Supporting Information

Trifluoromethyl-Substitued Selenium Ylide: A Broadly Applicable Electrophlic Trifluoromethylating Reagent

Hangming Ge, Qilong Shen*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PRC shenql@sioc.ac.cn

Table of Contents

1. General information
2. Optimization of reaction conditions
3. UV-Visible absorption of reagent 1a in the presence/absence of DBU
4. DSC and TGA of compound 1a
5. General procedure for the preparation of trifluoromethyl-substituted selenium ethers
6. General procedure for the preparation of trifluoromethyl-substituted selenium ylides
1a-f
7. General procedure for trifluoromethylation of β -ketoesters with reagent 1a S19
8. General procedure for the trifluoromethylation of silyl enol ethers with reagent 1a
9. General procedure for trifluoromethylation of arylboronic acids with reagent 1a.
10. General procedure for the trifluoromethylation of arenes with reagent 1a
11. General procedure for the trifluoromethylation of sodium arylsulfinates with
reagent 1aS46
12. Procedure for the preparation of S-4n, S-4p, S-4q
13. References
14. ¹ H, ¹³ C, ¹⁹ F NMR spectra of compounds 2a-k , 3a-k , 4a-r , 5a-q , 6a-f
15. X-ray structures of compound 1a

General information. All reactions were maintained under an argon atmosphere unless otherwise stated. All solvents were purified by standard methods. ¹H, ¹³C and ¹⁹F NMR spectra were acquired on 400 MHz, 125 MHz, 100 MHz, 375 MHz spectrometer (400 MHz for ¹H ; 101 MHz for ¹³C; 375 MHz for ¹⁹F). ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 ppm and ¹⁹F NMR chemical shifts were determined relative to fluorobenzene as inter standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All reactions were monitored by TLC or ¹⁹F NMR. Flash column chromatograph was carried out using 300-400 mesh silica gel at medium pressure.

Materials. All reagents were received from commercial sources. Solvents were freshly dried and degassed according to the purification handbook Purification of Laboratory Chemicals before using.

0	MeO	² C_CO ₂ Me	Ο
	-CO ₂ Me + O ₂ N	S ['] e, + ℃F ₃ Cond. 1a	CO ₂ Me CF ₃
entry	base	solvemt	yield (%)
1	K ₂ CO ₃	DMF	70
2	K ₂ CO ₃	DMSO	74
3	K ₂ CO ₃	CH ₂ Cl ₂	-
4	K ₂ CO ₃	THF	-
4	K ₂ CO ₃	CICH ₂ CH ₂ CI	-
5	K ₂ CO ₃	CH₃CN	-
6	KO ^t Bu	DMSO	88
7	NaO ^t Bu	DMSO	53
8	KOH	DMSO	60
9	NaOH	DMSO	40
10	KePO ₄	DMSO	82
11	Cs ₂ CO ₃	DMSO	83
12	Na ₂ CO ₃	DMSO	87
13	DBU	DMSO	>99
14	DMAP	DMSO	13
15	DABCO	DMSO	33
16	Et ₃ N	DMSO	13
17	DBU	DMSO	86 ^c
18	DBU	DMSO	96 ^{<i>c,d</i>}

Table S1. Optimization of the reaction conditions for the β -ketoester with reagent 1a.^{*a,b*}

^aReaction conditions: ketoester (0.05 mmol), reagent **1a** (0.06 mmol), base (0.1 mmol) in 1.0 mL of solvent at 40 °C for 1 h; ^bYields were determined by ¹⁹F NMR analysis of the crude reaction mixture with an internal standard; ^cReaction with DBU (0.06 mmol) at room temperature; ^dReaction for 2 h.

Table S2. Reactivity of different trifluoromethyl-substituted selenium ylides with βketoester.^{*a,b*}

^aReaction conditions: ketoester (0.05 mmol), reagent **1a** (0.06 mmol), DBU (0.06 mmol) in DMSO (1.0 mL) at RT for 2 h; ^bYields were determined by ¹⁹F NMR analysis of the crude reaction mixture with an internal standard.

Ŏ	TMS MeO ₂ C、	CO ₂ Me		0
	+	S ['] e` ₊ `CF₃ — 1a	Cond.	CF ₃
entry	[CuX]	solvent	temp. (°C)	yield (%)
1	CuSCN	DMF	50	34
2	CuSCN	CH_2CI_2	50	5
3	CuSCN	THF	50	1
4	CuSCN	Dioxane	50	1
5	CuSCN	NMP	50	38
6	CuSCN	DMAc	50	59
7	CuCl	DMAc	50	22
8	CuBr	DMAc	50	29
9	Cul	DMAc	50	59
10	CuTc	DMAc	50	32
11	Cu(MeCN) ₄ BF ₄	DMAc	50	20
12	CuSCN	DMAc	40	76
13	CuSCN	DMAc	30	12
14	CuSCN	DMAc	40	61 ^c
15	CuSCN	DMAc	40	8 ^d
16	CuSCN	DMAc	40	36 ^e
17	CuSCN	DMAc	40	40 f
18	CuSCN	DMAc	40	68 ^g

Table S3. Optimization of the reaction conditions for reaction of silyl enol etherwith reagent 1a.^{a,b}

^aReaction conditions: silyl enol ether (0.05 mmol), reagent **1a** (0.075 mmol), [CuX] (0.005 mmol) in solvent (1.0 mL) at temperature indicated in the Table for 16 h; ^bYields were determined by ¹⁹F NMR analysis of the crude reaction mixture with an internal standard; ^cReagent **1a** (0.06 mmol) was used; ^dCuSCN (1.0 mol%) was used; ^dCuSCN (2.0 mol%) was used; ^dCuSCN (5.0 mol%) was used; ^dCuSCN (20.0 mol%) was used.

MeO ₂ C __ _CO ₂ Me				
Dh	B(OH) ₂ +	Se + CF ₃ -	Cond.	CF ₃
PII *	0 ₂ N	1 a		Pli *
entry	[CuX]	base	solvent	yield (%)
1	Cu	K ₂ CO ₃	DMF	13
2	CuCl ₂	K ₂ CO ₃	DMF	12
3	CuBr	K ₂ CO ₃	DMF	50
4	Cul	K ₂ CO ₃	DMF	23
5	CuSCN	K ₂ CO ₃	DMF	52
6	CuTc	K ₂ CO ₃	DMF	62
7	CuOTf	K ₂ CO ₃	DMF	41
8	CuOAc	K ₂ CO ₃	DMF	72
9	CuCl	K ₂ CO ₃	DMF	75
10	CuCl	K ₂ CO ₃	DMSO	57
11	CuCl	K ₂ CO ₃	CH ₃ CN	26
12	CuCl	K ₂ CO ₃	THF	-
13	CuCl	K ₂ CO ₃	NMP	-
14	CuCl	K ₂ CO ₃	DCE	8
15	CuCl	K ₂ CO ₃	DCM	10
16	CuCl	K ₂ CO ₃	Toluene	5
17	CuCl	K ₂ CO ₃	Dioxane	4
18	CuCl	K ₂ CO ₃	Diglyme	-
19	CuCl	NaOH	DMF	70
20	CuCl	KOH	DMF	54
21	CuCl	Na ₂ CO ₃	DMF	64
22	CuCl	Cs_2CO_3	DMF	74
23	CuCl	K ₃ PO ₄	DMF	73
24	CuCl	KO ^t Bu	DMF	80
25	CuCl	NaO ^t Bu	DMF	60
26	CuCl	LiOH	DMF	64
27	CuCl	Li ₂ CO ₃	DMF	54
28	CuCl	K ₂ CO ₃	DMF	64
29	CuCl	Cs_2CO_3	DMF	98 ^c
30	CuCl	Cs_2CO_3	DMF	97 c,d

Table S4. Optimization of the reaction conditions for copper-mediated trifluoromethylation of aryl boronic acid with reagent $1a.^{a,b}$

^{*a*}Reaction conditions: arylboronic acid (0.05 mmol), reagent **1a** (0.1 mmol), base (0.1 mmol) in solvent (1.0 mL) at 50 °C for 12 h; ^{*b*}Yields were determined by ¹⁹F NMR analysis of the crude reaction mixture with an internal standard; ^{*c*}Reaction was conducted at room temperature; ^{*d*}Reagent **1a** (0.075 mmol) and Cs₂CO₃ (0.04 mmol) were used.

