Supporting Information

Copper-catalyzed Regioselective Dimerization of Vinyl Azides by *gem*-Difluoromethylene for trisubstituted Pyridines

Zhenhua Liu⁺, Guangyu Zhu⁺, Wen Gao^{*}, Lin Yang, Huimin Ji, Lili Tong and Bo Tang^{*}

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China.

E-mail: gaowen@sdnu.edu.cn and E-mail: tangb@sdnu.edu.cn

Contents

I.	General information	S2
II.	Synthesis of vinyl azides 1a-1x	S2
III.	Optimization of experiment conditions for 3a	
IV.	Synthesis and analytical data of compounds 3 and 4	
V. (Crystallography of compound 3i	S15-17
VI.	Analytical data of Mass spectrum	S17
VII.	NMR spectra copies	S17-S57

I. General information

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. The products were purified by column chromatography over silica gel. 1HNMR and 13C NMR spectra were recorded at 25 °C on a Varian 400 MHz and 101 MHz, respectively, and TMS was used as internal standard. Mass spectra were recorded on BRUKER AutoflexIII Smartbeam MS-spectrometer. High resolution mass spectra (HRMS) were recorded on Bruck microTof by using ESI method.

II. The synthesis of vinyl azides 1a-1x.

$$R = + \frac{TMS-N_3}{(2.0 \text{ eq.})} \xrightarrow[DMSO, 80 \ ^\circC, 1-2 \text{ h}]{} R = \frac{N_3}{1}$$

Typical synthetic procedure (with **1a** as an example): To a solution of phenylacetylene (**1**) (0.051 mL, 0.5 mmol), TMS-N₃ (0.132 mL, 1.0 mmol) and H₂O (0.018 mL, 1.0 mmol) in DMSO (2 mL) at 80 °C, Ag₂CO₃ (13.8 mg, 0.05 mmol) was added. The mixture was then stirred for 0.5-1.0 h until substrate **1** was consumed as indicated by TLC. The resulting mixture was concentrated and taken up by dichloromethane (3×15 mL). The organic layer was washed with brine (3×40 mL), dried over MgSO₄ and concentrated. Purification of the crude product with flash column chromat- ography (silica gel; petroleum ether) and concentrated *in vacuo* to afford **1a** in 75% yield as an oil (*Org. Lett.*, 2014, **16**, 3668; *Angew. Chem., Int. Ed.*, 2014, **53**, 5305).

		$2 + CF_2 XCO_2 Et$	Cul (0.3eq.) Ligand (2.0 eq.) Base (4.0 eq.) DMF, 70 °C.	CO ₂ Et	
Entry	Cat.	Х	Ligand	Base	X:-11/0/
					¥ 1010/%
1	CuI	Br	PPh ₃	TMEDA	trace
2	CuI	Br	PPh ₃	(Et) ₃ N	0
3	CuI	Br	PPh ₃	(i-Pr) ₂ NH	0

III. Optimization of experiment conditions for 3a^a

4	CuI	Br	PPh ₃	DBU	0
5	CuI	Br	PPh ₃	Na ₂ CO ₃	0
6	CuI	Br	PPh ₃	K_2CO_3	0
7	CuI	Br	PPh ₃	K ₃ PO ₄	0
8	CuI	Br	PPh ₃	KF	0
9	CuI	Br	1,10-phen	PMDETA	trace
10	CuI	Ι	PPh ₃	PMDETA	91
11	CuI	Cl	PPh ₃	PMDETA	0
12	CuI	F	PPh ₃	PMDETA	0

^aConditions: **1a** (0.5 mmol), **2a** (0.5 mmol), CuI (0.075 mmol), Ligand (0.5 mmol), Base (1.0 mmol) in DMF (1 mL) at 40 °C under air for 3 h; Yields of isolated products; Yields of isolated products. TMEDA=N,N,N',N'-tetramethylethylenediamine, DBU=1,8-diazabicyclo[5.4.0]undec-7-ene, 1,10-phen=1,10-phenanthroline, DMF = N,N-dimethyl formamide.

