^{E}), 3.58 - 3.52 (m, 3H), 3.52 - 3.39 (m, 3H), 3.23 (t, 3.69 (t, J = 8.4 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H, H-3^{E}), 3.58 - 3.52 (m, 3H), 3.52 - 3.39 (m, 3H), 3.23 (t, 3.69 (t, J = 8.4 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H, H-3^{E}), 3.58 - 3.52 (m, 3H), 3.52 - 3.39 (m, 3H), 3.23 (t, 3.69 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.52 - 3.52 (m, 3H), 3.52 - 3.39 (m, 3H), 3.23 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.58 - 3.52 (m, 3H), 3.52 - 3.39 (m, 3H), 3.23 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.60 (t, J = 9.6 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.60 (t, J =$ J = 9.6 Hz, 1H, H-2^E), 2.23 (s, 3H, PhC H_3). ¹³C NMR (150 MHz, CDCl₃) δ : 166.03, 165.95, 165.90, 165.89, 138.92, 138.68, 138.39, 138.31, 138.06, 137.89, 137.86, 137.85, 137.82, 137.72, 137.71, 137.54, 133.16, 133.03, 132.94, 132.88, 132.76, 130.89, 130.11, 129.96, 129.93, 129.89, 129.78, 129.73, 129.70, 129.66, 129.66, 129.62, 128.81, 128.46, 128.41, 128.38, 128.36, 128.30, 128.26, 128.22, 128.20, 128.13, 128.08, 128.05, 127.99, 127.93, 127.88, 127.85, 127.78, 127.68, 127.64, 127.61, 127.55, 127.51, 127.47, 127.45, 127.35, 127.08, 127.00, 126.96, 126.86, 126.50, 126.38, 97.56 (C-1^B), 97.14 (C-1^A), 96.78 (C-1^C), 96.21 $(C-1^{D})$, 88.33 $(C-1^{E})$, 85.54, 81.77, 81.64, 81.19, 80.84, 80.54, 80.27, 79.84, 79.43, 79.31, 78.36, 77.55, 75.70, 75.66, 75.29, 75.22, 75.05, 74.91, 74.19, 73.88, 73.38, 73.15, 72.56, 72.51, 70.04, 69.92, 69.53, 68.33, 65.60, 65.55, 63.79, 63.72, 63.17, 21.10. HR ESI-TOF MS (m/z): calcd for $C_{149}H_{150}NO_{29}S$ [M + NH₄]⁺, 2449.0014; found, 2449.0010.

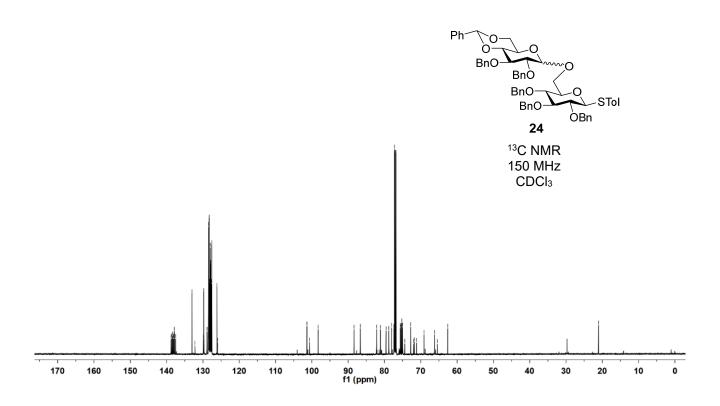

II. NMR spectra of synthetic intermediates and final products

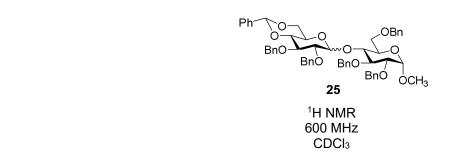


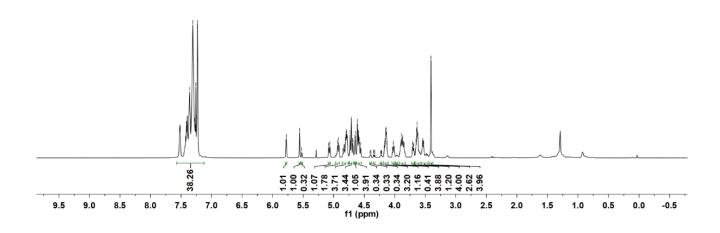


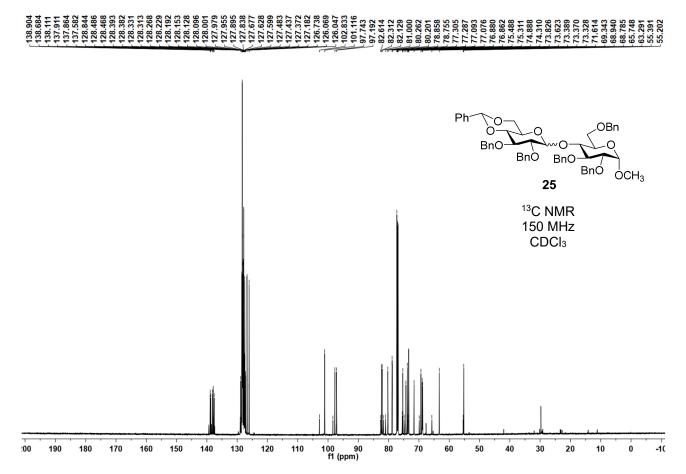


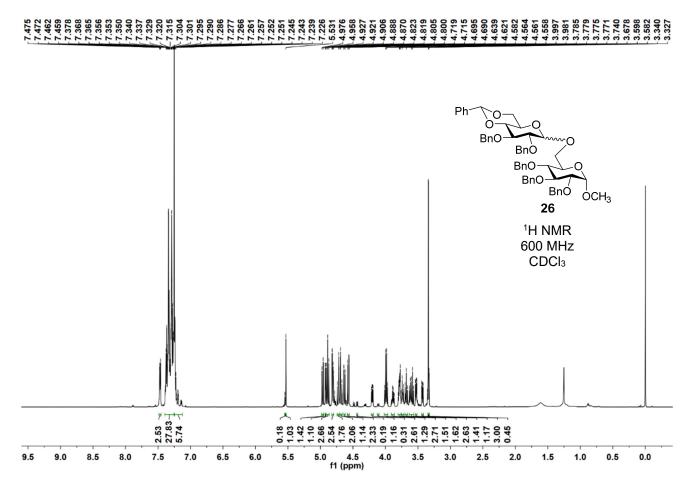
138.96 138.15 138.26 138.27 138.28 138.39 128.39 128.39 128.30 127.30 12