Table S5. Optimization of the reaction conditions for visible light promotedtrifluoromethylation ofindole with reagent $1a.^{a,b}$

CH₃	MeO ₂ C CO ₂ Me		CH₃
N H	+ O ₂ N 1a	Cond.	CF ₃
entry	amine	solvent	yield (%)
1	DBU	DMSO	77
2	DBU	NMP	28
3	DBU	H ₂ O	74
4	DBU	Tol	18
5	DBU	Dioxane	42
6	DBU	Et ₂ O	47
7	DBU	DMA	37
8	DBU	CH ₂ Cl ₂	85
9	Et ₃ N	CH ₂ Cl ₂	58
10	DIEA	CH ₂ Cl ₂	16
11	DABCO	CH ₂ Cl ₂	97
12	DMAP	CH ₂ Cl ₂	27
13	N-Methylaniline	CH ₂ Cl ₂	33
14	NMM	CH ₂ Cl ₂	63
15	DABCO	CH ₂ Cl ₂	89
16	DABCO	CH ₂ Cl ₂	88 ^c
17	-	CH ₂ Cl ₂	40
18	DABCO	CH ₂ Cl ₂	<1 ^{c,d}

^aReaction conditions: 3-methylindole (0.05 mmol), reagent **1a** (0.075 mmol), amine (0.075 mmol) in 1.0 mL of solvent under irradiation of blue LED light at room temperature for 12 h; ^bYields were determined by ¹⁹F NMR analysis of the crude reaction mixture with an internal standard; ^cReagent **1a** (0.06 mmol) was used; ^dIn the absence of blue LED light.

Table S6. Optimisation of the reaction conditions for visible light promoted trifluoromethylation of sodium benzenesulfinate with reagent 1a.^{*a,b*}

	MeO ₂ C __ _CO ₂ Me	
PhSO ₂ Na	+ O_2N 1a	→ PhSO ₂ CF ₃
		vield
entry	solvent	(%)
1	CH2Cl2	-
2	Et ₂ O	-
-	THE	-
4	H₂O	-
5	CH₂CN	-
6	DME	28
8 7	DME	95 ¢
، ع	DMSO	82
0	DMSO	>00 ^C
9	DIVISO	>99

^aReaction conditions: sodium arylsulfonate (0.05 mmol), reagent **1a** (0.06 mmol) in 1.0 mL of solvent for 12 h; ^bYields were determined by ¹⁹F NMR analysis of the crude reaction mixture with an internal standard; ^cUnder irradiation of blue LED light.

Figure S1. UV-Visible absorption spectrum of DBU in DMF ($\lambda_{max} = 265$ nm).

Figure S2. UV-Visible absorption spectrum of reagent 1a in DMF ($\lambda_{max} = 267$ nm).

Figure S3. UV-Visible absorption spectrum of reagent 1a with 1.0 equivalent of DBU in DMF ($\lambda_{max} = 267, 430$ nm).

Figure S4. Differential scanning calorimeter spectrum of Reagent 1a

Figure S5. Thermogravimetric Analysis of Reagent 1a.

General procedure for the preparation of aryl trifluoromethylselenoether

An oven-dried reaction tube equipped with a stirring bar and a septum was loaded with dry Cs₂CO₃ (3.56 g, 10.5 mmol, 1.50 equiv.), CuCl (71 mg, 0.70 mmol, 0.10 equiv.), CuCl₂ (96 mg, 0.70 mmol, 0.10 equiv.), 1,10-phenanthroline (128 mg, 0.700 mmol, 0.100 equiv.) and KSeCN (1.53 g, 10.5 mmol, 1.50 equiv.) in a glove box. The tube was closed with a septum and removed from the glove box. Anhydrous CH₃CN (30.0 mL) was added via syringe into the reaction tube and the mixture was quickly cooled down to -25 °C, followed by vigorous stirring for 5 min. Subsequently, a solution of aryldiazonium tetrafluoroborate (7.00 mmol, 1.00 equiv.) in CH₃CN (30.0 mL) was dropwise added. After stirring at -25 °C for 10 min and at room temperature for 10 min, 2.0 mL of TMSCF₃ (14.0 mmol. 2.00 equiv.) was added by syringe and the reaction mixture was stirred at room temperature for 12 h. The resulting mixture was filtered through a short pad of silica gel and the solvent was removed under vacuum. The residue was purified by flash column chromatography to give the desired product.

4-Trifluoromethylseleno-nitrobenzene¹

Yellow solid (1.55 g, 82%).

¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.22 (d, *J* = 5.1 Hz, 2 H), 7.90 (d, *J* = 6.6 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -34.75 (s, 3 F).

3-Trifluoromethylseleno-nitrobenzene¹

Yellow oil (1.27 g, 67%).

¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.62 (s, 1 H), 8.35 (d, *J* = 7.5 Hz, 1 H), 8.08 (d, *J* = 7.7 Hz, 1 H), 7.62 (t, *J* = 8.0 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -35.35 (s, 3 F).

2-Trifluoromethylseleno-nitrobenzene¹

Yellow oil (248 mg, 13%).

¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.35 (d, J = 8.2 Hz, 1 H), 7.88 (d, J = 8.1 Hz, 1 H), 7.67 (t, J = 7.7 Hz, 1 H), 7.51 (t, J = 7.8 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -37.02 (s, 3 F).

4-Trifluoromethylseleno-anisole¹

Colorless oil (1.39 g, 78%).

¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.66 (d, J = 8.4 Hz, 2 H), 6.91 (d, J = 8.4 Hz, 2 H), 3.83 (s, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -37.19 (s, 3 F).

4-Trifluoromethylseleno-biphenyl¹

White solid (1.52 g, 72%).

¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.81 (d, *J* = 8.3 Hz, 2 H), 7.64 – 7.56 (m, 4 H), 7.47 (t, *J* = 7.4 Hz, 2 H), 7.42 - 7.37 (m, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ - 36.09 (s, 3 F).

3-Trifluoromethylseleno-chlorobenzene¹

Colorless oil (1.52 g, 72%).

¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.75 (s, 1 H), 7.63 (d, *J* = 7.5 Hz, 1 H), 7.46 (d, *J* = 8.8 Hz, 1 H), 7.34 (t, *J* = 7.8 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ - 36.11 (s, 3 F).

General procedure for the preparation of selenium ylides 1a-f.

Aryl trifluoromethylselenoether (1.00 equiv.), $Rh_2(esp)_2$ (0.1 mol%) and CH_2Cl_2 were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under Ar. A solution of diazomalonate (1.90 g, 1.20 equiv.) in CH_2Cl_2 (20.0 mL) was added slowly during a period of 30 min. The reaction was stirred at 40 °C for 1 h. The mixture was then cooled to room temperature, then concentrated in *vacuo*.

Method A. The residue was purified by flash chromatography (eluent: petroleum ether: ethyl acetate = 1:1) to afford compounds **1a** and **1d**.

Method B. The residue was purified by recrystallization from layering a solution of the residue in dichloromethane with diethyl ether to afford compounds 1a, 1b, 1c, 1e and 1f.

Trifluoromethyl-(4-nitrophenyl)bis(carbomethoxy)methylide 1a

4-Trifluoromethylselenonitrobenzene (2.70 g, 10.0 mmol, 1.00 equiv.), Rh₂(esp)₂ (7.6 mg, 0.10 mol%) in CH₂Cl₂ (80.0 mL) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under argon. A solution of diazomalonate (1.90 g, 12.0 mmol, 1.20 equiv.) in CH₂Cl₂ (20.0 mL) was added slowly during a period of 30 min. The reaction was stirred at 40 °C for 1 h. The mixture was cooled to room temperature, then concentrated in *vacuo*. The residue was purified by flash chromatography to give trifluoromethyl-(4-nitrophenyl)bis(carbomethoxy)methylide **1a** as a yellow solid (3.64 g, 91%). Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.5). Mp: 113-115 °C. ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.42 (d, *J* = 7.4 Hz, 2 H), 7.85 (d, *J* = 7.8 Hz, 2 H), 3.72 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -48.32 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 166.08, 150.58, 133.92, 130.30, 125.66, 120.84 (q, *J* = 358.8 Hz), 65.68, 52.16 ppm. MS (ESI): 402.0 (M⁺+H); HRMS (ESI): Calcd for

 $C_{12}H_{11}O_6NF_3^{74}Se: 395.9757 (M^++H)$, Found: 395.9758. IR (KBr): $v_{max} = 3105, 1523$, 1349, 1239, 1074 cm⁻¹. Anal. Calcd for C₁₂H₁₁O₆NF₃Se: C, 36.02; H, 2.52; N, 3.50; Found: C, 36.28; H, 2.68; N, 3.37.

Trifluoromethyl-3-nitrophenyl)bis(carbomethoxy)methylide 1b

3-Trifluoromethylseleno-nitrobenzene (1.27 g, 4.70 mmol, 1.00 equiv.), Rh₂(esp)₂ (3.6 mg, 0.10 mol%) and CH₂Cl₂ (40.0 mL) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under argon. A solution of diazomalonate (891 mg, 5.64 mmol, 1.20 equiv.) in CH₂Cl₂ (10.0 mL) was added slowly for 30 min. The reaction was stirred at 40 °C for 1 h. The mixture was cooled to room temperature, then concentrated in vacuo. The product was purified by Method B to give trifluoromethyl-3-nitrophenyl)bis(carbomethoxy)methylide **1b** as a grey solid (860 mg, 46%). Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.5). Mp: 127-128 °C. ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.48 - 8.45 (m, 2 H), 7.98 (d, *J* = 7.9 Hz, 1 H), 7.81 (t, *J* = 8.0 Hz, 1 H), 3.72 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -43.71 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 166.09, 149.39, 134.70, 131.86, 129.15, 127.50, 124.48, 120.82 (q, J = 358.7 Hz), 65.53, 52.15 ppm. MS (ESI): 401.9 (M⁺+H); HRMS (ESI): Calcd for $C_{12}H_{11}O_6NF_3Se: 401.9698 (M^++H)$, Found: 401.9695. IR (KBr): $v_{max} = 3068$, 1609, 1297, 1051 cm⁻¹. Anal. Calcd for C₁₂H₁₁O₆NF₃Se: C, 36.02; H, 2.52; N, 3.50; Found: C, 36.40; H, 2.76; N, 3.76.