IV. Synthesis and analytical data of compounds 3 and 4.

Typical synthetic procedure (with **3a** as an example): To a solution of (1-azidovinyl)benzene (**1a**) (0.072 g, 0.5 mmol), ethyl 2-bromo-2,2-difluoroacetate (**2a**) (0.128 mL, 0.5 mmol), pentamethyldiethylenetriamine (PMDETA) (0.208 mL, 1.0 mmol), PPh₃ (0.130 g, 0.5 mmol) and NaI (0.0376 g, 0.25 mmol) in DMSO (1 mL) at 40 °C, CuI (0.014 g, 0.075 mmol) was added. The reaction mixture was then stirred for 2 h when TLC conformed that substrate **1a** had been consumed. The resulting reaction mixture was cooled to room temperature and taken up by dichloromethane (3 × 15 mL). The organic layer was washed with brine (3 × 40 mL), dried over MgSO₄ and concentrated. Purification of the crude product via flash column chromatography (silica gel; petroleum ether/ethyl acetate (60 : 1)) and concentration in vacuo afforded **3a** in 90% yield.

(3a) ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 2H), 8.16–8.10 (m, 4H), 7.44 (t, J = 7.3 Hz, 4H), 7.41–7.35 (m, 2H), 4.45–4.36 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.52, 156.79, 138.45, 137.70, 128.41, 127.76, 126.07, 116.78, 60.84, 13.29; HRMS (ESI) m/z calculated for C₂₀H₁₇NO₂ [M+H]⁺ : 304.1338, found: 304.1349.

(3b) ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 2H), 8.02 (d, J = 8.0 Hz, 4H), 7.23 (d, J = 7.9 Hz, 4H), 4.43–4.34 (m, 2H), 2.35 (s, 6H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.67, 156.67, 138.40, 138.26, 135.03, 128.45, 125.93, 116.12, 60.75, 20.30, 13.29; HRMS (ESI) m/z calculated for C₂₂H₂₁NO₂ [M+H]⁺ : 332.1651, found: 332.1657.

(3c) ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 2H), 8.06–7.94 (m, 4H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.27 (d, *J* = 7.7 Hz, 2H), 4.53–4.43 (m, 2H), 2.48 (s, 6H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.64, 158.04, 139.34, 138.79, 138.43, 130.19, 128.70, 127.79,124.31, 117.86, 61.86, 21.62, 14.35; HRMS (ESI) m/z calculated for C₂₂H₂₁NO₂ [M+H]⁺ : 332.1651, found: 332.1669.

(3d) ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 2H), 8.12 (d, J = 8.0 Hz, 4H), 7.34 (d, J = 8.1 Hz, 4H), 4.51–4.43 (m, 2H), 2.78–2.68 (m, 4H), 1.46 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.72, 157.77, 145.78, 139.28, 136.35, 128.31, 127.08, 117.22, 61.79, 28.74, 15.56, 14.34; HRMS (ESI) m/z calculated for C₂₄H₂₅NO₂ [M+H]⁺ : 360.1964, found: 360.1988.

(3e) ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 2H), 8.11 (d, J = 8.0 Hz, 4H), 7.32 (d, J = 8.0 Hz, 4H), 4.51–4.42 (m, 2H), 2.66 (t, J = 7.6 Hz, 4H), 1.77–1.60 (m, 4H), 1.46 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.3 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.74, 157.81, 144.24, 139.29, 136.36, 128.93, 127.00, 117.24, 61.79, 37.87, 24.51, 14.33, 13.84; HRMS (ESI) m/z calculated for C₂₆H₂₉NO₂ [M+H]⁺ : 388.2277, found: 388.2278.

(3f) ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 2H), 8.11 (d, J = 8.2 Hz, 4H), 7.32 (d, J = 8.0 Hz, 4H), 4.52–4.43 (m, 2H), 2.68 (t, J = 7.7 Hz, 4H), 1.73–1.60 (m, 4H), 1.46 (t, J = 7.1 Hz, 3H), 1.41–1.29 (m, 8H), 0.95–0.86 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.72, 157.80, 144.49, 139.27, 136.30, 128.86, 126.99, 117.22, 61.78, 35.75, 31.49, 31.09, 22.57, 14.33, 14.05; HRMS (ESI) m/z calculated for C₃₀H₃₇NO₂ [M+H]⁺ : 444.2903, found: 444.2918.