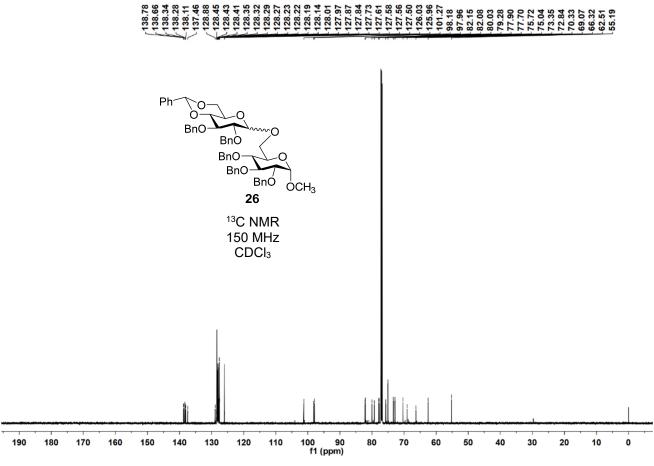


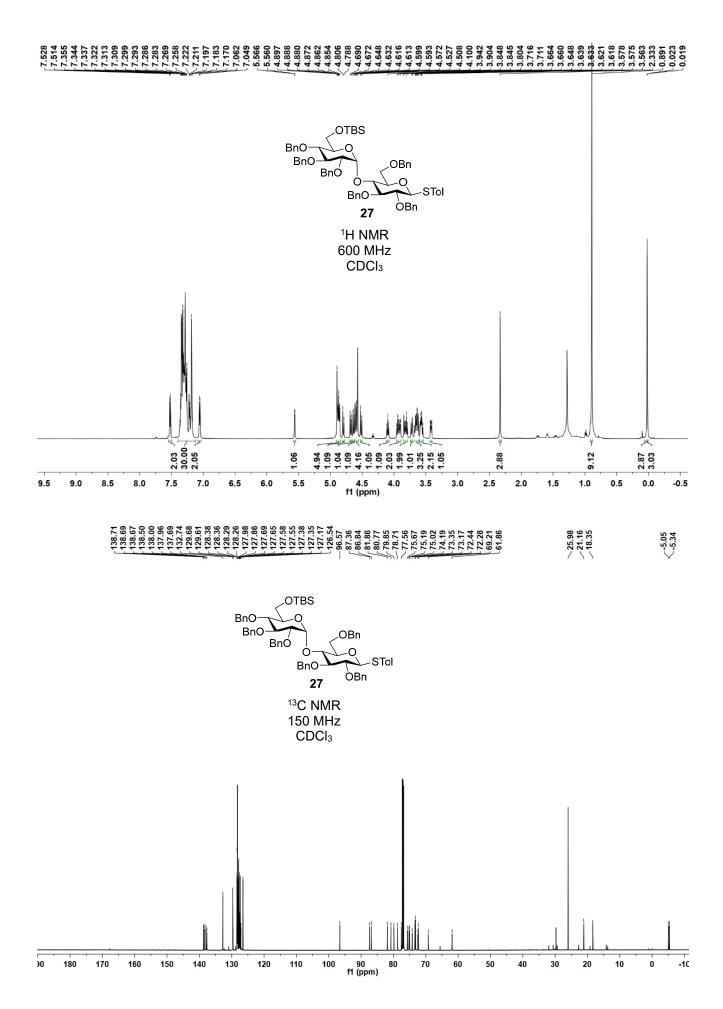


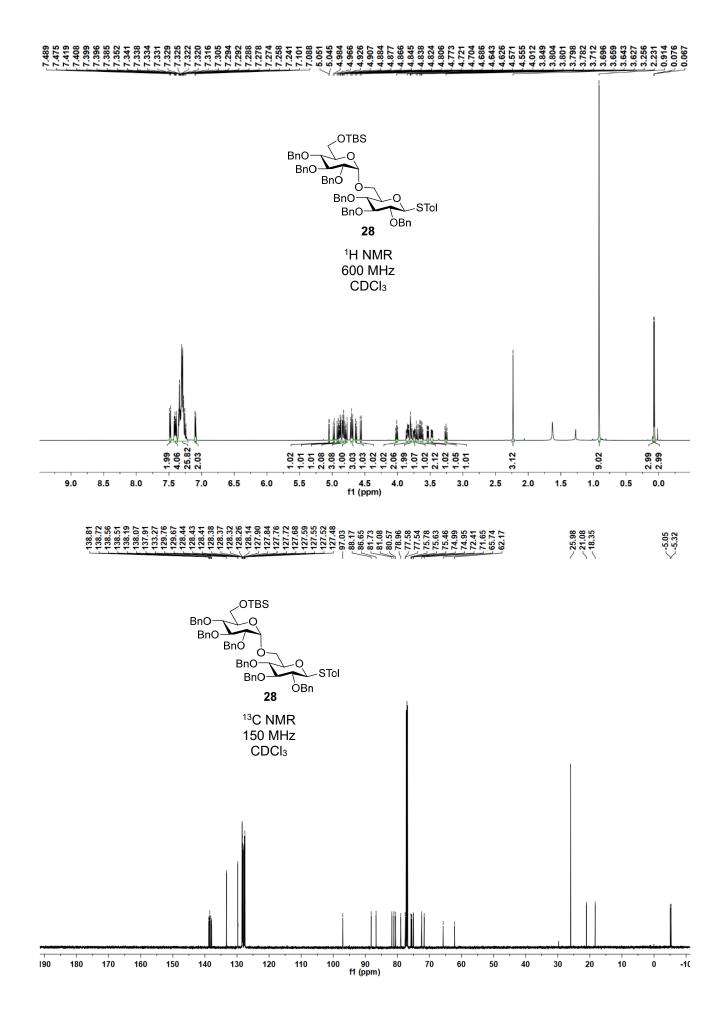


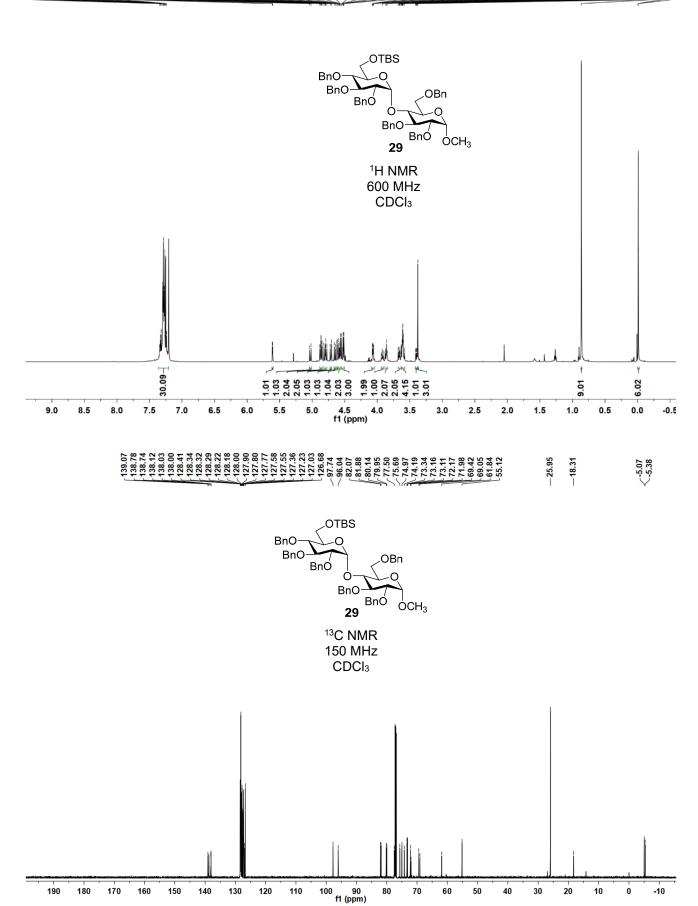


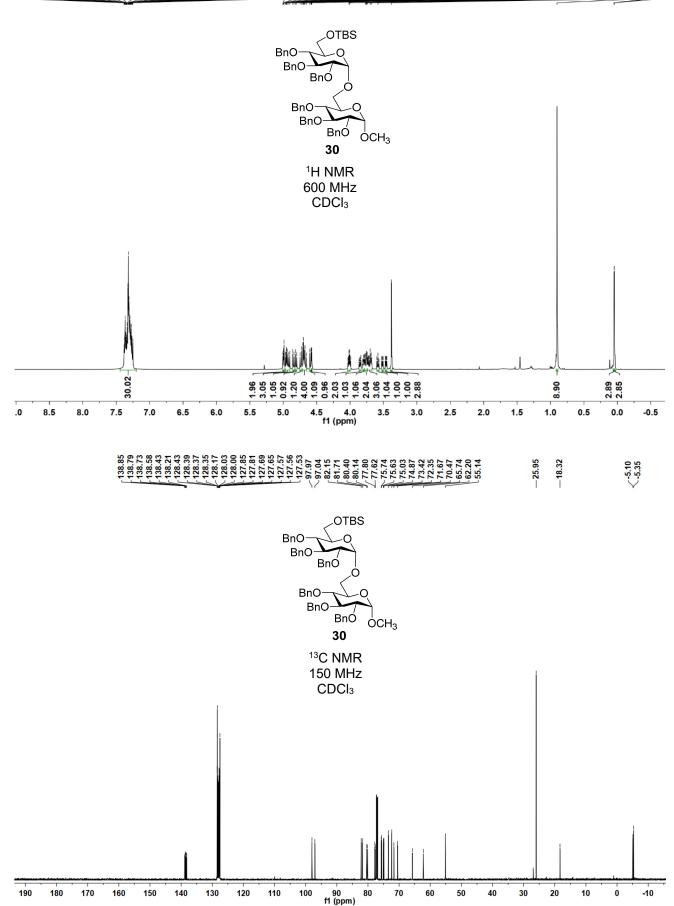


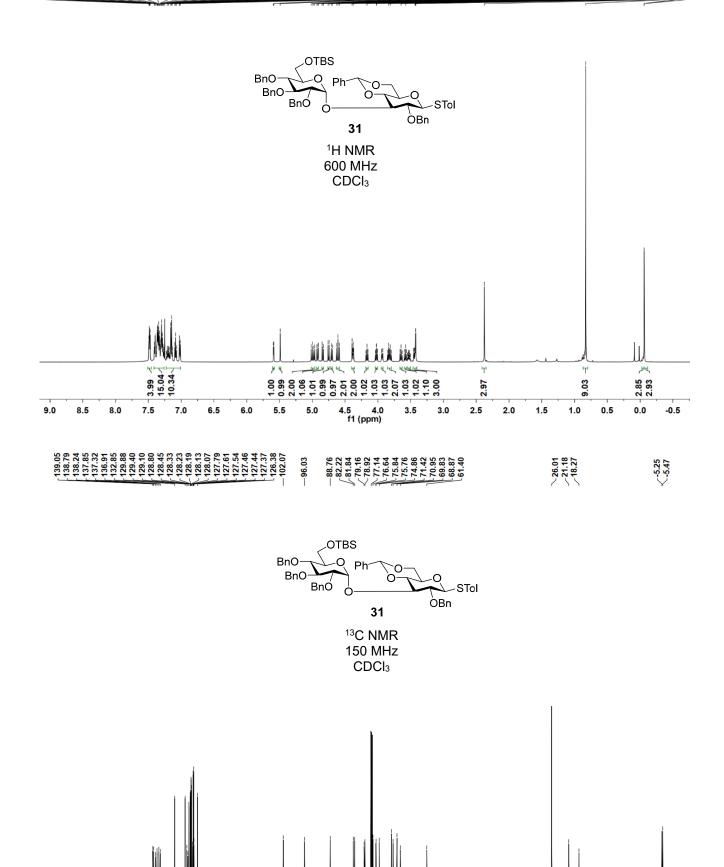


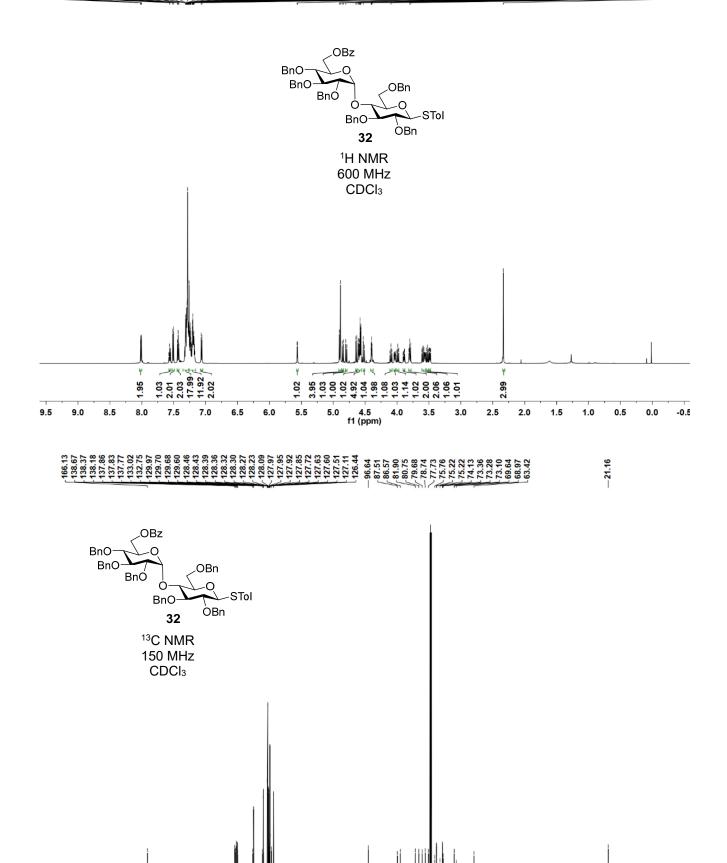


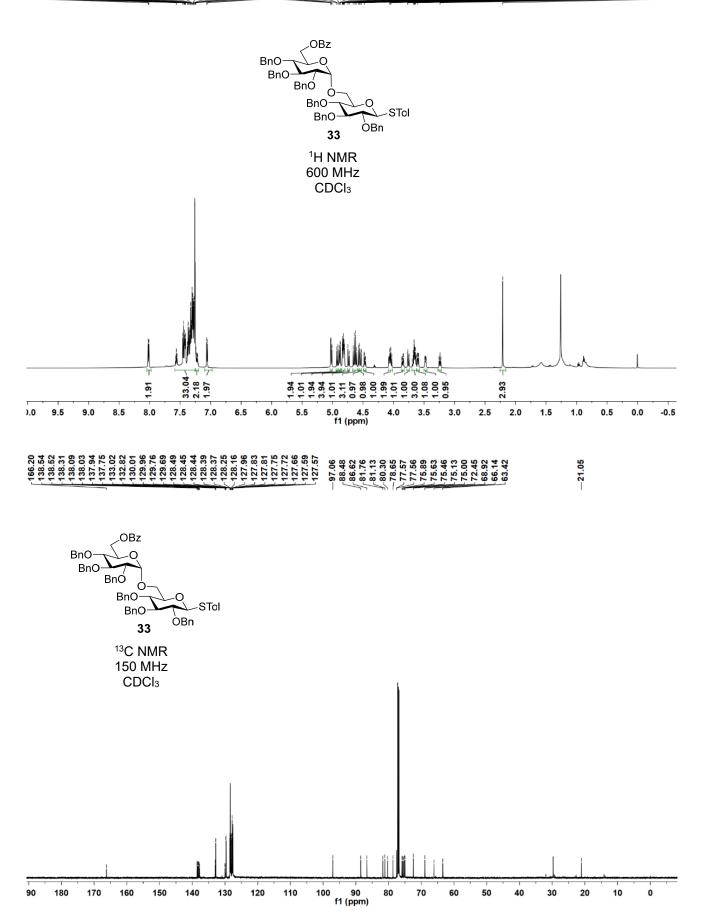


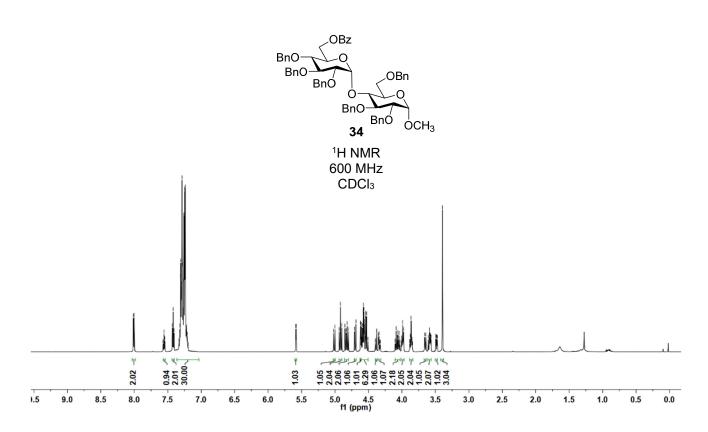






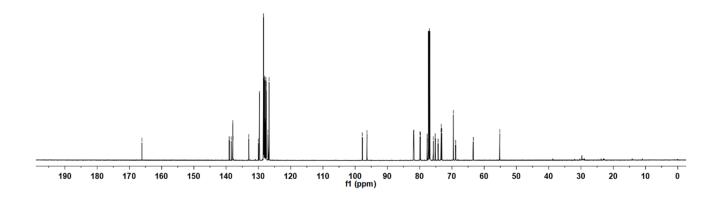


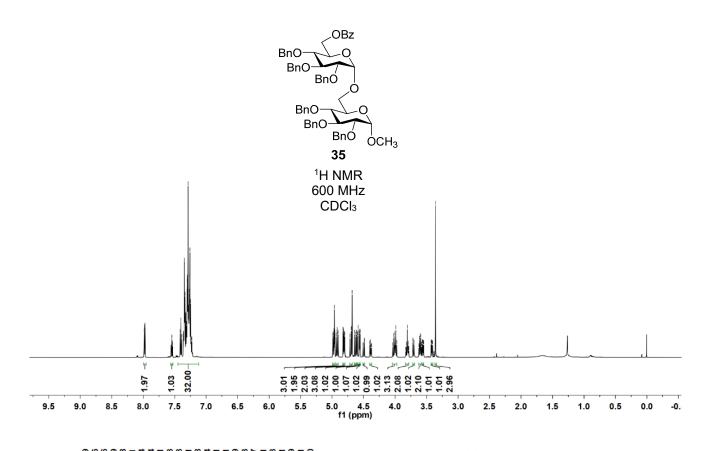


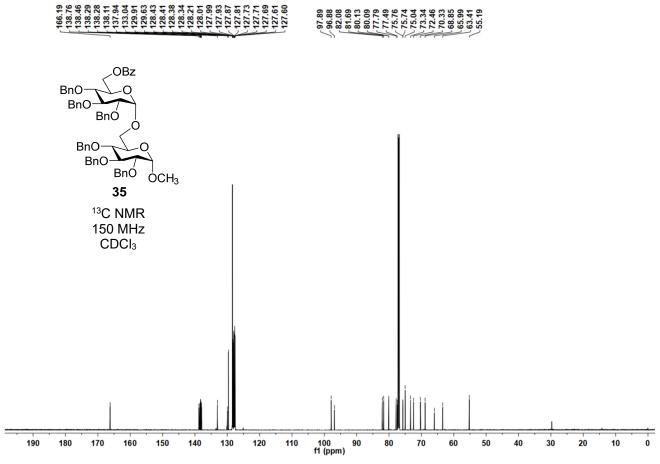


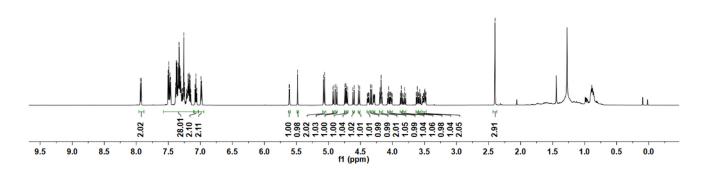

f1 (ppm)