Trifluoromethyl-(2-nitrophenyl) bis(carbomethoxy) methylide 1c

2-Trifluoromethylseleno-nitrobenzene (248 mg, 0.920 mmol, 1.00 equiv.), Rh₂(esp)₂ (0.7 mg, 0.1 mol%) and CH₂Cl₂ (7.0 mL) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under argon. A solution of diazomalonate (174 mg, 1.10 mmol, 1.20 equiv) in CH₂Cl₂ (3.0 mL) was added slowly during a period of 30 min. The reaction was stirred at 40 °C for 1 h. The mixture was cooled to room temperature, then concentrated in *vacuo*. The product was purified by **Method B** to give trifluoromethyl-(2-nitrophenyl)bis(carbomethoxy)methylide **1c** as a yellow solid (167 mg, 45%). Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.5). Mp: 115-116 °C. ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.52 (dd, J = 7.8, 1.6 Hz, 1 H), 7.99 - 7.96 (m, 1 H), 7.94 - 7.84 (m, 2 H), 3.71 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -42.73 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 166.43, 146.58, 135.99, 134.08, 132.64, 126.97, 123.19, 120.72 (q, J = 357.4 Hz), 65.49, 51.89 ppm. MS (ESI): 401.9 (M⁺+H); HRMS (ESI): Calcd for C₁₂H₁₁O₆NF₃Se: 401.9698 (M⁺+H), Found: 401.9697. IR (KBr): v_{max} = 1685, 1538, 1348, 1183, 1067 cm⁻¹. Anal. Calcd for C₁₂H₁₁O₆NF₃Se: C, 36.02; H, 2.52; N, 3.50; Found: C, 36.26; H, 2.68; N, 3.49.

Trifluoromethyl-(4-methoxylphenyl)bis(carbomethoxy)methylide 1d

4-Trifluoromethylseleno-anisole (2.55 g, 10.0 mmol, 1.00 equiv.), Rh₂(esp)₂ (7.6 mg, 0.10 mol%) and CH₂Cl₂ (80.0 mL) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under argon. A solution of diazomalonate (1.90 g, 12.0 mmol, 1.20 equiv) in CH₂Cl₂ (30.0 mL) was added slowly during a period of 30 min. The reaction was stirred at 40 °C for 1 h. The mixture was cooled to room temperature, then concentrated in *vacuo*. The product was purified by **Method A** to give trifluoromethyl-(4-methoxylphenyl)bis(carbomethoxy)methylide **1d** as a pale yellow oil (2.36 g, 61%). Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.6). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.59 (d, *J* = 8.8 Hz, 2 H), 7.05 (d, *J* = 8.8 Hz, 2 H), 3.87 (s, 3 H), 3.71 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -45.95 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃) δ 166.37, 163.30, 131.17, 120.69 (q, *J* = 357.2 Hz), 117.28, 116.34, 65.54, 55.90, 51.60 ppm. MS (ESI): 386.9 (M⁺+H); HRMS (ESI): Calcd for C₁₃H₁₄O₅F₃⁷⁴Se: 381.0014 (M⁺+H), Found: 381.0013. IR (KBr): v_{max} = 1682, 1626, 1328, 1080, 1061 cm⁻¹. Anal. Calcd for C₁₃H₁₄O₅F₃Se: C, 40.54; H, 3.40; Found: C, 40.87; H, 3.74.

Trifluoromethyl-(4-biphenyl)bis(carbomethoxy)methylide 1e

4-Trifluoromethylseleno-biphenyl (1.50 g, 5.00 mmol, 1.00 equiv.), Rh₂(esp)₂ (3.8 mg, 0.1 mol%) and CH₂Cl₂ (40.0 mL) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under argon. A solution of diazomalonate (948 mg, 6.00 mmol, 1.20 equiv) in CH₂Cl₂ (10.0 mL) was added slowly during a period of 30 min. The reaction was stirred at 40 °C for 1 h. The mixture was cooled to room temperature, then concentrated in *vacuo*. The product was purified by **Method B** to give trifluoromethyl-(4-biphenyl)bis(carbomethoxy)methylide **1e** as a white solid (1.56 g, 73%). Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.6). Mp: 106-107 °C. ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.73 (dd, *J* = 28.2, 8.3 Hz, 4 H), 7.59 - 7.57 (m, 2 H), 7.50 - 7.40 (m, 3 H), 3.73 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -44.93 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 166.45, 146.07, 139.19, 129.56, 129.49, 129.45, 129.02, 127.62, 125.69, 120.85 (q, *J* = 357.6 Hz), 65.21, 51.84 ppm. MS (ESI): 433.0 (M⁺+H); HRMS (ESI): Calcd for C₁₈H₁₆O₄F₃⁷⁴Se: 427.0220 (M⁺+H), Found: 427.0220. IR (KBr): v_{max} = 1692, 1465, 1326, 1166, 1081, 1039 cm⁻¹. Anal. Calcd for C₁₈H₁₆O₄F₃Se: C, 50.13; H, 3.51; Found: C, 49.85; H, 3.79.

Trifluoromethyl-(3-chlorophenyl)bis(carbomethoxy)methylide 1f

3-Trifluoromethylseleno-chlorobenzene (2.60 g, 10.0 mmol, 1.00 equiv), $Rh_2(esp)_2$ (7.6 mg, 0.10 mol%) and CH_2Cl_2 (80.0 mL) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under argon. A solution of diazomalonate (1.90 g, 12.0 mmol, 1.20 equiv) in CH_2Cl_2 (20.0 mL) was added slowly during a period of 30 min. The reaction was stirred at 40 °C for 1 h. The mixture was cooled to room temperature, then concentrated in *vacuo*. The product was purified by **Method B** to give trifluoromethyl-(3-chlorophenyl)bis(carbomethoxy)methylide **1f** as a white solid

(2.61 g, 67%). Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.6). Mp: 113-114 °C. ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.61 – 7.58 (m, 2 H), 7.51-7.55 (m, 2 H), 3.72 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -44.25 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 166.25, 137.12, 133.17, 131.87, 128.93, 128.62, 127.11, 120.85 (q, *J* = 357.7 Hz), 65.31, 51.98 ppm. MS (ESI): 390.9 (M⁺+H); HRMS (ESI): Calcd for C₁₂H₁₁O₄ClF₃Se: 390.9458 (M⁺+H), Found: 390.9455. IR (KBr): ν_{max} = 1698, 1647, 1440, 1323, 1236, 1166, 1077, 1056 cm⁻¹. Anal. Calcd for C₁₂H₁₀ClO₄F₃Se: C, 36.99; H, 2.59; Found: C, 37.01; H, 2.82.

General procedure for trifluoromethylation of β-ketoesters 2a-k with reagent 1a

 β -ketoester (0.50 mmol, 1.0 equiv.) and reagent **1a** (240 mg, 0.600 mmol, 1.20 equiv.) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under Ar. The tube was quickly sealed with a rubber stopper and 3.0 mL of freshly distilled DMSO and DBU (91.2 mg, 0.600 mmol, 1.20 equiv.) was added. The reaction was stirred at room temperature for 2 h. Then 20.0 mL of Distilled water and 20.0 mL of Et₂O was added and the organic phase was separated. The aqueous phase was extracted with Et₂O (10.0 mL × 5) and the combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The product was purified by flash chromatography on silica gel.

Methyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate2a²

Pale yellow solid (118 mg, 91%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.84 (d, *J* = 7.7 Hz, 1 H), 7.70 (t, *J* = 7.5 Hz, 1 H), 7.53 (d, *J* = 7.7 Hz, 1 H), 7.47 (t, *J* = 7.5 Hz, 1 H), 3.78 (s, 3 H), 3.74 (d, *J* = 17.8 Hz, 1 H), 3.60 (d, *J* = 17.7 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.37 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 193.14, 165.95 (d, *J* = 2.1 Hz), 151.99, 136.62, 134.74, 128.85, 126.65, 125.94, 123.85 (q, *J* = 281.5 Hz), 63.39 (q, *J* = 26.2 Hz), 53.88, 34.52 (d, *J* = 1.8 Hz) ppm. MS (EI): 258 (M⁺); HRMS (EI): Calcd for C₁₂H₉O₃F₃: 258.0508 (M⁺), Found: 258.0504. IR (KBr): v_{max} = 3436, 1760, 1607, 1436, 1278, 1157, 1046 cm⁻¹.

Ethyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2b²

Pale yellow solid (134 mg, 98%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.83 (d, *J* = 7.7 Hz, 1 H), 7.69 (t, *J* = 7.5 Hz, 1 H), 7.53 (d, *J* = 7.7 Hz, 1 H), 7.45 (t, *J* = 7.5 Hz, 1 H), 4.30 - 4.17 (m, 2 H), 3.73 (d, *J* = 17.7 Hz, 1 H), 3.59 (d, *J* = 17.7 Hz, 1 H), 1.23 (t, *J* = 7.1 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.30 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 193.30, 165.46, 152.07, 136.54, 134.77, 128.79, 126.63, 125.84, 123.88 (q, *J* = 281.5 Hz), 63.48 (q, *J* = 26.2 Hz) 63.14, 34.51 (q, *J* = 1.9 Hz), 14.14 ppm. MS (EI): 272 (M⁺); HRMS (EI): Calcd for C₁₃H₁₁O₃F₃: 272.0670 (M⁺), Found: 272.0660. IR (KBr): $v_{max} = 1756, 1727, 1607, 1303, 1186, 1043 cm^{-1}$.

Isopropyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2c²

Pale yellow solid (139 mg, 97%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.83 (d, *J* = 7.7 Hz, 1 H), 7.68 (t, *J* = 7.4 Hz, 1 H), 7.53 (d, *J* = 7.6 Hz, 1 H), 7.45 (t, *J* = 7.4 Hz, 1 H), 5.10 (hept, *J* = 6.0 Hz, 1 H), 3.71 (d, *J* = 17.6 Hz, 1 H), 3.58 (d, *J* = 17.7 Hz, 1 H), 1.22 (d, *J* = 6.2 Hz, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.19 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 193.39, 164.99, 152.03, 136.46, 134.86, 128.75, 126.60, 125.83, 123.91 (q, *J* = 281.5 Hz), 71.21, 63.63 (q, *J* = 26.0 Hz), 34.51 (d, *J* = 1.8 Hz), 21.70, 21.63 ppm. MS (EI): 286 (M⁺); HRMS (EI): Calcd for C₁₄H₁₃O₃F₃: 286.0819 (M⁺), Found: 286.0817. IR (KBr): ν_{max} = 2985, 1751, 1606, 1466, 1279, 1185, 1036 cm⁻¹.

Methyl 6-chloro-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2d

Pale yellow solid (109 mg, 79%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.89 - 7.82 (m, 1 H), 7.23 - 7.13 (m, 2 H), 3.80 (s, 3 H), 3.74 (d, *J* = 18.0 Hz, 1 H), 3.57 (d, *J* = 18.0 Hz, 1 H); ¹⁹F NMR (375

MHz, CDCl₃) δ -69.42 (s, 3 F), -99.10 - -99.21 (m, 1 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 191.18, 169.59, 167.01, 165.62, 154.95 (d, *J* = 10.7 Hz), 128.40 (d, *J* = 10.8 Hz), 123.69 (d, *J* = 281.6 Hz), 117.44 (d, *J* = 24.0 Hz), 113.57 (d, *J* = 23.2 Hz), 63.69 (q, *J* = 26.4 Hz), 54.02, 34.29 ppm. MS (EI): 276 (M⁺); HRMS (EI): Calcd for C₁₂H₈O₃F₄: 276.0411 (M⁺), Found: 276.0410. IR (KBr): v_{max} = 1753, 1615, 1312, 1171, 1048 cm⁻¹.

Adamantyl 4-fluoro-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2carboxylate 2e

Pale yellow solid (194 mg, 98%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.6). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.64 (d, *J* = 7.6 Hz, 1 H), 7.45 (td, *J* = 7.9, 4.6 Hz, 1 H), 7.36 (t, *J* = 8.3 Hz, 1 H), 3.69 (d, *J* = 18.0 Hz, 1 H), 3.55 (d, *J* = 17.9 Hz, 1 H), 2.15 (s, 3 H), 2.06 (s, 6 H), 1.62 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.19 (s, 3 F), -118.39 (dd, *J* = 8.6, 4.6 Hz, 1 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 192.60, 163.50 (q, *J* = 2.1 Hz), 161.18, 158.68, 137.95 (d, *J* = 19.5 Hz), 130.76 (d, *J* = 6.2 Hz), 123.72 (d, *J* = 281.3 Hz), 122.44 (d, *J* = 19.7 Hz), 121.46 (d, *J* = 4.1 Hz), 85.09, 64.17 (q, *J* = 25.9 Hz), 41.27, 36.26, 31.24, 30.73 (d, *J* = 2.0 Hz) ppm. MS (EI): 396 (M⁺); HRMS (EI): Calcd for C₂₁H₂₀O₃F₄: 396.1342 (M⁺), Found: 396.1349. IR (KBr): v_{max} = 2916, 1752, 1482, 1314, 1165, 1036 cm⁻¹.

Methyl 5-chloro-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2- carboxylate 2f³

Pale yellow solid (136 mg, 93%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.78 (d, J = 8.2 Hz, 1 H), 7.54 (s, 1 H), 7.45 (d, J = 9.0 Hz, 1 H), 3.79 (s, 3 H), 3.73 (d, J = 17.9 Hz, 1 H), 3.57 (d, J = 17.9 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.38 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃,

293 K, TMS) δ 191.67, 165.55 (d, J = 2.1 Hz), 153.34, 143.48, 133.13 (d, J = 1.4 Hz), 129.80, 126.95, 123.64 (q, J = 281.6 Hz), 63.54 (q, J = 26.3 Hz), 54.06, 34.16 (d, J = 1.7 Hz) ppm. MS (EI): 292 (M⁺); HRMS (EI): Calcd for C₁₂H₈O₃ClF₃: 292.0114 (M⁺), Found: 292.0108.

Methyl 6-methoxy-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2carboxylate 2g³

Pale yellow solid (135 mg, 94%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.44 (d, *J* = 8.3 Hz, 1 H), 7.30 (d, *J* = 8.3 Hz, 1 H), 7.26 (s, 1 H), 3.87 (s, 3 H), 3.80 (s, 3 H), 3.66 (d, *J* = 17.4 Hz, 1 H), 3.54 (d, *J* = 17.4 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.45 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 192.76, 165.65 (d, *J* = 2.1 Hz), 160.11, 144.60, 135.60 (d, *J* = 1.5 Hz), 126.94, 125.90, 123.47 (q, *J* = 281.5 Hz), 106.25, 63.69 (q, *J* = 26.1 Hz), 55.67, 53.48, 33.50 (d, *J* = 1.7 Hz) ppm. MS (EI): 288 (M⁺); HRMS (EI): Calculated for C₁₃H₁₁O₄F₄: 288.0600 (M⁺), Found: 288.0609. IR (KBr): ν_{max} = 1754, 1711, 1323, 1199, 1157, 1074, 1046, 1025 cm⁻¹.

Adamantyl-1,1-dimethyl-3-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2carboxylate 2h

Pale yellow solid (199 mg, 98%). Eluent: ethyl acetate/petroleum ether = 1/20 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.77 (d, *J* = 7.6 Hz, 1 H), 7.66 (t, *J* = 7.5 Hz, 1 H), 7.46 (d, *J* = 7.8 Hz, 1 H), 7.41 (t, *J* = 7.4 Hz, 1 H), 2.09 (s, 3 H), 1.95 (s, 6 H), 1.61 (s, 3 H), 1.57 (s, 6 H), 1.49 (s, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -66.65 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 198.67, 168.60, 164.81, 140.36, 138.70, 132.88, 128.95, 128.78 (q, *J* = 281.8 Hz), 127.38, 89.20, 76.64 (q, *J* = 23.6 Hz), 51.12, 45.62, 40.55, 35.46, 34.55 (q, *J* = 3.1 Hz), 29.69 ppm. MS (EI): 406 (M⁺); HRMS

(EI): Calcd for $C_{23}H_{25}O_3F_3$: 406.1756 (M⁺), Found: 406.1751. IR (KBr): $v_{max} = 2914$, 1728, 1293, 1309, 1252, 1217, 1171, 1146, 1053 cm⁻¹.

Methyl-7-bromo-1-oxo-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene-2-Carboxylate 2i

Pale yellow solid (153 mg, 87%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.3). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.22 (d, *J* = 2.1 Hz, 1 H), 7.63 (dd, *J* = 8.2, 2.1 Hz, 1 H), 7.14 (d, *J* = 8.2 Hz, 1 H), 3.77 (s, 3 H), 3.03 - 2.91 (m, 2 H), 2.82 (dt, *J* = 13.7, 4.0 Hz, 1 H), 2.52 - 2.38 (m, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -68.88 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 185.75, 165.41 (q, *J* = 1.8 Hz), 140.70, 137.08, 132.80 (d, *J* = 1.3 Hz), 131.09, 130.47, 123.59 (q, *J* = 284.0 Hz), 121.31, 61.78 (q, *J* = 24.5 Hz), 53.73, 27.45 (q, *J* = 2.2 Hz), 24.66 ppm. MS (EI): 350 (M⁺); HRMS (EI): Calcd for C₁₃H₁₀O₃BrF₃: 349.9760 (M⁺), Found: 349.9765. IR (KBr): v_{max} = 1732, 1702, 1266, 1176 cm⁻¹.