(3g) ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 2H), 8.05 (d, J = 8.6 Hz, 4H), 7.45 (d, J = 8.6 Hz, 4H), 4.43–4.34 (m, 2H), 1.37 (t, J = 7.1 Hz, 3H), 1.30 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 165.75, 157.78, 152.61, 139.27, 136.13, 126.86, 125.74, 117.31, 61.80, 34.77, 31.34, 14.34; HRMS (ESI) m/z calculated for C₂₈H₃₃NO₂ [M+H]⁺ : 416.2590, found: 416.2600.

(3h) ¹H NMR (400 MHz, CDCl₃) δ 8.22–8.16 (m, 6H), 7.69–7.62 (m, 4H), 7.61–7.54 (m, 4H), 7.38 (t, J = 7.6 Hz, 4H), 7.32–7.25 (m, 2H), 4.43–4.35 (m, 2H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.54, 157.38, 142.19, 140.57, 139.47, 137.61, 128.93, 127.67, 127.54, 127.51, 127.16, 117.71, 61.94, 14.41; HRMS (ESI) m/z calculated for C₃₂H₂₅NO₂ [M+H]⁺ : 456.1964, found: 456.1957.

(3i) ¹H NMR (400 MHz, CDCl₃) δ 8.20–8.14 (m, 4H), 8.12 (s, 2H), 7.08–6.98 (m, 4H), 4.52–4.42 (m, 2H), 3.89 (s, 6H), 1.46 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.80, 160.80, 157.29, 139.26, 131.54, 128.40, 116.30, 114.13, 61.78, 55.40, 14.33; HRMS (ESI) m/z calculated for C₂₂H₂₁NO₄ [M+H]⁺ : 364.1550, found: 364.1552.

(3j) ¹H NMR (400 MHz, CDCl₃) δ 8.18–8.13 (m, 4H), 8.11 (s, 2H), 7.08–6.96 (m, 4H), 4.52–4.42 (m, 2H), 4.16–4.07 (m, 4H), 1.46 (t, J = 6.5 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 165.81, 160.17, 157.30, 139.21, 131.36, 128.36, 116.21, 114.64, 63.57, 61.74, 29.71, 14.84, 14.33; HRMS (ESI) m/z calculated for C₂₄H₂₅NO₄ [M+H]⁺ : 392.1863, found: 392.1882.

(3k) ¹H NMR (400 MHz, DMSO-d6) δ 10.15 (s, 2H), 8.35 (s, 2H), 8.19 (s, 2H), 7.92 (d, J = 7.8 Hz, 2H), 7.83 (d, J = 7.9 Hz, 2H), 7.50 (t, J = 7.9 Hz, 2H), 4.50–4.40 (m, 2H), 2.10 (s, 6H), 1.41 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, DMSO-d6) δ 169.04, 165.13, 157.40, 140.46, 140.14, 138.74, 129.87, 121.99, 120.74, 117.87, 117.72, 62.32, 24.54, 14.57; HRMS (ESI) m/z calculated for C₂₄H₂₃N₃O₄ [M+H]⁺ : 418.1768, found: 418.1770.

(31) ¹H NMR (400 MHz, CDCl₃) δ 8.25–8.11 (m, 6H), 7.24–7.16 (m, 4H), 4.53–4.44 (m, 2H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.36, 165.12, 162.64, 156.83, 139.69, 134.77, 134.74, 128.99, 128.91, 117.40, 115.88, 115.67, 61.99, 14.32; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.13; HRMS (ESI) m/z calculated for C₂₀H₁₅F₂NO₂ [M+H]⁺ : 340.1150, found: 340.1164.

(3m) ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 2H), 7.98 (d, J = 8.5 Hz, 4H), 7.57 (d, J = 8.3 Hz, 4H), 4.47–4.36 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.18, 156.79, 139.81, 137.36, 132.00, 128.62, 124.15, 117.86, 62.07, 14.33; HRMS (ESI) m/z calculated for C₂₀H₁₅Br₂NO₂ [M+H]⁺ : 461.9528, found: 461.9555.

(3n) ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 2H), 8.15–8.07 (m, 4H), 7.51–7.44 (m, 4H), 4.52–4.43 (m, 2H), 1.47 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.19, 156.65, 139.74, 136.89, 135.75, 129.02, 128.32, 117.79, 62.05, 14.33; HRMS (ESI) m/z calculated for $C_{20}H_{15}Cl_2NO_2$ [M+H]⁺ : 372.0559, found: 372.0557.