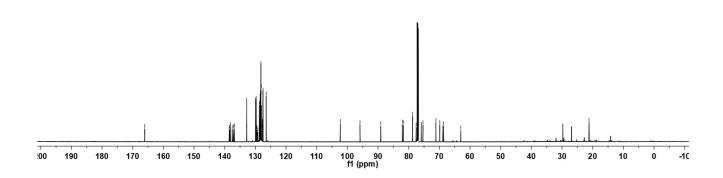
100 90 f1 (ppm)

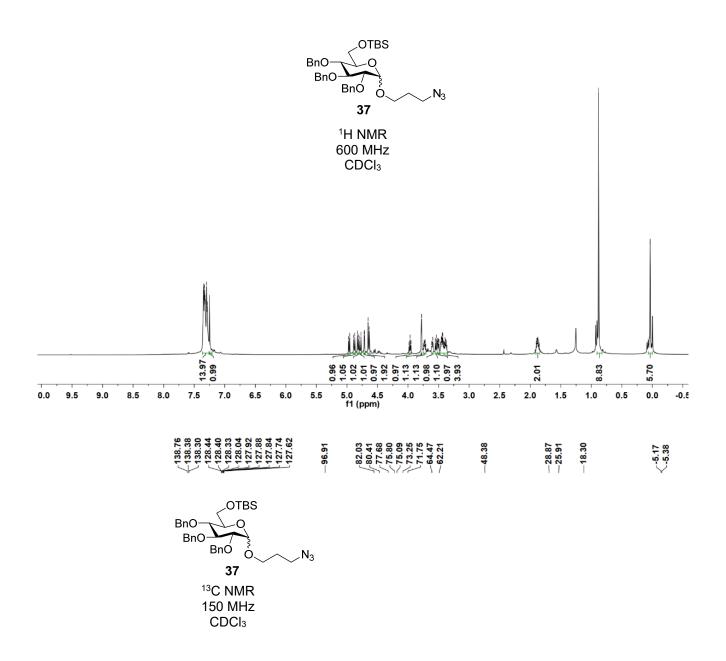


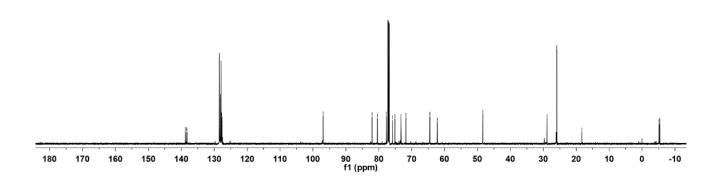


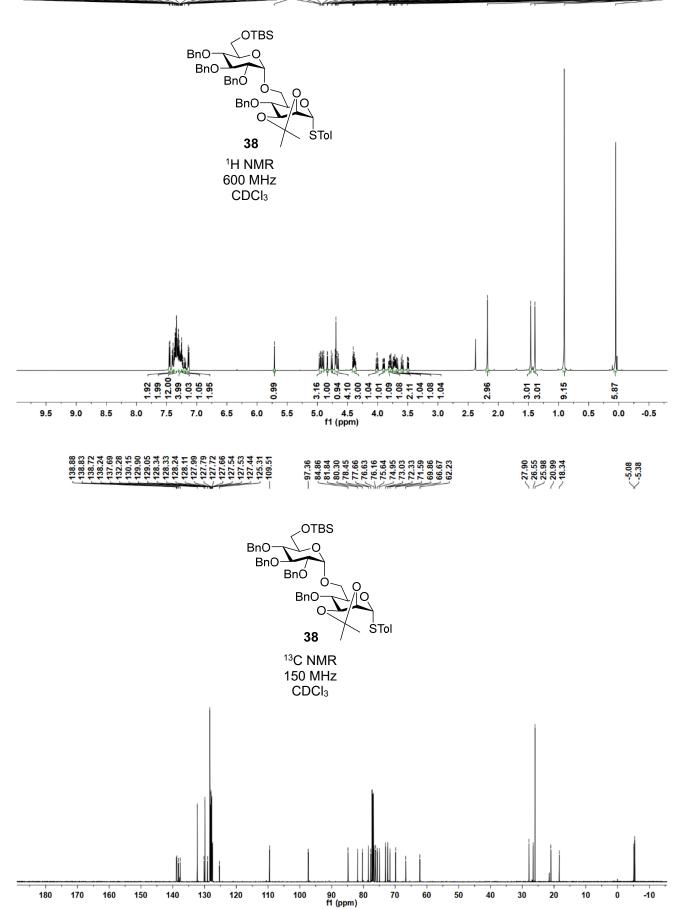


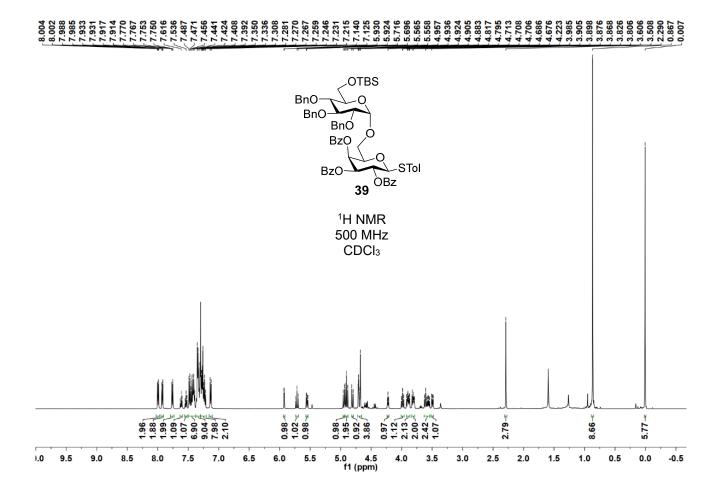

¹³C NMR 150 MHz CDCl₃

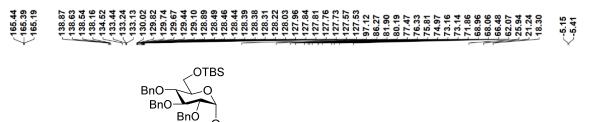

¹H NMR 600 MHz CDCl₃

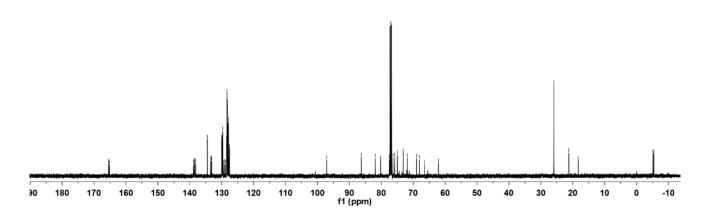



188.55 138.55 138.55 138.55 138.66 132.85 129.72 129.72 129.50 129.50 128.43 128.43 128.43 128.43 128.43 128.43 128.43 128.43 128.43 127.74 127.74 127.74 127.74 127.54 127.54 127.54 127.59 127.58 127.59 12