Methyl-5-methoxy-1-oxo-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene-2carboxylate 2j

Pale yellow oil (150 mg, 99%). Eluent: ethyl acetate/petroleum ether = 1/20 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.71 (d, J = 7.9 Hz, 1 H), 7.32 (t, J = 8.0Hz, 1 H), 7.06 (d, J = 8.0 Hz, 1 H), 3.87 (s, 3 H), 3.74 (s, 3 H), 3.23 - 3.10 (m, 1 H), 2.89 - 2.81 (m, 1 H), 2.76 - 2.64 (m, 1 H), 2.38 (td, J = 13.2, 5.0 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -73.77 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 187.57, 165.94, 156.82, 132.67, 131.54, 127.85, 124.18 (q, J = 283.9 Hz), 120.10, 115.25, 61.97 (q, J = 24.1 Hz), 56.04, 53.91, 27.21 (q, J = 1.9 Hz), 19.27 ppm. MS (EI): 302 (M⁺); HRMS (EI): Calcd for C₁₃H₁₃O₄F₃: 302.0766 (M⁺), Found: 302.0763. IR (KBr): $v_{max} = 2958$, 1743, 1700, 1586, 1474, 1264, 1180, 1127, 1100, 1067 cm⁻¹. Adamantyl-5-oxo-6-(trifluoromethyl)-6,7,8,9-tetrahydro-5*H*-benzo[7]annulene-6 -carboxylate 2k

White solid (198 mg, 97%). Eluent: ethyl acetate/petroleum ether = 1/20 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.5 Hz, 1 H), 7.39 (t, *J* = 7.0 Hz, 1 H), 7.29 (t, *J* = 7.5 Hz, 1 H), 7.14 (d, *J* = 7.5 Hz, 1 H), 3.08 - 2.97 (m, 1 H), 2.93 - 2.84 (m, 1 H), 2.66 - 2.54 (m, 1 H), 2.26 - 2.18 (m, 1 H), 2.18 - 2.11 (m, 1 H), 2.08 (s, 3 H), 1.97 - 1.92 (m, 1 H), 1.91 (d, *J* = 11.9 Hz, 3 H), 1.79 (d, *J* = 11.3 Hz, 3 H), 1.57 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -67.99 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 197.06, 164.23, 139.39 (q, *J* = 1.5 Hz), 139.13, 131.88, 130.25, 129.66, 126.76, 124.40 (q, *J* = 285.0 Hz), 84.61, 67.84 (q, *J* = 22.5 Hz), 40.84, 36.23, 32.82, 31.08, 28.23 (q, *J* = 2.0 Hz), 23.66 ppm. MS (EI): 406 (M⁺); HRMS (EI): Calcd for C₂₃H₂₅O₃F₃: 406.1756 (M⁺), Found: 406.1755. IR (KBr): v_{max} = 2914, 1743, 1701, 1259, 1198, 1158, 1050 cm⁻¹.

General procedure for the trifluoromethylation of silyl enol ethers 3a-k

Silyl enol ethers (0.50 mmol, 1.0 equiv.), CuSCN (6.0 mg, 0.050 mmol, 0.10 equiv.), reagent **1a** (300 mg, 0.750 mmol, 1.50 equiv.) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under argon. Freshly distilled DMAc (10.0 mL) was added and the tube was quickly sealed with a rubber stopper. The mixture was stirred at 40 °C for 16 h. 20.0 mL of water and 40.0 mL of CH_2Cl_2 was added to the mixture. The organic phase was separated and extracted with water (5 × 10.0 mL), dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash chromatography on silica gel.

3,3,3-Trifluoro-1-phenylpropan-1-one 3a⁴

Colorless oil (102 mg, 73%). Eluent: ethyl acetate/petroleum ether = 1/20 ($R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.94 (d, J = 7.3 Hz, 2 H), 7.64 (t, J = 7.4Hz, 1 H), 7.51 (t, J = 7.9 Hz, 2 H), 3.80 (q, J = 10.0 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.08 (t, J = 9.9 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 189.69, 135.86, 134.20, 128.96, 128.38, 124.02 (q, J = 277.1 Hz), 42.13 (q, J = 28.2Hz). MS (EI): 188 (M⁺); HRMS (EI): Calcd for C₉H₇OF₃: 188.0449 (M⁺), Found: 188.0451 (M⁺). IR (KBr): $v_{max} = 3359, 3090, 2978, 2947, 1686, 1651, 1597, 1581, 1493, 1474, 1451, 1421, 1373, 1326, 1274, 1228, 1186, 1100, 1001cm⁻¹.$

1-(4-tert-Butylphenyl)-3,3,3-trifluoropropan-1-one 3b⁵

Colorless oil (101 mg, 83%). Eluent: dichloromethane/petroleum ether = 1/5 (R_f = 0.4). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.86 (d, *J* = 8.5 Hz, 2 H), 7.50 (d, *J* = 8.5 Hz, 2 H), 3.76 (q, *J* = 10.1 Hz, 2 H), 1.33 (s, 9 H); ¹⁹F NMR (375 MHz, CDCl₃) δ - 62.03 (t, J = 10.1 Hz, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 189.62, 158.54, 133.69, 128.73, 126.24, 124.44 (q, J = 276.9 Hz), 42.34 (q, J = 28.1 Hz), 35.59, 31.33 ppm. MS (EI): 244 (M⁺); HRMS (EI): Calcd for C₁₃H₁₅OF₃: 244.1075 (M⁺), Found: 244.1076 (M⁺). IR (KBr): $\nu_{max} = 2967$, 1698, 1606, 1371, 1235, 1135, 1105 cm⁻¹.

1-(4-Bromophenyl)-3,3,3-trifluoropropan-1-one 3c⁵

White solid (86 mg, 64%). Eluent: ethyl acetate/petroleum ether = 1/20 ($R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.79 (d, J = 8.5 Hz, 2 H), 7.65 (d, J = 8.5 Hz, 2 H), 3.76 (q, J = 9.9 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.03 (t, J = 10.1 Hz, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 189.07, 134.88, 132.67, 132.24, 130.15, 124.15 (q, J = 277.1 Hz), 42.48 (q, J = 28.5 Hz) ppm. MS (EI): 266 (M⁺); HRMS (EI): Calcd for C₉H₆OF₃Br: 265.9554 (M⁺), Found: 265.9555 (M⁺). IR (KBr): $v_{max} = 1700, 1587, 1422, 1373, 1267, 1128, 1101, 995, 809, 632$ cm⁻¹.

1-(4-Chlorophenyl)-3,3,3-trifluoropropan-1-one 3d⁶

White solid (69 mg, 62%). Eluent: ethyl acetate/petroleum ether = 1/20 (R_f = 0.4). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.88 (d, *J* = 8.3 Hz, 2 H), 7.49 (d, *J* = 8.3 Hz, 2 H), 3.77 (q, *J* = 9.9 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.04 (t, *J* = 9.9 Hz, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 188.86, 141.25, 134.48, 130.11, 129.67, 124.17 (q, *J* = 277.1 Hz), 42.52 (q, *J* = 28.4 Hz) ppm. MS (EI): 222 (M⁺); HRMS (EI): Calcd for C₉H₆OClF₃: 222.0059 (M⁺), Found: 222.0065 (M⁺). IR (KBr): v_{max} = 1701, 1592, 1424, 1371, 1269, 1226, 1103, 998, 812 cm⁻¹.

1-(4-Nitrophenyl)-3,3,3-trifluoropropan-1-one 3e⁶

Yellow solid (105 mg, 90%). Eluent: dichloromethane/petroleum ether = 1/1 (R_f = 0.4).

¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.36 (d, *J* = 9.0 Hz, 2 H), 8.11 (d, *J* = 8.9 Hz, 2 H), 3.86 (q, *J* = 9.7 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -61.99 (t, *J* = 9.7 Hz, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 188.65, 151.30, 140.30, 129.82, 124.53, 123.87 (q, *J* = 277.4 Hz), 43.08 (q, *J* = 29.0 Hz) ppm. MS (EI): 233 (M⁺); HRMS (EI): Calcd for C₉H₆O₃NF₃: 233.0300 (M⁺), Found: 233.0308 (M⁺). IR (KBr): $v_{max} = 1698, 1606, 1522, 1351, 1131, 1104, 857 \text{ cm}^{-1}$.

Methyl-4-(3,3,3-trifluoropropanoyl)benzoate 3f⁶

White solid (63 mg, 51%). Eluent: dichloromethane/petroleum ether = 1/1 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.15 (d, J = 8.3 Hz, 2 H), 7.98 (d, J = 8.6Hz, 2 H), 3.95 (s, 3 H), 3.83 (q, J = 9.9 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.10 (t, J = 9.9 Hz, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 189.60, 166.20, 139.16, 135.23, 130.43, 128.61, 124.14 (q, J = 277.1 Hz), 52.92, 42.79 (q, J = 28.5 Hz) ppm. MS (EI): 246 (M⁺); HRMS (EI): Calcd for C₁₁H₉O₃F₃: 246.0504 (M⁺), Found: 246.0509 (M⁺). IR (KBr): $v_{max} = 1720$, 1694, 1419, 1281, 1226, 1105, 1000 cm⁻¹.