(30) ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 2H), 8.18 (s, 2H), 8.10–8.01 (m, 2H), 7.50–7.39 (m, 4H), 4.55–4.44 (m, 2H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.09, 156.58,

140.23, 139.89, 135.00, 130.10, 129.60, 127.24, 125.21, 118.48, 77.22, 62.12, 14.34; **HRMS** (ESI) m/z calculated for C₂₀H₁₅Cl₂NO₂ [M+H]⁺ : 372.0559, found: 372.0562.

(**3p**) ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (s, 2H), 7.65–7.58 (m, 2H), 7.46–7.40 (m, 2H), 7.35–7.24 (m, 4H), 4.43–4.34 (m, 2H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 165.10, 157.66, 138.53, 138.05, 132.37, 131.76, 130.23, 129.99, 127.12, 122.70, 61.97, 14.26; **HRMS** (ESI) m/z calculated for C₂₀H₁₅Cl₂NO₂ [M+H]⁺ : 372.0559, found: 372.0573.

(3q) ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 2H), 8.16 (d, J = 8.5 Hz, 4H), 8.08 (d, J = 8.5 Hz, 4H), 4.45–4.36 (m, 2H), 3.88 (s, 6H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.75, 164.99, 156.76, 142.39, 139.83, 130.93, 130.09, 126.99, 118.96, 62.13, 52.25, 14.32; HRMS (ESI) m/z calculated for C₂₄H₂₁NO₆ [M+H]⁺ : 420.1448, found: 420.1468.

(3r) ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 2H), 8.29 (d, J = 8.1 Hz, 4H), 8.11 (d, J = 8.1 Hz, 4H), 4.55–4.47 (m, 2H), 2.67 (s, 6H), 1.49 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.68, 165.00, 156.78, 142.51, 139.93, 137.69, 128.88, 127.25, 119.08, 62.18, 26.78, 14.32; HRMS (ESI) m/z calculated for C₂₄H₂₁NO₄ [M+H]⁺ : 388.1550, found: 388.1566.

(3s) ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 2H), 8.51–8.31 (m, 6H), 8.06 (d, J = 8.1 Hz, 4H), 4.57–4.47 (m, 2H), 1.49 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.88, 164.90, 156.75, 143.77, 140.12, 136.96, 130.26, 127.73, 119.52, 62.28, 14.34; HRMS (ESI) m/z calculated for C₂₂H₁₇NO₄ [M+H]⁺ : 360.1237, found: 360.1232.

(3t) ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 2H), 8.31 (d, J = 8.4 Hz, 4H), 7.85 (d, J = 8.5 Hz, 4H), 4.56–4.47 (m, 2H), 1.49 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.32, 165.11, 162.63, 156.79, 139.67, 134.75, 134.72, 131.96, 128.97, 128.89, 128.60, 117.36, 115.86, 115.64, 61.97, 14.32; HRMS (ESI) m/z calculated for C₂₂H₁₅N₃O₂ [M+H]⁺ : 354.1243, found: 354.1252.

(**3u**) ¹**H NMR** (400 MHz, CDCl₃) δ 8.23–8.15 (m, 4H), 7.97–7.88 (m, 4H), 7.77–7.71 (m, 2H), 7.61–7.55 (m, 2H), 7.54–7.47 (m, 4H), 4.51–4.42 (m, 2H), 1.42 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 165.39, 160.15, 138.76, 137.95, 133.97, 131.18, 129.29, 128.47, 127.95, 126.66, 125.98, 125.47, 125.37, 122.62, 61.97, 14.28; **HRMS** (ESI) m/z calculated for C₂₈H₂₁NO₂ [M+H]⁺ : 404.1651, found: 404.1667.

(3v) ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.97 (m, 2H), 7.95 (s, 2H), 7.73 (d, *J* = 5.1 Hz, 2H), 7.38–7.31 (m, 2H), 4.45–4.33 (m, 2H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

164.42, 152.99, 140.74, 138.28, 125.36, 125.33, 123.35, 116.27, 60.85, 13.28; **HRMS** (ESI) m/z calculated for $C_{16}H_{13}NO_2S_2$ [M+H]⁺ : 316.0467, found: 316.0468.