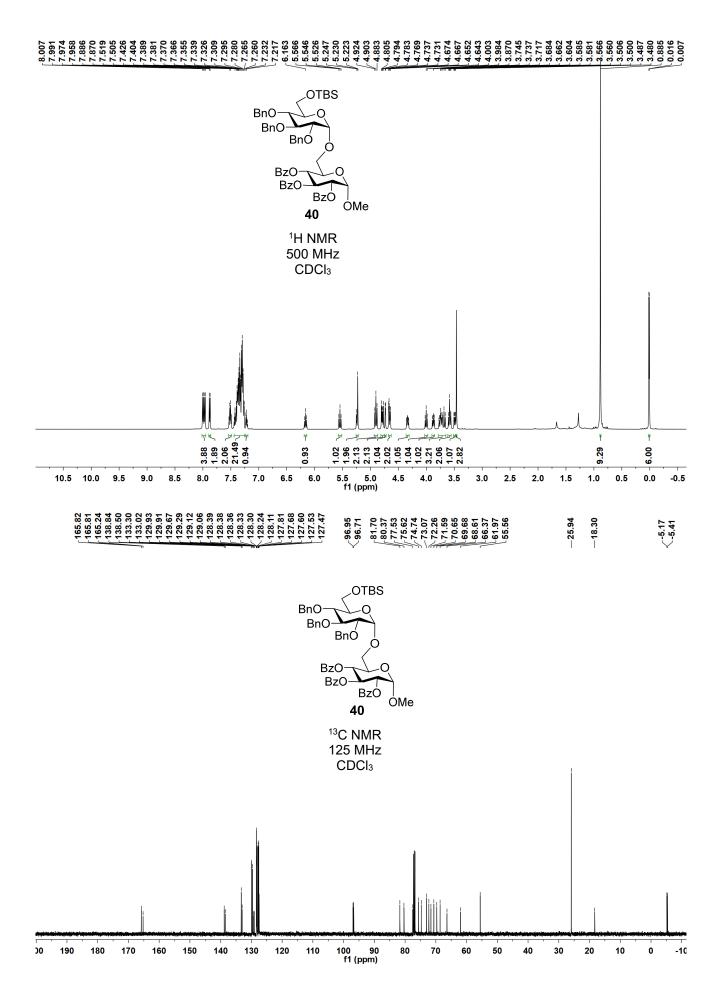

-21.21

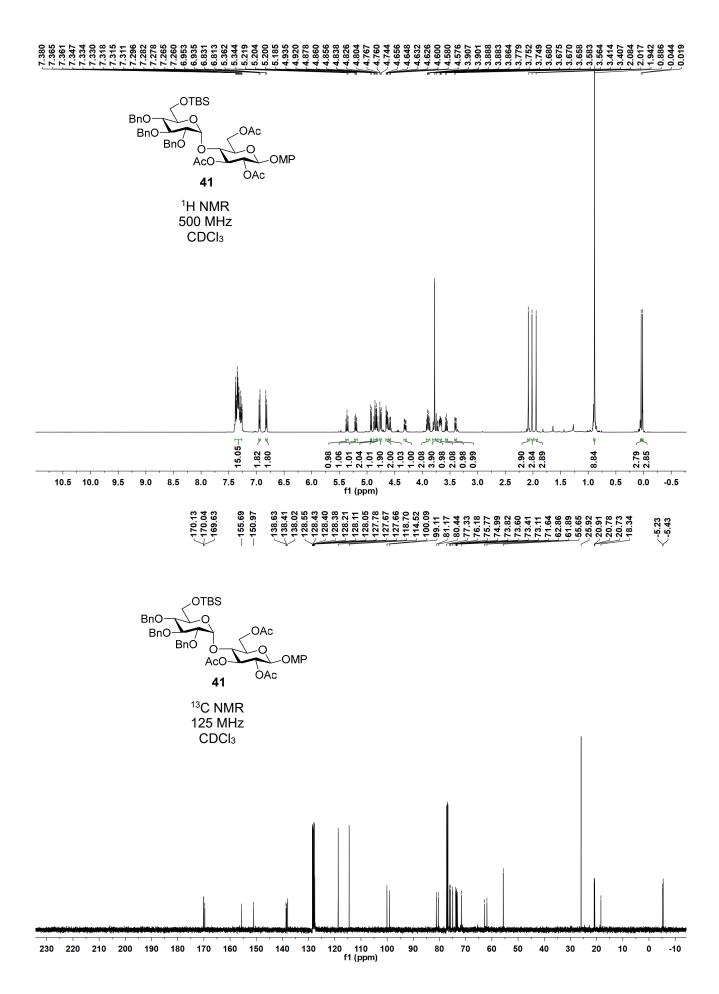

¹³C NMR 150 MHz CDCl₃

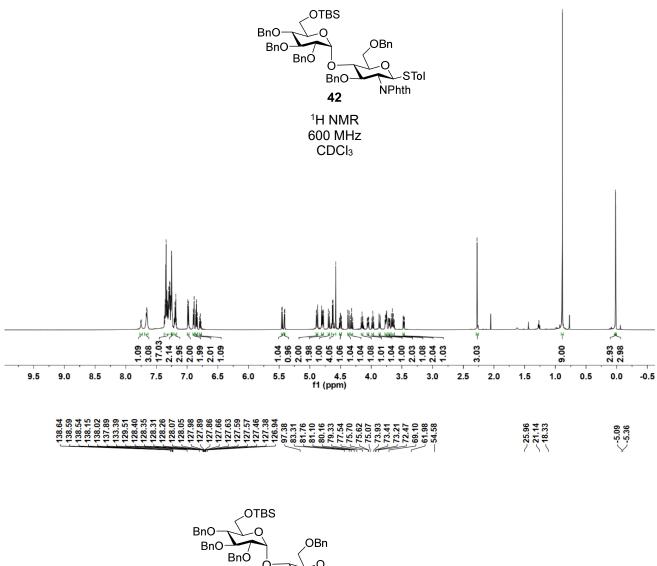




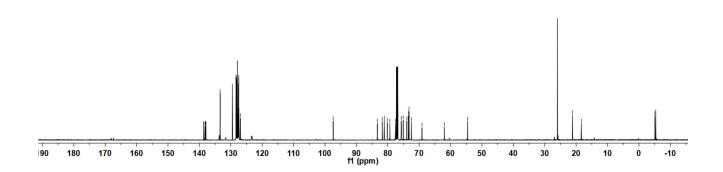
¹³C NMR 125 MHz CDCl₃

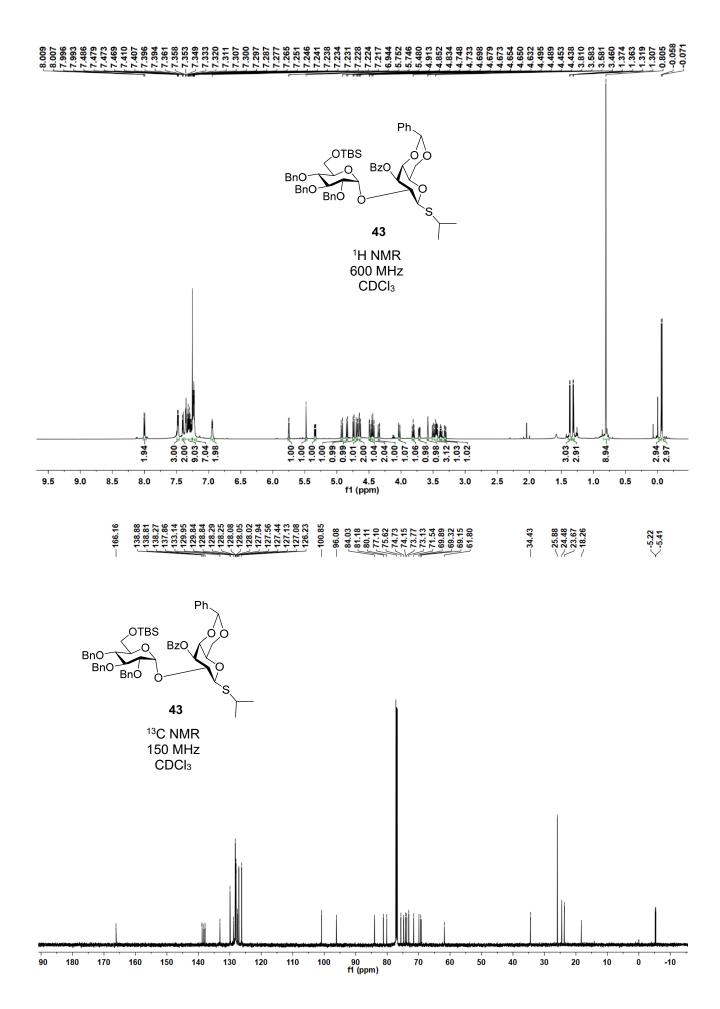

BzO

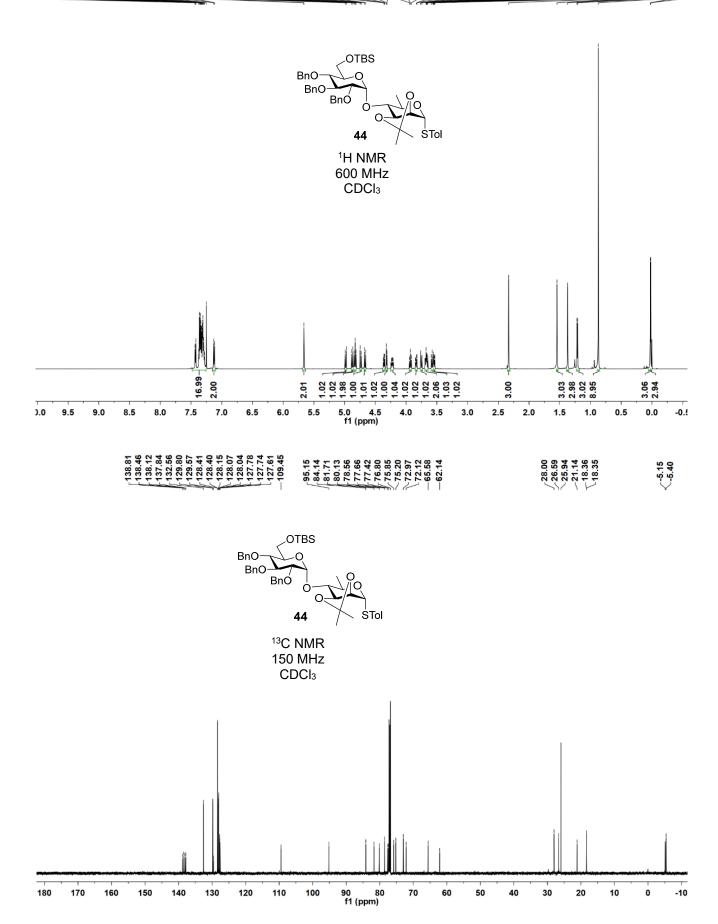

BzO-

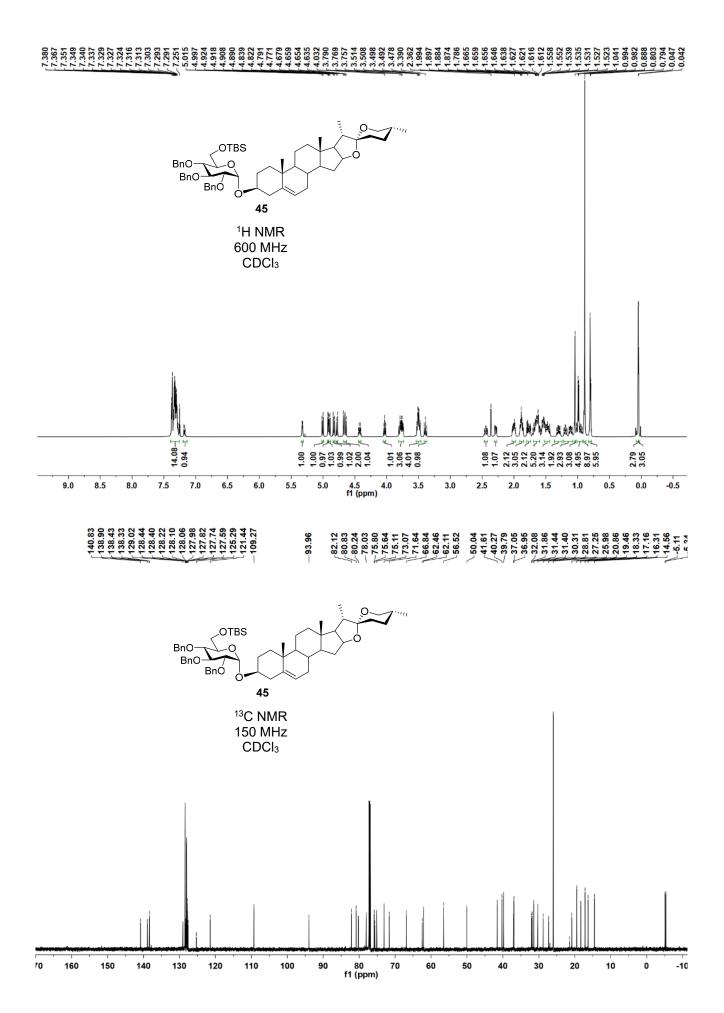


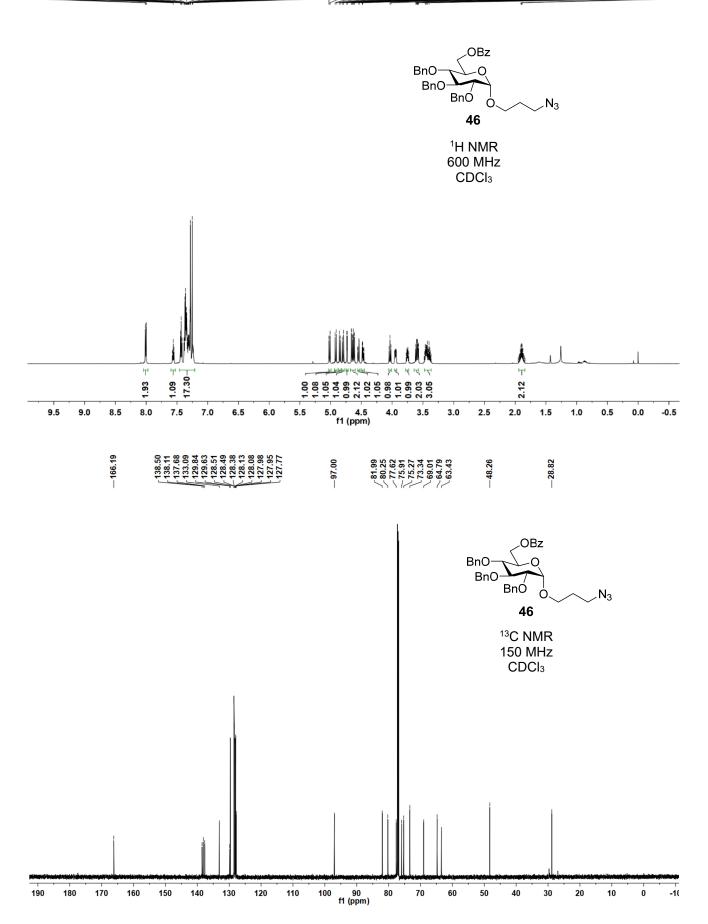
STol

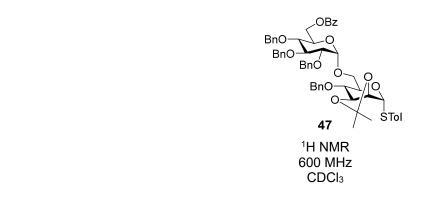

39 OBz

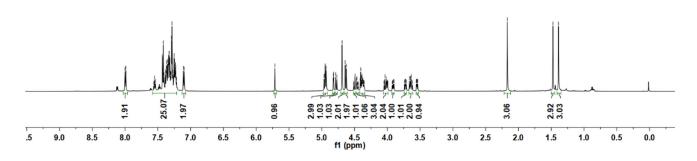


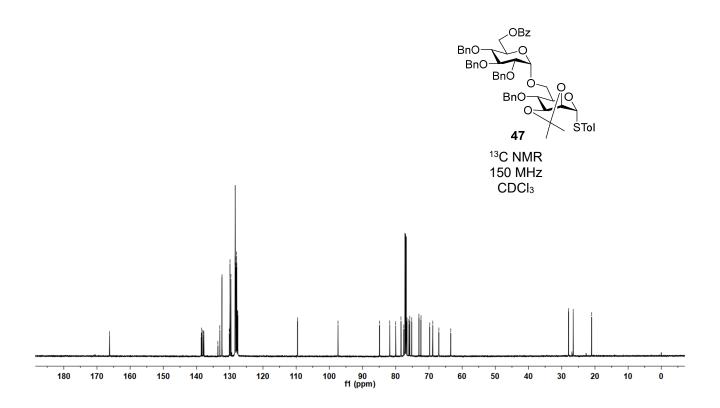