2-(Trifluoromethyl)-2,3-dihydro-1H-inden-1-one 3g⁴

White solid (62 mg, 62%). Eluent: dichloromethane/petroleum ether = 1/5 ($R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.81 (d, J = 7.7 Hz, 1 H), 7.66 (t, J = 7.4Hz, 1 H), 7.52 (d, J = 7.7 Hz, 1 H), 7.43 (t, J = 7.4 Hz, 1 H), 3.53 - 3.38 (m, 2 H), 3.34 - 3.29 (m, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -67.58 (d, J = 8.8 Hz, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 197.14, 152.41, 136.15, 128.52, 126.85, 125.27 (q, J = 278.4 Hz), 125.03, 50.11 (q, J = 27.4 Hz), 27.93 (q, J = 2.2 Hz) ppm. MS (EI): 200 (M⁺); HRMS (EI): Calcd for C₁₀H₇OF₃: 200.0449 (M ⁺), Found: 200.0451 (M⁺). IR (KBr): $\nu_{max} = 1723$, 1602, 1345, 1250, 1184, 1098 cm⁻¹.

5-Chloro-2-(trifluoromethyl)-2,3-dihydro-1*H*-inden-1-one 3h

Yellow solid (66 mg, 56%). Eluent: dichloromethane/petroleum ether = 1/5 ($R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.74 (d, J = 8.2 Hz, 1 H), 7.52 (s, 1 H), 7.41 (d, J = 8.2 Hz, 1 H), 3.48 - 3.40 (m, 2 H), 3.34 - 3.25 (m, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -73.18 (d, J = 9.4 Hz, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 195.62, 153.77, 142.91, 134.62, 129.47, 127.10, 126.16, 125.04 (q, J = 278.5 Hz), 50.22 (q, J = 27.7 Hz), 27.68 (q, J = 2.4 Hz) ppm. MS (EI): 234 (M⁺); HRMS (EI): Calcd for C₁₀H₆OClF₃: 234.0059 (M⁺), Found: 234.0058 (M⁺). IR (KBr): $\nu_{max} = 1732$, 1601, 1348, 1289, 1254, 1111, 1070 cm⁻¹.

2-(Trifluoromethyl)-3,4-dihydronaphthalen-1(2H)-one 3i⁴

White solid (68 mg, 63%). Eluent: dichloromethane/petroleum ether = 1/5 ($R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.06 (d, J = 7.8 Hz, 1 H), 7.52 (t, J = 7.2Hz, 1 H), 7.35 (t, J = 7.5 Hz, 1 H), 7.27 (d, J = 7.8 Hz, 1 H), 3.33 - 3.22 (m, 1 H), 3.16 - 3.02 (m, 2 H), 2.55 - 2.45 (m, 1 H), 2.34 - 2.21 (m, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -67.79 (d, J = 9.5 Hz, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 190.54, 143.41, 134.52, 132.29, 129.12, 128.21, 127.45, 125.41 (q, J = 279.9 Hz), 51.24 (q, J = 25.5 Hz), 27.87, 23.79 (q, J = 2.6 Hz) ppm. MS (EI): 214 (M⁺); HRMS (EI): Calcd for C₁₁H₉OF₃: 214.0605 (M⁺), Found: 214.0607 (M⁺). IR (KBr): $v_{max} = 1700$, 1596, 1382, 1257, 1181, 1097 cm⁻¹.

1-(2-Chloro-4-(4-chlorophenoxy)phenyl)-3,3,3-trifluoropropan-1-one 3j

Yellow oil (72 mg, 41%). Eluent: dichloromethane/petroleum ether = 1/5 (R_f = 0.3). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.64 (d, *J* = 8.7 Hz, 1 H), 7.39 (d, *J* = 8.7 Hz, 2 H), 7.02 (d, *J* = 8.8 Hz, 2 H), 6.99 (d, *J* = 2.2 Hz, 1 H), 6.92 (dd, *J* = 8.7, 2.2 Hz, 1

H), 3.86 (q, J = 9.9 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.22 (t, J = 9.9 Hz, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 161.53, 153.58, 134.01, 132.66, 131.87, 130.96, 130.70, 123.98 (q, J = 277.5 Hz), 122.02, 121.78, 119.70, 116.42, 46.30 (q, J = 28.1 Hz) ppm. MS (EI): 348 (M⁺); HRMS (EI): Calcd for C₁₅H₉O₂Cl₂F₃: 347.9932 (M ⁺), Found: 347.9937 (M⁺). IR (KBr): $\nu_{max} = 1702$, 1584, 1485, 1370, 1231, 1134, 1102, 1054, 920 cm⁻¹.

1-Phenyl-2-(trifluoromethyl)butan-1-one 3k⁴

Colorless oil (60 mg, 56%). Eluent: ethyl acetate/petroleum ether = 1/20 (R_f = 0.4). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.97 (d, J = 7.7 Hz, 2 H), 7.63 (t, J = 7.3 Hz, 1 H), 7.52 (t, J = 7.6 Hz, 2 H), 4.21 - 4.03 (m, 1 H), 2.19 - 2.07 (m, 1 H), 2.01 - 1.90 (m, 1 H), 0.96 (t, J = 7.4 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -66.21 (d, J = 8.2 Hz, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 194.36, 136.81, 133.76, 128.72, 128.34, 124.83 (q, J = 280.8 Hz), 50.60 (q, J = 25.3 Hz), 20.26, 11.38 ppm.

General procedure for trifluoromethylation of arylboronic acids with reagent 1a

$$Ar-B(OH)_{2} + \underbrace{\bigcirc \\ O_{2}N \\ O_{2}N$$

In the glove box, CuCl (60.0 mg, 0.600 mmol, 1.20 equiv.) and Cs₂CO₃ (130 mg, 0.400 mmol, 0.800 equiv.) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar. A solution of aryl boronic acid (0.50 mmol, 1.0 equiv.) and reagent **1a** (300 mg, 0.750 mmol, 1.50 equiv.) in 5.0 mL of freshly distilled DMF was added. The reaction was stirred at room temperature for 16 h. Distilled water (20.0 mL) and CH₂Cl₂ (20.0 mL) were added and the organic phase was separated. The aqueous phase was extracted with CH₂Cl₂ (10.0 mL × 5) and the combined organic extracts were dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. The product was purified by flash chromatography on silica gel or further purified by Kugelrohr distillation.

4-(Trifluoromethyl)biphenyl 4a⁷

White solid (99 mg, 89%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.70 (s, 4 H), 7.64 - 7.58 (m, 2 H), 7.48 (t, J = 7.4 Hz, 2 H), 7.44 - 7.38 (m, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.41 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 145.07, 140.10, 129.68 (q, J = 32.4 Hz), 129.32, 128.52, 127.75, 127.61, 126.04 (q, J = 3.8 Hz), 124.65 (q, J = 268.1 Hz) ppm. MS (EI): 222 (M⁺); HRMS (EI): Calculated for C₁₃H₉F₃: 222.0652 (M⁺), Found: 222.0656. IR (KBr): $v_{max} = 1332, 1162, 1114, 1075, 844, 768, 729, 690$ cm⁻¹.

1-(Benzyloxy)-4-(trifluoromethyl)benzene 4b⁷

White solid (107mg, 85%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.55 (d, J = 8.5 Hz, 2 H), 7.46 - 7.32 (m, 5 H), 7.04 (d, J = 8.5 Hz, 2 H), 5.11 (s, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -61.52 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 161.50, 136.54, 129.05, 128.59, 127.79, 127.27 (q, J =

3.7 Hz), 124.75 (d, J = 271.0 Hz), 123.45 (q, J = 32.7 Hz), 115.18, 70.51 ppm. MS (EI): 252 (M⁺); HRMS (EI): Calculated for C₁₄H₁₁OF₃: 252.0754 (M⁺), Found: 252.0762. IR (KBr): $v_{max} = 1614$, 1519, 1336, 1247, 1168, 1098, 1064, 1005 cm⁻¹.

1-Chloro-2-ethoxy-4-(trifluoromethyl)-benzene 4c

Colorless oil (102 mg, 91%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.53 (s, 1 H), 7.41 (d, J = 8.6 Hz, 1 H), 7.26 (s, 1 H), 6.91 (d, J = 8.7 Hz, 1 H), 4.09 (q, J = 12.4, 5.8 Hz, 2 H), 1.44 (t, J = 5.8 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.87 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 155.90, 133.21, 127.50 (q, J = 5.4 Hz), 125.25, 123.20 (q, J = 272.7 Hz), 120.70 (q, J = 31.5 Hz), 114.64, 65.26, 14.80 ppm. MS (EI): 224 (M⁺); HRMS (EI): Calcd for C₉H₈OF₃Cl: 224.0212 (M⁺), Found: 224.0216. IR (KBr): $v_{max} = 2987$, 1608, 1495, 1319, 1280, 1138, 1053, 692 cm⁻¹.