(3w) ¹H NMR (400 MHz, CDCl₃) δ 8.48–8.42 (m, 2H), 8.40 (s, 2H), 8.28 (s, 2H), 7.72–7.66 (m, 4H), 7.60 (d, J = 7.4 Hz, 2H), 7.56–7.50 (m, 2H), 7.34 (t, J = 7.3 Hz, 2H), 4.55–4.47 (m, 2H), 1.51 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.56, 165.07, 156.43, 145.36, 143.99, 139.91, 139.40, 134.89, 134.80, 134.66, 133.65, 129.42, 124.50, 122.68, 120.79, 120.77, 118.07, 62.17, 14.41; HRMS (ESI) m/z calculated for C₃₄H₂₁NO₄ [M+H]⁺ : 508.1550, found: 508.1530.

(3x) ¹H NMR (400 MHz, CDCl₃) δ 8.45–8.40 (m, 2H), 8.28 (s, 2H), 8.26–8.21 (m, 2H), 7.92 (d, *J* = 8.1 Hz, 2H), 7.86 (d, *J* = 7.1 Hz, 2H), 7.59 (d, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.3 Hz, 2H), 7.38–7.31 (m, 2H), 4.55–4.45 (m, 2H), 4.03 (s, 4H), 1.49 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.69, 158.07, 143.97, 143.90, 143.03, 141.27, 139.41, 137.40, 127.14, 126.91, 126.08, 125.17, 123.76, 120.32, 120.12, 117.65, 61.90, 37.11, 14.39; HRMS (ESI) m/z calculated for C₃₄H₂₅NO₂ [M+H]⁺ : 480.1964, found: 480.1967.

(4a) ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 2H), 8.23–8.18 (m, 4H), 7.56–7.49 (m, 4H), 7.49–7.43 (m, 2H), 4.39 (t, J = 6.7 Hz, 2H), 1.93–1.80 (m, 2H), 1.08 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.61, 157.84, 139.51, 138.74, 129.45, 128.80, 127.10, 117.81, 67.41, 22.09, 10.52; HRMS (ESI) m/z calculated for C₂₂H₂₁NO₂ [M+H]⁺ : 318.1495, found: 318.1499.

(4b) ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 2H), 8.23–8.18 (m, 4H), 7.57–7.43 (m, 6H), 4.43 (t, J = 6.7 Hz, 2H), 1.89–1.77 (m, 2H), 1.56–1.47 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.62, 157.84, 139.51, 138.74, 129.45, 128.80, 127.11, 117.81, 65.76, 30.72, 19.27, 13.78; HRMS (ESI) m/z calculated for C₂₂H₂₁NO₂ [M+H]⁺ : 332.1651, found: 332.1657.

(4c) ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 2H), 8.22–8.16 (m, 4H), 7.55–7.35 (m, 11H), 5.46 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 165.45, 157.91, 139.15, 138.66, 135.41, 129.48, 128.80, 128.76, 128.60, 128.47, 127.11, 117.87, 67.56; HRMS (ESI) m/z calculated for C₂₅H₁₉NO₂ [M+H]⁺ : 366,1495, found: 1505.

(4d) ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 2H), 8.24–8.18 (m, 4H), 7.56–7.49 (m, 4H), 7.49–7.42 (m, 4H), 7.38–7.33 (m, 2H), 7.32–7.27 (m, 1H), 6.84–6.76 (m, 1H), 6.50–6.40 (m, 1H), 5.11–5.05 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 165.41, 157.91, 139.24, 138.68, 136.01, 135.35, 129.49, 128.81, 128.70, 128.35, 127.12, 126.76, 122.53, 117.8, 66.49; HRMS (ESI) m/z calculated for C₂₇H₂₁NO₂ [M+H]⁺ : 392.1651, found: 392.1661.

(4e) ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.12 (m, 4H), 7.66 (s, 2H), 7.55-7.43 (m, 6H),
3.94-3.74 (m, 4H), 3.65 (s, 2H), 3.48 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 168.47, 157.70,
144.74, 138.66, 129.58, 128.85, 127.08, 115.97, 66.85, 48.02, 42.47; HRMS (ESI) m/z calculated for C₂₂H₂₀N₂O₂ [M+H]⁺: 345.1604, found: 345.1625.

(4f) ¹H NMR (400 MHz, CDCl₃) δ 8.19–8.12 (m, 4H), 7.65 (s, 2H), 7.55–7.41 (m, 6H), 3.78 (s, 2H), 3.44–3.32 (m, 2H), 1.72 (s, 4H), 1.59 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 168.25, 157.46, 145.85, 138.86, 129.40, 128.78, 127.07, 115.87, 48.65, 43.09, 26.66, 25.58, 24.49; HRMS (ESI) m/z calculated for C₂₃H₂₂N₂O [M+H]⁺ : 343.1811, found: 343.1823.