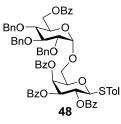


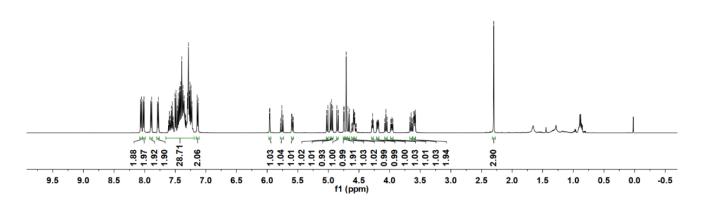

CDCI₃

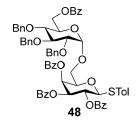


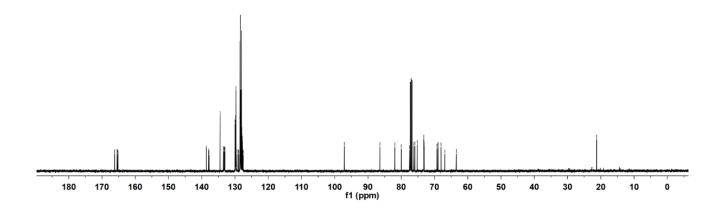


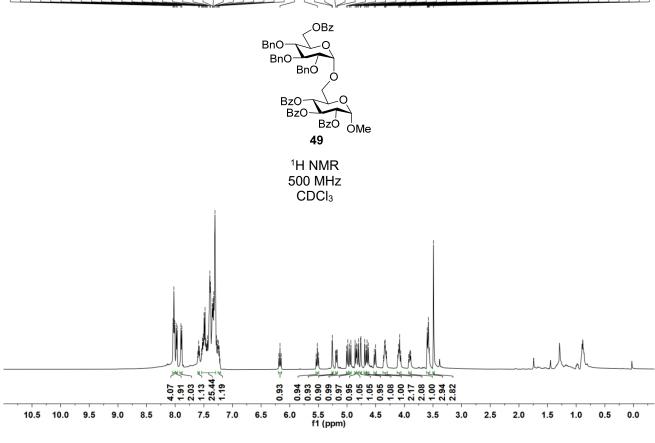


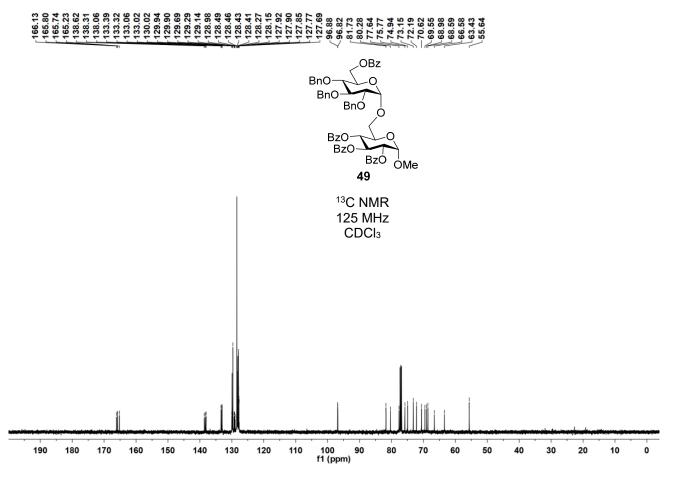


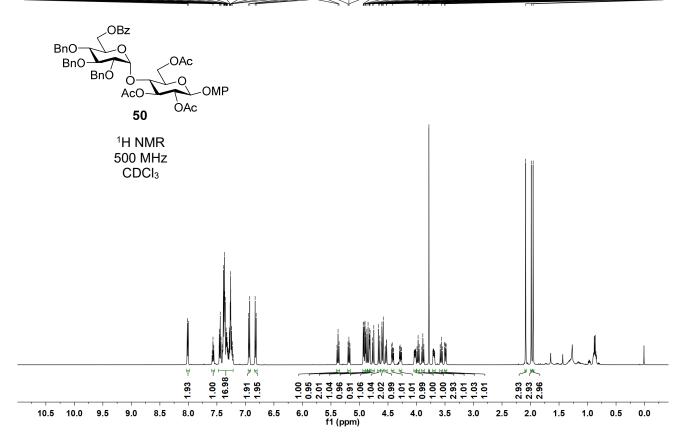


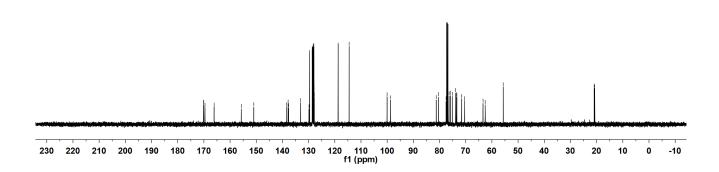


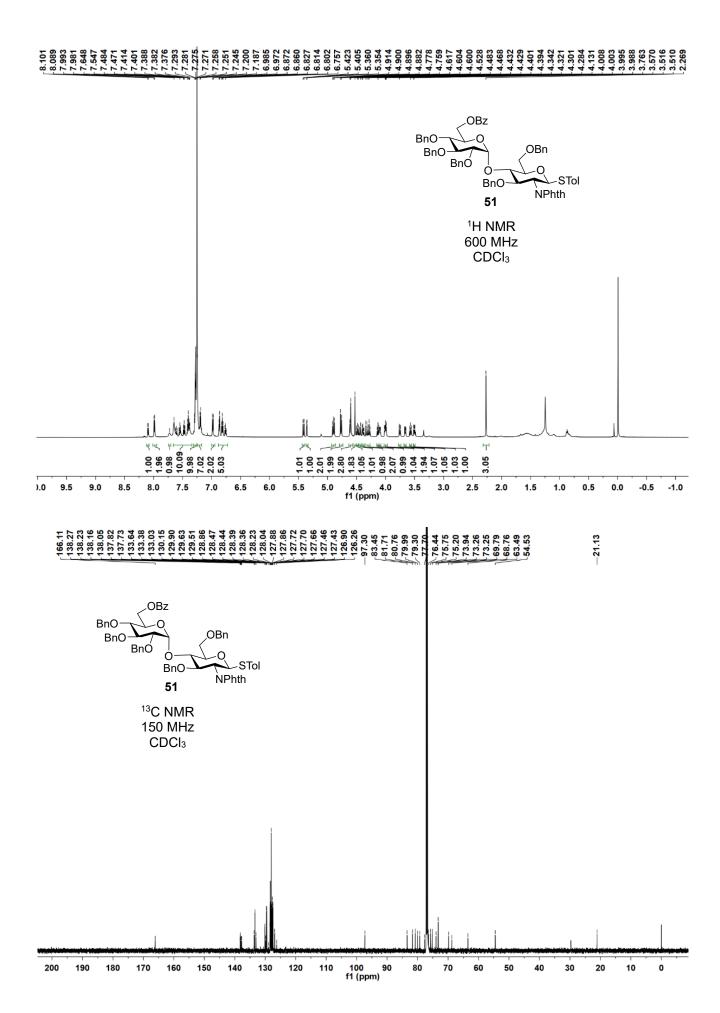

¹H NMR 500 MHz CDCl₃

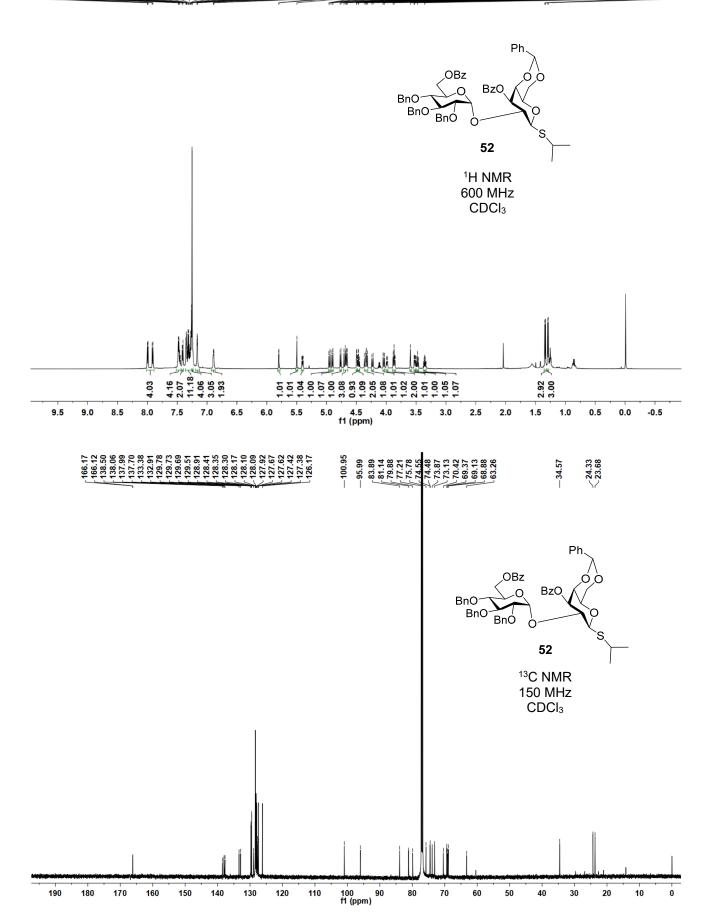


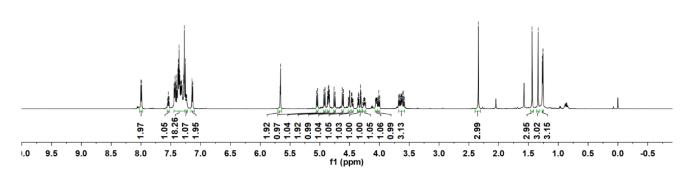


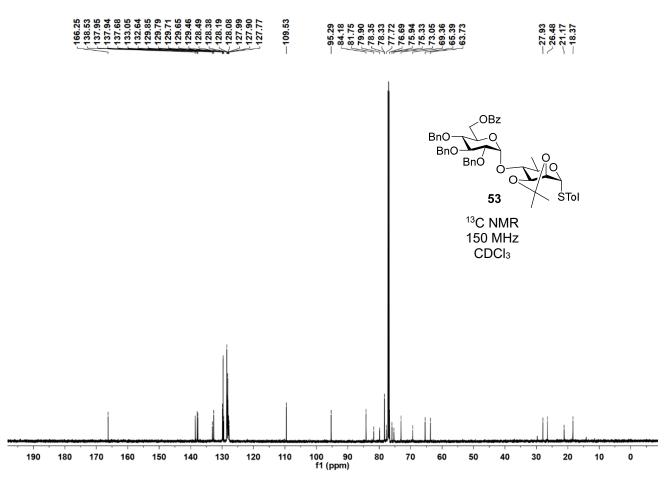