1-Pyrrolidinyl[4-(trifluoromethyl)phenyl]-methanone 4d⁸

Yellow oil (98 mg, 81%). Eluent: ethyl acetate/petroleum ether = 1/3 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.66 (d, J = 8.2 Hz, 2 H), 7.61 (d, J = 8.1 Hz, 2 H). 3.65 (t, J = 6.9 Hz, 2 H), 3.38 (t, J = 6.5 Hz, 2 H), 2.05 - 1.83 (m, 4 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.97 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 168.58, 141.03, 132.01 (q, J = 32.5 Hz), 128.99, 128.84, 127.79, 125.71 (q, J = 3.7 Hz), 124.11 (q, J = 272.5 Hz), 49.81, 46.58, 26.70, 24.73 ppm. MS (EI): 243 (M⁺); HRMS (EI): Calcd for C₁₂H₁₂NOF₃: 243.0867 (M⁺), Found: 243.0871. IR (KBr): $v_{max} = 1613$, 1448, 1325, 1131, 1110, 1067, 863 cm⁻¹.

2-(Trifluoromethyl)naphthalene 4e⁷

White solid (70 mg, 71%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz,

CDCl₃, 293 K, TMS) δ 8.16 (s, 1 H), 7.99 - 7.88 (m, 3 H), 7.69 - 7.55 (m, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.28 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 134.90, 132.53, 129.31, 129.15, 128.39, 128.20, 127.91, 127.49, 126.02 (q, *J* = 4.5 Hz), 124.74 (d, *J* = 270.6 Hz), 121.78 (q, *J* = 3.1 Hz) ppm. MS (EI): 196 (M⁺); HRMS (EI): Calcd for C₁₁H₇F₃: 196.0494 (M⁺), Found: 196.0500. IR (KBr): $v_{max} = 1147, 1132, 1111, 826, 753 \text{ cm}^{-1}$.

5-Bromo-N-boc-2-(trifluoromethyl)-1-H-indole 4f

Pale yellow oil (141 mg, 91%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.17 (d, J = 9.0 Hz, 1 H), 7.74 (d, J = 1.9 Hz, 1 H), 7.53 (dd, J = 9.0, 2.0 Hz, 1 H), 7.06 (s, 1 H), 1.67 (s, 9 H); ¹⁹F NMR (375 MHz, CDCl₃) δ - 58.38 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 148.56, 136.77, 130.28, 128.38, 128.30 (d, J = 39.2 Hz), 124.83, 120.74 (q, J = 268.0 Hz), 117.98, 117.11, 112.68 (q, J = 5.1 Hz), 86.37, 28.15 ppm. MS (EI): 363 (M⁺); HRMS (EI): Calcd for C₁₄H₁₃NO₂BrF₃: 363.0083 (M⁺), Found: 363.0082. IR (KBr): $v_{max} = 1759$, 1385, 1347, 1284, 1240, 1145 cm⁻¹.

2-(Trifluoromethyl)benzofurane 4g⁷

Colorless oil (85 mg, 92%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.73 - 7.55 (m, 2 H), 7.50 - 7.31 (m, 2 H), 7.17 (s, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -64.88 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 143.64, 127.28, 126.36, 125.87, 124.33, 122.84, 119.68 (q, *J* = 267.9 Hz), 112.47, 108.47 (q, *J* = 3.0 Hz) ppm.

4-(Trifluoromethyl)-dibenzofuran 4h

White solid (97 mg, 82%). Eluent: pentane ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 S32

K, TMS) δ 8.09 (d, J = 7.7 Hz, 1 H), 7.95 (d, J = 7.6 Hz, 1 H), 7.73 - 7.62 (m, 2 H), 7.52 (t, J = 7.7 Hz, 1 H), 7.43 - 7.36 (m, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -61.05 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 138.76, 135.97, 135.61, 134.11, 132.21, 129.35, 128.64, 128.34, 128.09, 127.03, 127.65, 125.50 (q, J = 5.5 Hz), 123.37 (d, J = 274.1 Hz) ppm. MS (EI): 236 (M⁺); HRMS (EI): Calcd for C₁₃H₇OF₃: 236.0453 (M⁺), Found: 236.0449. IR (KBr): $v_{max} = 1453$, 1429, 1326, 1197, 1121, 1034, 746 cm⁻¹.

2-(Trifluoromethyl)benzo[b]thiophene 4i⁷

White solid (85 mg, 83%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.88 (t, J = 5.9 Hz, 2 H), 7.70 (s, 1 H), 7.52 - 7.42 (m, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -56.33 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 140.50, 138.12, 130.35 (q, J = 36.6 Hz), 126.91, 125.98 (q, J = 4.2 Hz), 125.57, 125.46, 122.98, 122.84 (d, J = 275.7 Hz) ppm. MS (EI): 202 (M⁺); HRMS (EI): Calcd for C₉H₅F₃S: 202.0059 (M⁺), Found: 202.0064. IR (KBr): $v_{max} = 2961$, 1261, 1093, 1020, 800 cm⁻¹.

1-(Trifluoromethyl)-thianthrene 4j

White solid (97 mg, 82%). Eluent: pentane ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.68 (d, J = 7.8 Hz, 1 H), 7.62 (d, J = 7.8 Hz, 1 H), 7.60 – 7.57 (m, 1 H), 7.53 - 7.50 (m, 1 H), 7.36 - 7.27 (m, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -60.83 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 139.13, 136.34, 136.00, 134.51, 132.58, 130.13 (d, J = 30.7 Hz), 129.73, 129.01, 128.70, 128.46, 127.39, 125.87 (q, J = 5.5 Hz), 123.71 (d, J = 274.1 Hz) ppm. MS (EI): 284 (M⁺); HRMS (EI): Calcd for C₁₃H₇S₂F₃: 283.9944 (M⁺), Found: 283.9941. IR (KBr): $v_{max} = 1408$, 1313, 1121, 788, 746, 721 cm⁻¹.

4-[5-(Trifluoromethyl)-2-pyrimidinyl]-morpholine 4k

Pale yellow oil (112 mg, 96%). Eluent: ethyl acetate/petroleum ether = 1/40 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.49 (s, 2 H), 3.91 - 3.85 (m, 4 H), 3.78 -3.73 (m, 4 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -61.18 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 162.60, 155.74 (q, *J* = 3.5 Hz), 124.43 (q, *J* = 270.0 Hz), 113.62 (q, *J* = 33.9 Hz), 67.02, 44.56 ppm. MS (EI): 233 (M⁺); HRMS (EI): Calcd for C₉H₁₀N₃OF₃: 233.0780 (M⁺), Found: 233.0776. IR (KBr): v_{max} = 1616, 1550, 1326, 1254, 1101, 959 cm⁻¹.

6-(Trifluoromethyl)quinolone 419

White solid (54mg, 55%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 9.03 (s, 1 H), 8.23 (t, *J* = 9.3 Hz, 2 H), 8.13 (s, 1 H), 7.88 (d, *J* = 8.8 Hz, 1 H), 7.54 - 7.44 (m, 1 H);¹⁹F NMR (375 MHz, CDCl₃) δ -62.41 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 152.31, 148.95, 136.66, 130.55, 128.24 (q, *J* = 32.6 Hz), 127.01, 125.63 (q, *J* = 4.4 Hz), 124.93 (q, *J* = 3.0 Hz), 123.84 (q, *J* = 272.3 Hz), 122.10 ppm.

9-[3-(Trifluoromethyl)phenyl]-9H-carbazole 4m

White solid (114 mg, 73%). Eluent: petroleum ether ($R_f = 0.7$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.16 (d, J = 7.7 Hz, 2 H), 7.88 (s, 1 H), 7.82 - 7.70 (m, 3 H), 7.49 - 7.29 (m, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.69 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 140.84, 138.82, 132.91 (q, J = 35.2 Hz), 130.92, 130.69, 126.57, 124.41 (q, J = 3.6 Hz), 124.30 (q, J = 3.7 Hz), 124.02 (q, J = 272.4 Hz), 123.98, 120.84, 120.83, 109.76 ppm. MS (EI): 311 (M⁺); HRMS (EI): Calculated for C₁₉H₁₂NF₃: 311.0931 (M⁺), Found: 311.0922. IR (KBr): $v_{max} = 1593$, 1499, 1451, 1323, 1230, 1129,

749 cm⁻¹.

1,3-Dimethoxy-5-[(1*E*)-2-[4-(trifluoromethyl)phenyl]ethenyl]-benzene 4n¹⁰

Pale yellow oil (133 mg, 86%). Eluent: ethyl acetate/petroleum ether = 1/20 (R_f = 0.7). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.73 - 7.50 (m, 4 H), 7.10 (s, 2 H), 6.70 (s, 2 H), 6.46 (s, 1 H), 3.84 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.77 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 161.34, 140.90, 138.90, 131.44, 129.53 (q, *J* = 32.4 Hz), 127.84, 126.92, 125.86 (q, *J* = 3.8 Hz), 124.56 (d, *J* = 272.2 Hz), 105.16, 100.79, 55.59 ppm. MS (EI): 308 (M⁺); HRMS (EI): Calcd for C₁₇H₁₅O₂F₃: 308.1026 (M⁺), Found: 308.1024. IR (KBr): v_{max} = 1614, 1589, 1458, 1326, 1208, 1111, 1068, 841 cm⁻¹.