(4g) ¹H NMR (400 MHz, CDCl₃) δ 8.20–8.13 (m, 4H), 7.76 (s, 2H), 7.55–7.40 (m, 6H), 3.71 (t, J = 6.9 Hz, 2H), 3.48 (t, J = 6.6 Hz, 2H), 2.06–1.97 (m, 2H), 1.98–1.89 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.86, 157.44, 146.35, 138.90, 129.37, 128.77, 127.06, 116.11, 49.42, 46.26, 26.36, 24.45; HRMS (ESI) m/z calculated for C₂₂H₂₀N₂O [M+H]⁺ : 329.1655, found: 329.1663.

(4h) ¹H NMR (400 MHz, CDCl₃) δ 8.19–8.13 (m, 4H), 7.65 (s, 2H), 7.55–7.40 (m, 6H), 3.67–3.54 (m, 2H), 3.36–3.23 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.16 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.31, 157.43, 146.45, 138.88, 129.42, 128.80, 127.08, 115.56, 43.31, 39.44, 14.43, 12.97; HRMS (ESI) m/z calculated for C₂₂H₂₂N₂O [M+H]⁺ : 331.1811, found: 331.1832.

(4i) ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.3 Hz, 2H), 8.02 (d, J = 7.0 Hz, 2H), 7.70 (s, 2H), 7.55–7.30 (m, 10H), 7.20 (d, J = 7.4 Hz, 1H), 4.55 (s, 2H), 2.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.69, 157.43, 145.30, 138.71, 136.28, 129.41, 129.12, 128.89, 128.75, 128.38, 127.87, 127.02, 126.55, 115.89, 50.80, 33.64; **HRMS** (ESI) m/z calculated for C₂₆H₂₂N₂O [M+H]⁺ : 379.1811, found: 379.1820.

(4i') ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.3 Hz, 2H), 8.02 (d, J = 7.0 Hz, 2H), 7.70 (s, 2H), 7.55–7.30 (m, 10H), 7.20 (d, J = 7.4 Hz, 1H), 4.80 (s, 2H), 3.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.39, 157.54, 145.66, 138.80, 136.49, 129.46, 129.12, 128.89, 128.80, 128.38, 127.87, 127.10, 126.55, 116.00, 55.06, 36.73; HRMS (ESI) m/z calculated for C₂₆H₂₂N₂O [M+H]⁺ : 379.1811, found: 379.1820.

(3in) ¹H NMR (400 MHz, CDCl₃) δ 8.20–8.17 (m, 1H), 8.17–8.10 (m, 5H), 7.50–7.44 (m, 2H), 7.06–7.01 (m, 2H), 4.51–4.43 (m, 2H), 3.89 (s, 3H), 1.46 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.50, 160.97, 157.59, 156.37, 139.50, 137.27, 135.50, 131.16, 128.95, 128.43, 128.34, 117.32, 116.77, 114.20, 61.91, 55.41, 14.33; HRMS (ESI) m/z calculated for C₂₁H₁₈ClNO₃ [M+H]⁺ : 368.1054, found: 368.1019.

(3ir) ¹H NMR (400 MHz, CDCl₃) δ 8.33–8.27 (m, 2H), 8.26–8.21 (m, 2H), 8.20–8.13 (m, 2H), 8.14–8.07 (m, 2H), 7.09–7.00 (m, 2H), 4.54–4.45 (m, 2H), 3.90 (s, 3H), 2.67 (s, 3H), 1.47 (t, J =7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.83, 165.42, 161.05, 157.81, 156.29, 143.06, 139.58, 137.47, 131.05, 128.83, 128.47, 127.22, 117.92, 117.52, 114.25, 61.98, 55.43, 26.80, 14.33; HRMS (ESI) m/z calculated for C₂₃H₂₁NO₄ [M+H]⁺ : 376.1550, found: 376.1519.