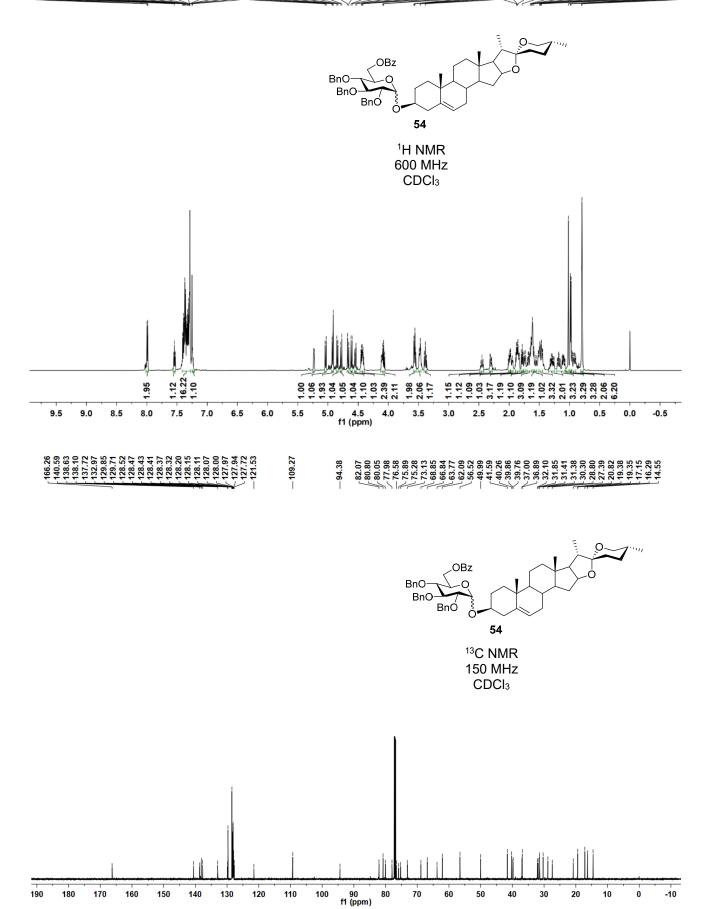

¹³C NMR 125 MHz CDCl₃

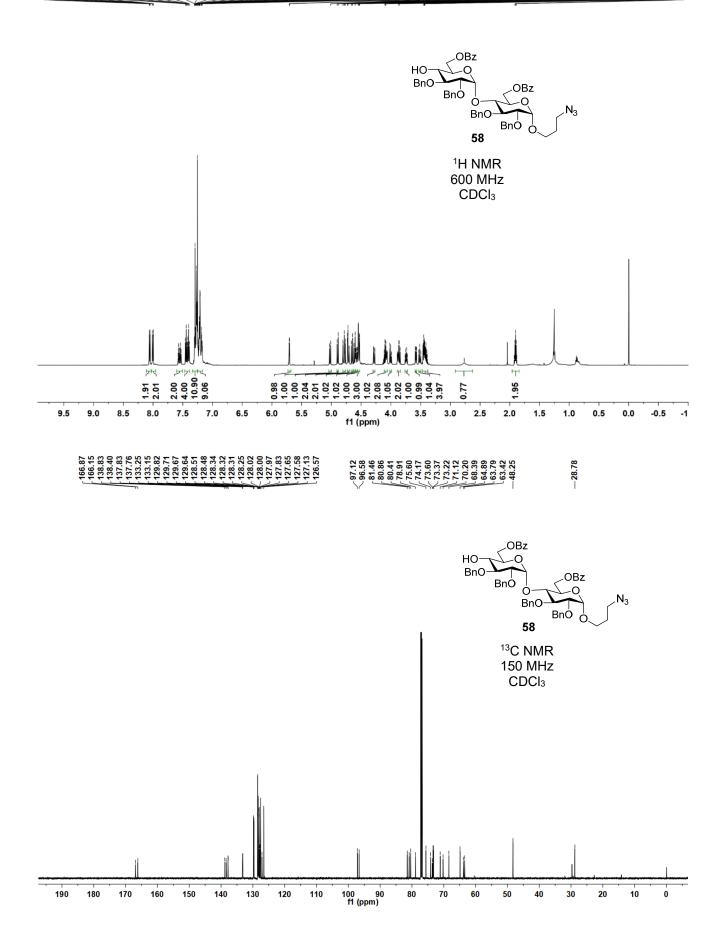


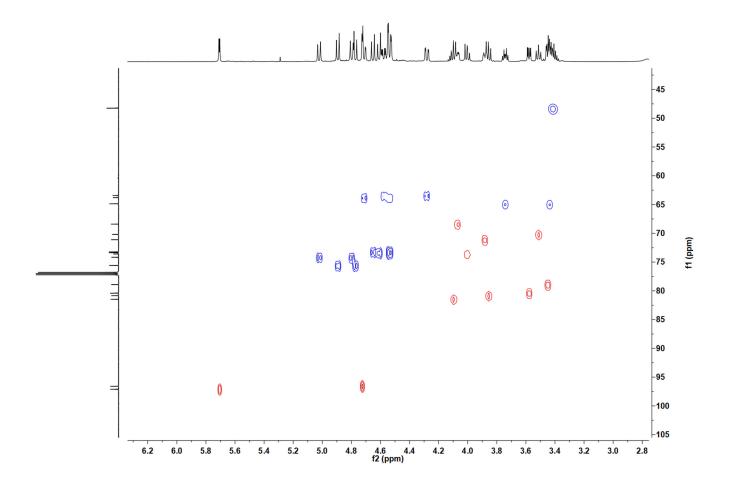


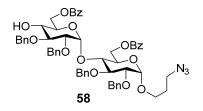


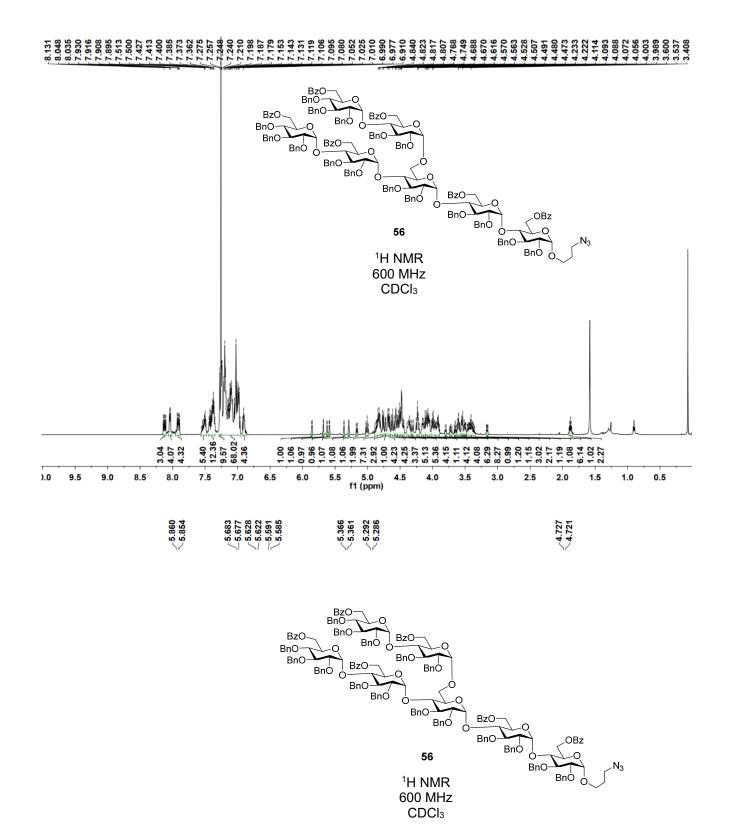


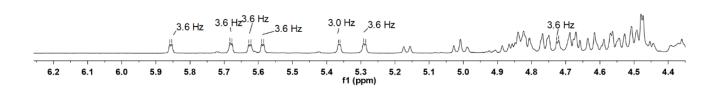


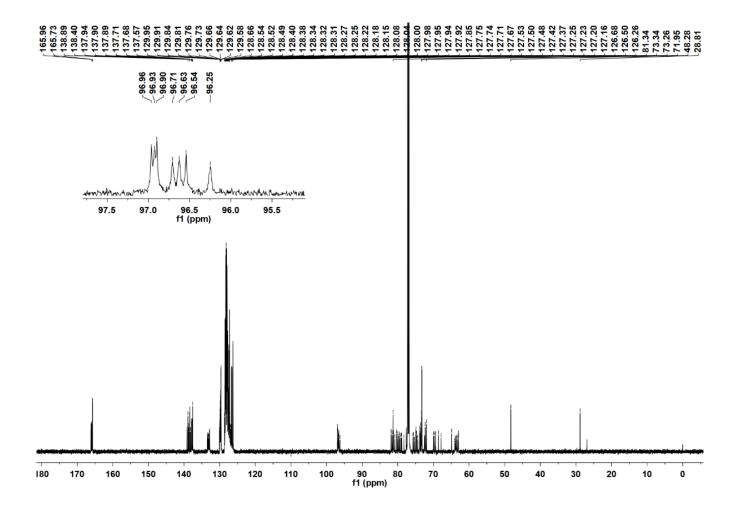


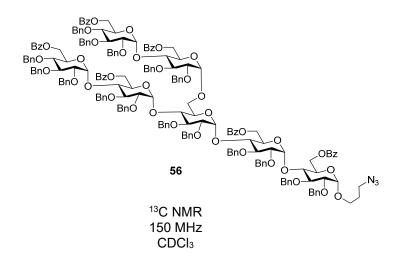


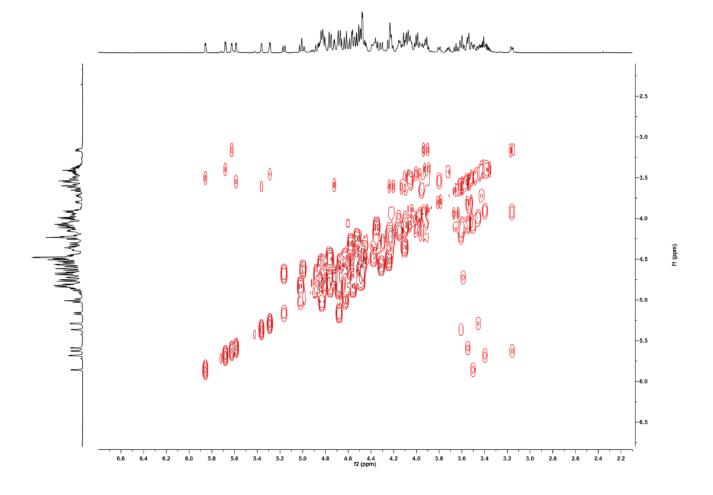


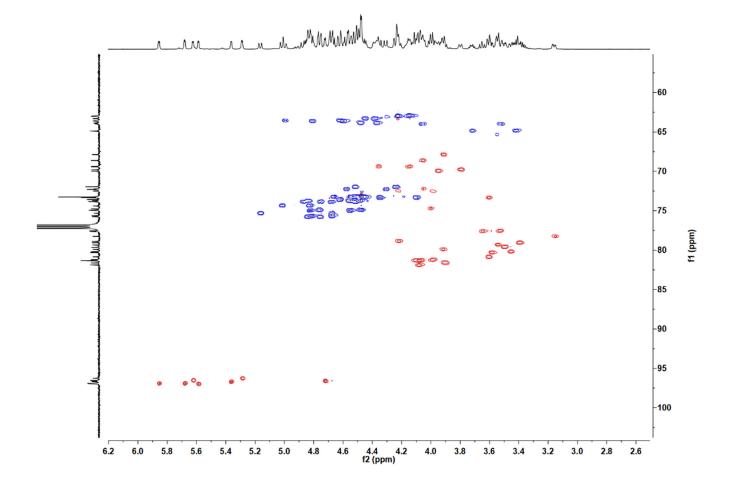


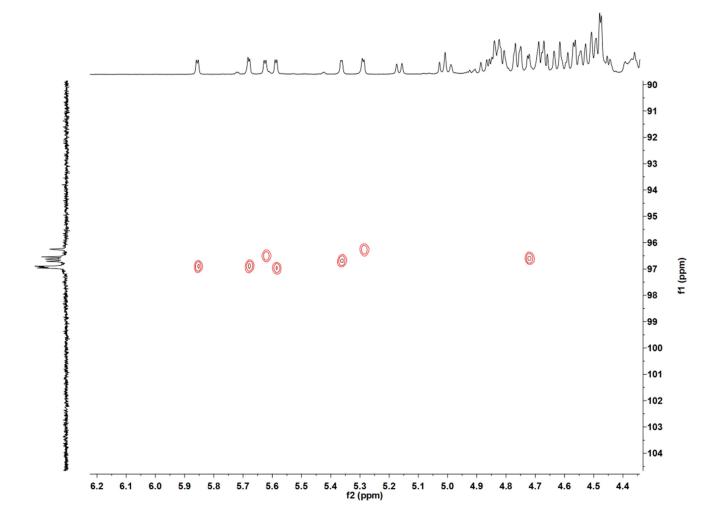


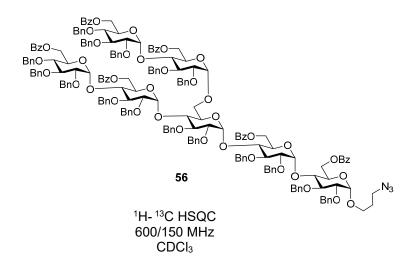