(5a) ¹H NMR (400 MHz, CDCl₃) δ 8.19–8.13 (m, 4H), 7.69 (s, 2H), 7.53–7.47 (m, 4H), 7.47–7.40 (m, 2H), 4.88–4.83 (m, 2H), 2.00–1.90 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.16, 151.20, 139.39, 129.04, 128.68, 127.05, 116.16, 64.12; HRMS (ESI) m/z calculated for C₁₈H₁₅NO [M+H]⁺ : 262.1233, found: 262.1219.

(5b) ¹H NMR(400 MHz, DMSO-d6) δ 8.31–8.21 (m, 6H), 7.62–7.45 (m, 7H); ¹³C NMR(101 MHz, DMSO-d6) δ 166.75, 157.31, 141.22, 138.41, 130.10, 129.40, 127.26, 118.11; HRMS (ESI) m/z calculated for C₁₈H₁₃NO₂ [M+H]⁺ : 276.1025, found: 276.1008.

(5c) ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 2H), 7.88–7.77 (m, 4H), 7.53–7.42 (m, 6H), 4.46–4.38 (m, 2H), 1.41 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.24, 132.62, 129.77, 129.51, 128.26, 126.00, 125.87, 61.91, 14.31; HRMS (ESI) m/z calculated for C₂₀H₁₇NO₃ [M+H]⁺ : 320.1287, found: 320.1273.

(5d) ¹H NMR (400 MHz, CDCl₃) δ 8.08–7.98 (m, 2H), 7.86–7.79 (m, 1H), 7.66–7.53 (m, 5H),
7.53–7.46 (m, 2H), 7.35–7.19 (m, 4H), 7.18–7.11 (m, 2H), 4.41–4.30 (m, 2H), 1.36 (t, *J* = 7.2 Hz,
3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.88, 164.19, 156.35, 156.31, 139.04, 138.41, 138.13,
136.65, 136.57, 131.40, 128.99, 128.48, 128.31, 127.92, 127.85, 127.67, 127.48, 127.00, 125.88,
118.48, 116.47, 60.87, 13.25; HRMS (ESI) m/z calculated for C₂₇H₂₁NO₃ [M+H]⁺ : 408.1600,
found: 408.1621.

V. Crystallography of compound 3m

Single-crystal X-ray diffraction data for the reported complex was recorded at a temperature of 293(2) K on a Oxford Diffraction Gemini R Ultra diffractometer, using a ω scan technique with Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by Direct Method of SHELXS-97 and refined by full-matrix least-squares techniques using the SHELXL-97 program.1 Non-hydrogen atoms were refined with anisotropic temperature parameters, and hydrogen atoms of the ligands were refined as rigid groups. Basic information pertaining to crystal parameters and structure refinement is summarized in Table 1. 1 (a) G. M. Sheldrick, SHELXS-97, Program for Solution of Crystal Structures, University of Gottingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Program for Refinement of Crystal Structures, University of Gottingen, Germany, 1997; 0) Gottingen, Germany, 1997.

Empirical formula	$C_{20}H_{15}NO_2Br_2$		
Temperature	150.00(10)K		
Wavelength	1.54178 Å		
Unit cell dimensions	$a = 7.0667(3)$ Å $\alpha = 90.00$ deg.		
	b = 23.0878(10) Å β = 90.00 deg.		
	$c = 21.9663(7) \text{ Å}$ $\gamma = 90.00 \text{ deg.}$		
Volume	3583.9(2) Å ³		
Ζ	8		
Calculated density	1.709 Mg/m ³		
Absorption coefficient	5.846 mm ⁻¹		
F(000)	1824.0		
Crystal size	$0.21 \times 0.06 \times 0.02 \text{ mm}$		
Theta range for data collection	7.66 to 134.14 deg.		
Reflections collected / unique	$7839 / 5011 [R_{int} = 0.0323, R_{sigma} = 0.0507]$		
Data / restraints / parameters	5011/1/453		
Goodness-of-fit on F ²	1.042		
Final R indices [I>2sigma(I)]	$R_1 = 0.0415, wR_2 = 0.1039$		
R indices (all data)	$R_1 = 0.0480, WR_2 = 0.1129$		

Table 1	l. Cr	vstal d	ata and	structure	refinement.
---------	-------	---------	---------	-----------	-------------

VI. Analytical data of Mass spectrum

Proposed intermediate **H**, HRMS (ESI) m/z calculated for $C_{20}H_{19}FNO_2$ [M+H]⁺: 324.1400, found: 324.1449.

VII. NMR spectra copies

S33

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

30 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

S55

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0