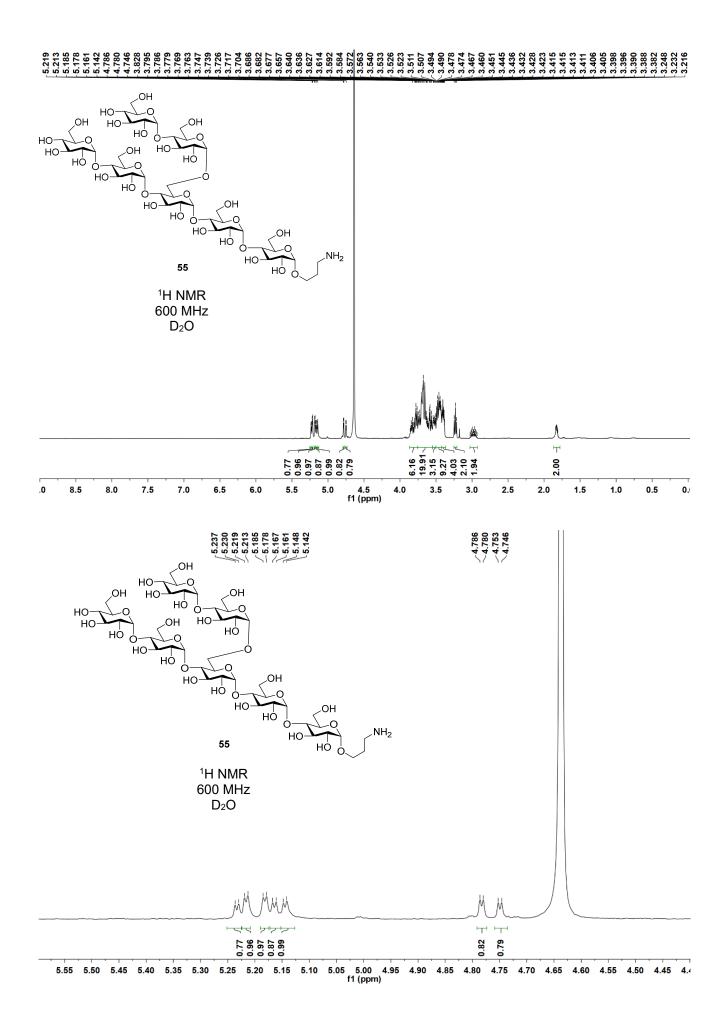


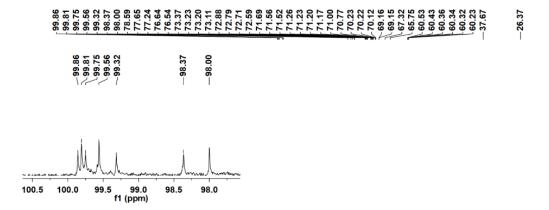

¹H- ¹³C HSQC 600/150 MHz CDCl₃

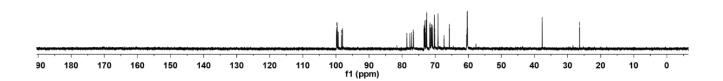


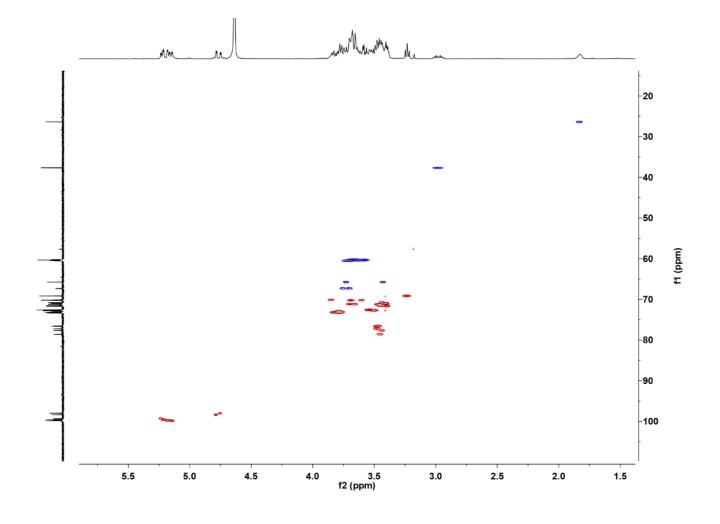


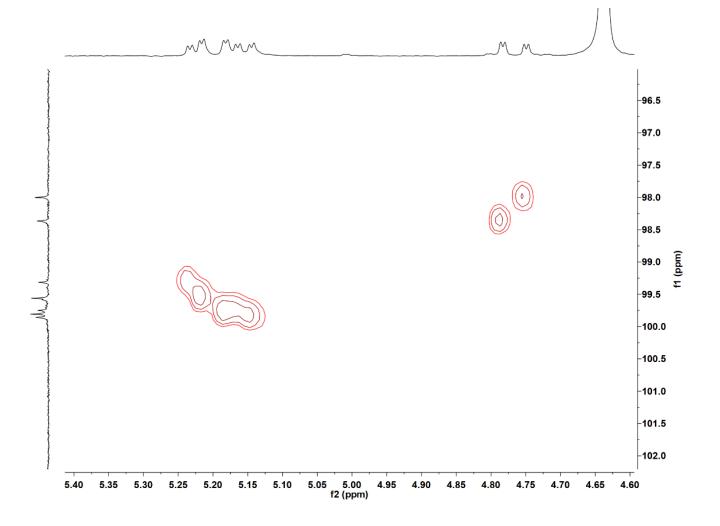


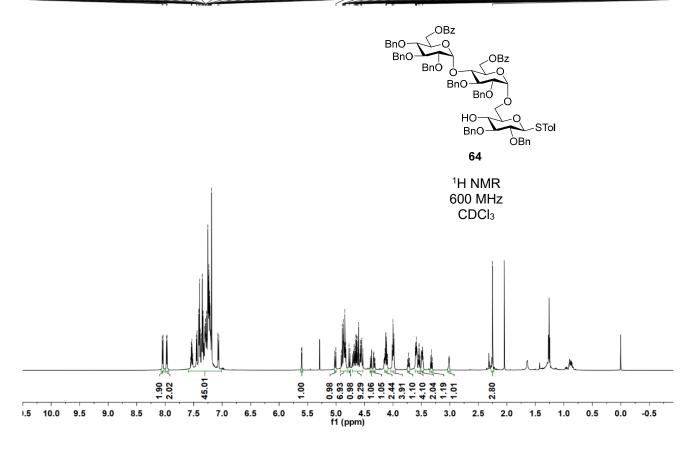




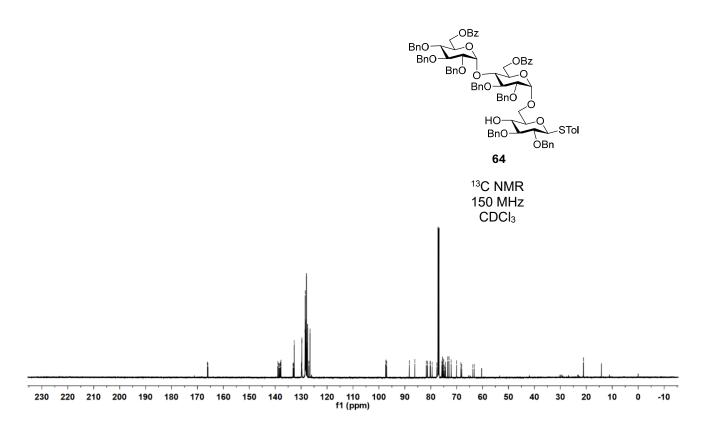


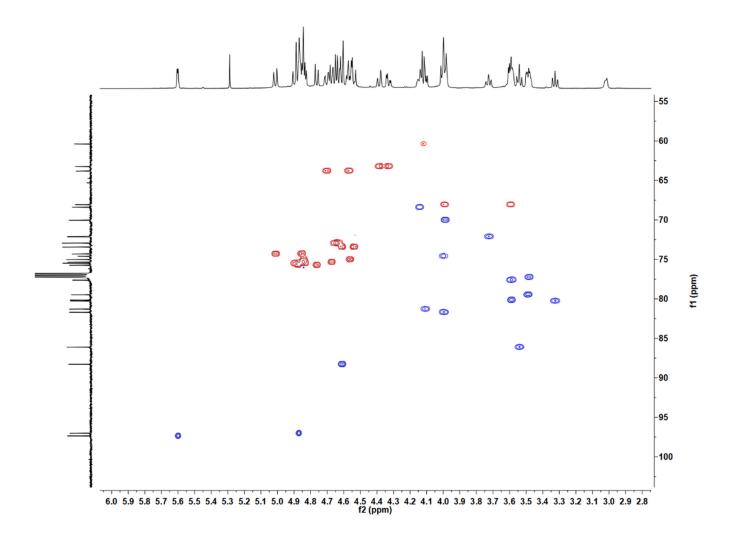




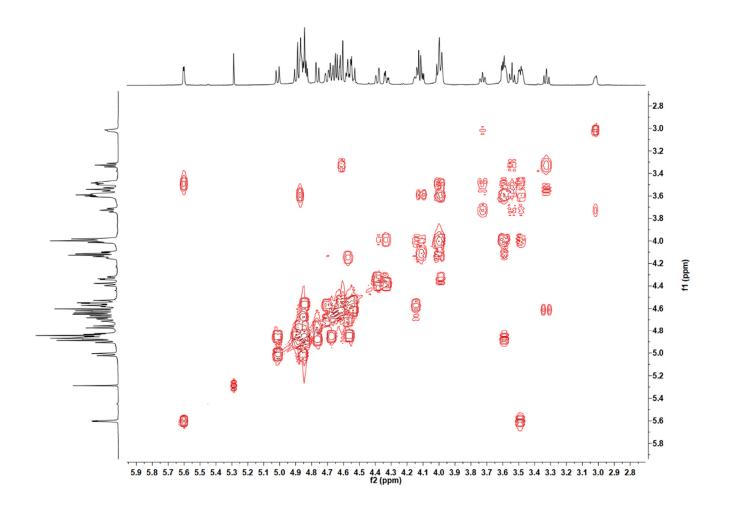


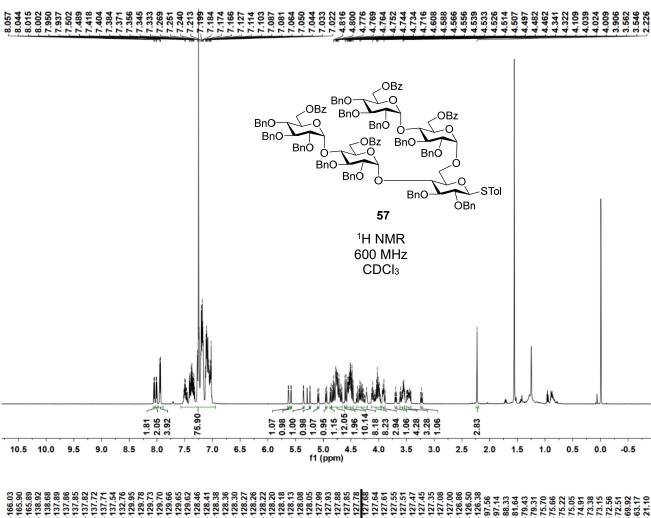
 $\mathsf{D}_2\mathsf{O}$

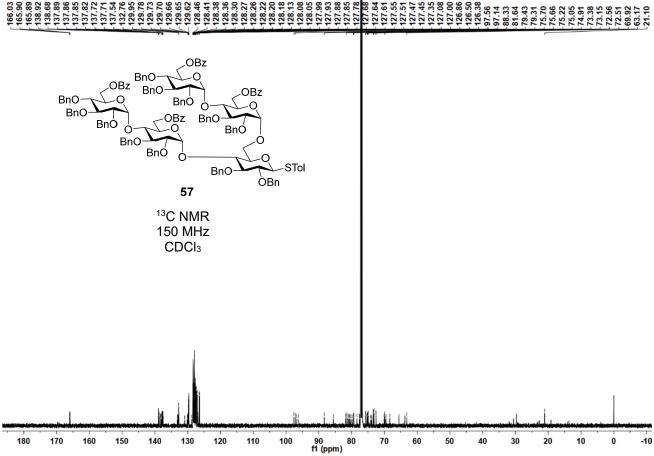


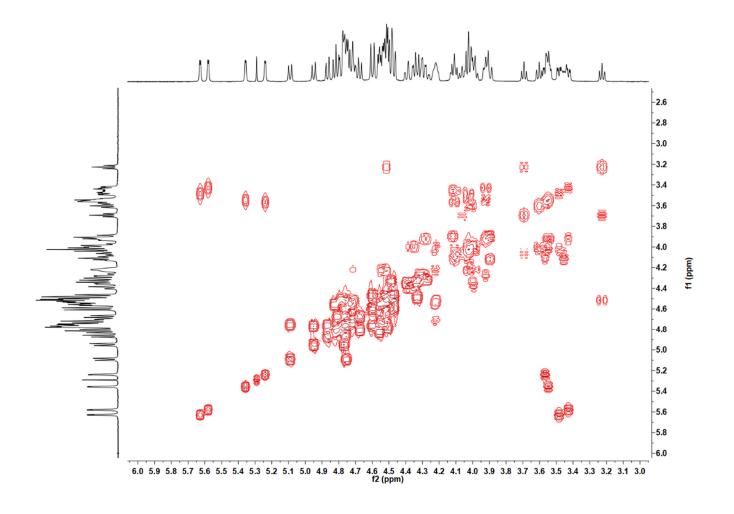


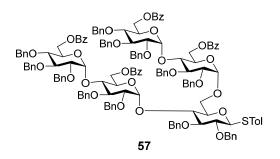
 $^{1}\text{H-}^{13}\text{C HSQC}$ 600/150 MHz $D_{2}\text{O}$

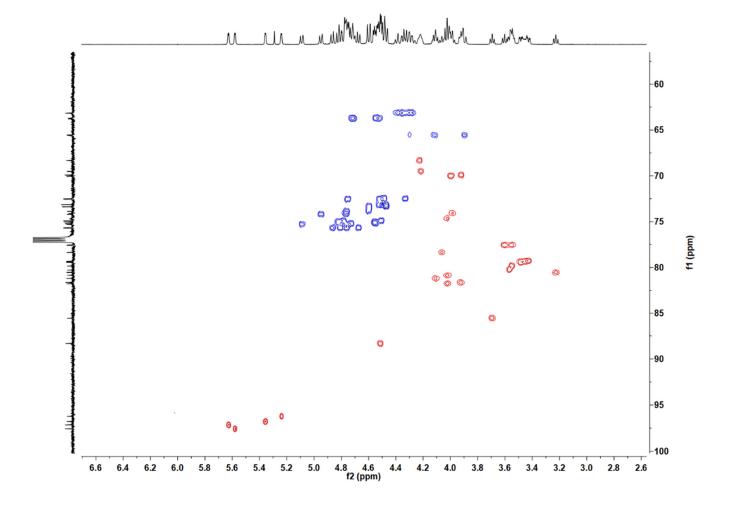


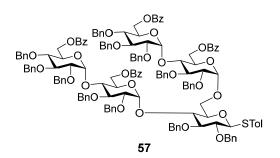

| 66.13 | 18.69 | 138.06 | 138.06 | 138.06 | 138.06 | 137.77 | 137.18 | 129.76 | 129.76 | 129.76 | 128.51 | 128.44 | 128.44 | 128.44 | 128.44 | 128.44 | 128.44 | 128.44 | 128.44 | 128.44 | 128.35 | 128.35 | 128.36 | 127.95 | 127






¹H- ¹³C HSQC 600/150 MHz CDCl₃





¹H-¹H COSY 600 MHz CDCl₃

¹H- ¹³C HSQC 600/150 MHz CDCl₃