(8*R*,9*S*,13*S*,14*S*)-13-Methyl-3-(trifluoromethyl)-7,8,9,11,12,13,15,16-octahydro-6*H*-cyclopenta[*a*]phenanthren-17(14*H*)-one 4o¹¹

White solid (114 mg, 71%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.7). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.43 - 7.32 (m, 2 H), 7.22 - 7.06 (m, 1 H), 3.10 - 2.83 (m, 2 H), 2.60 - 2.50 (m, 1 H), 2.48 - 2.41 (m, 1 H), 2.39 - 2.31 (m, 1 H), 2.23 - 1.97 (m, 4 H), 1.70 - 1.40 (m, 6 H), 0.92 (s, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.82 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 219.37, 142.72, 136.24, 127.09 (q, *J* = 32.2 Hz), 124.75, 124.70 (q, *J* = 3.8 Hz), 121.43 (q, *J* = 3.8 Hz), 120.63 (q, *J* = 271.8 Hz), 49.49, 46.86, 43.43, 36.81, 34.78, 30.52, 28.26, 25.18, 24.60, 20.56, 12.78 ppm. MS (EI): 322 (M⁺). HRMS (EI): Calcd for C₁₉H₂₁OF₃: 322.1555 (M⁺), Found: 322.1545; IR (KBr): v_{max} = 2937, 1732, 1507, 1326, 1138, 1006, 844 cm⁻¹.

1-[(3-Methylphenyl)methyl]-4-[phenyl[4-(trifluoromethyl)phenyl]methyl]piperazine 4p¹²

Pale yellow oil (188 mg, 89%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.6). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.57 (s, 4 H), 7.42 (d, *J* = 7.1 Hz, 2 H), 7.31 (t, *J* = 7.2 Hz, 2 H), 7.27 - 7.20 (m, 2 H), 7.18 - 7.07 (m, 3 H), 4.34 (s, 1 H), 3.54 (s, 2 H), 2.76 - 2.42 (m, 8 H), 2.37 (s, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.70 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 147.34, 142.01, 138.05, 137.98, 130.33, 129.36 (q, *J* = 31.8 Hz), 128.93, 128.43, 128.36, 128.25, 128.12, 127.59, 126.71, 125.73 (q, *J* = 3.7 Hz), 124.49 (q, *J* = 271.8 Hz), 76.08, 63.33, 53.55, 52.07, 21.67 ppm. MS (EI): 424 (M⁺); HRMS (EI): Calcd for C₂₆H₂₇N₂F₃: 424.2119 (M⁺), Found: 424.2126. IR (KBr): ν_{max} = 2925, 1324, 1162, 1125, 1066 cm⁻¹.

Ethyl-2-[4-(5-trifluoromethylbenzoxazol-2-yloxy)phenoxy]propionate 4q

Pale yellow solid (160 mg, 86%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.3). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.69 (s, 1 H), 7.56 (s, 2 H), 7.32 (d, J = 9.1 Hz, 2 H), 6.96 (d, J = 9.0 Hz, 2 H), 4.74 (q, J = 6.6 Hz, 1 H), 4.24 (q, J = 7.1 Hz, 2 H), 1.64 (d, J = 6.8 Hz, 3 H), 1.28 (t, J = 7.1 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -61.45 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 172.17, 164.37, 156.31, 148.18, 146.99, 144.18, 126.15 (q, J = 33.0 Hz), 124.43 (q, J = 271.8 Hz), 122.31 (q, J = 3.8 Hz), 121.56, 119.17, 116.66, 107.92 (q, J = 4.1 Hz), 73.58, 61.79, 18.90, 14.48 ppm. MS (EI): 395 (M⁺); HRMS (EI): Calcd for C₁₉H₁₆NO₅F₃: 395.0978 (M⁺), Found: 395.0981. IR (KBr): v_{max} = 1739, 1630, 1574, 1325, 1191, 1118 cm⁻¹. **Ethyl-4-[8-(trifluoromethyl)-5,6-dihydro-11***H***-benzo[5,6]cyclohepta[1,2-***b***] pyridin-11-ylidene]-1-piperidinecarboxylate 4r**

Pale yellow solid (160 mg, 77%). Eluent: ethyl acetate/petroleum ether = 1/1 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.41 (d, *J* = 3.9 Hz, 1 H), 7.43 (t, *J* = 8.8 Hz, 2 H), 7.30 (d, *J* = 7.8 Hz, 1 H), 7.26 (s, 1 H), 7.15 - 7.07 (m, 1 H), 4.13 (q, *J* = 7.1 Hz, 2 H), 3.87 - 3.70 (m, 2 H), 3.55 - 3.30 (m, 2 H), 3.23 - 3.08 (m, 2 H), 2.96 - 2.77 (m, 2 H), 2.57 - 2.45 (m, 1 H), 2.41 - 2.25 (m, 3 H), 1.24 (t, *J* = 7.1 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -67.28 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 156.83, 155.81, 147.15, 143.38, 138.87, 138.40, 138.01, 134.56, 133.63, 129.92, 126.18 (q, *J* = 3.7 Hz), 124.45 (d, *J* = 272.1 Hz), 123.29 (q, *J* = 3.9 Hz), 122.76, 61.69, 45.12, 45.10, 32.07, 31.86, 31.12, 30.87, 15.02 ppm. MS (EI): 416 (M⁺); HRMS (EI): Calcd for C₂₃H₂₃N₂O₂F₃: 416.1723 (M⁺), Found: 416.1712. IR (KBr): v_{max} = 1698, 1437, 1327, 1231, 1161, 1120 cm⁻¹. General procedure for the trifluoromethylation of electron-rich arene with reagent 1a

Heteroarene (0.50 mmol, 1.0 equiv.), DABCO (84 mg, 0.75 mmol, 1.5 equiv.), reagent **1a** (240 mg, 0.600 mmol, 1.20 equiv.) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under Ar. Freshly distilled CH_2Cl_2 (10.0 mL) was added and the tube was quickly sealed with a rubber stopper. The mixture was stirred under blue LED for 12 h. The mixture was concentrated in *vacuo*. The residue was purified by flash chromatography on silica gel or further purified by Kugelrohr distillation.

1-Phenyl-2-(trifluoromethyl)-1*H*-Pyrrole 5a¹³

Colorless liquid (105 mg, 99%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.48 - 7.44 (m, 3 H), 7.42 - 7.38 (m, 2 H), 6.90 (t, 1 H), 6.77 - 6.74 (m, 1 H), 6.29 (t, J = 3.2 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.95 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 139.51, 129.33, 128.84, 127.62, 126.89, 122.63 (q, J = 38.2 Hz), 121.57 (q, J = 266.9 Hz), 113.09 (q, J = 3.4 Hz), 108.59 ppm. MS (EI): 211 (M⁺); HRMS (EI): Calcd for C₁₁H₈F₃N: 211.0609 (M⁺), Found: 211.0611. IR (KBr): $\nu_{max} = 1552$, 1501, 1285, 1151, 1108, 733, 696 cm⁻¹.

1-(4-Fluorophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5b

Colorless liquid (102 mg, 89%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.41 - 7.30 (m, 2 H), 7.13 (t, J = 8.5 Hz, 2 H), 6.85 (s, 1 H), 6.75 - 6.69 (m, 1 H), 6.27 (t, J = 3.1 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -56.14 (s, 3 F), -112.63 - -112.79 (m, 1 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 162.71

(d, J = 248.4 Hz), 135.00 (d, J = 3.4 Hz), 128.38 (d, J = 8.7 Hz), 127.31 (d, J = 1.9 Hz),121.04 (q, J = 266.8 Hz), 115.87 (d, J = 22.9 Hz), 112.70 (q, J = 3.4 Hz), 108.31 ppm. MS (EI): 229 (M⁺); HRMS (EI): Calcd for C₁₁H₇F₄N: 229.0515 (M⁺), Found: 229.0518. IR (KBr): $v_{max} = 2954, 2920, 2850, 1733, 1457, 1377, 1260, 1026 \text{ cm}^{-1}$.

1-(4-Chlorophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5c

Colorless solid (114 mg, 93%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.43 (d, J = 8.7 Hz, 2 H), 7.33 (d, J = 8.7 Hz, 2 H), 6.88 - 6.83 (m, 1 H), 6.76 - 6.75 (m, 1 H), 6.33 - 6.26 (m, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -56.87 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 137.95, 134.87, 129.59, 128.15, 127.51 (q, J = 1.9 Hz), 122.67 (q, J = 38.3 Hz), 121.43 (q, J = 266.8 Hz), 113.43 (q, J = 3.4 Hz), 108.97 ppm. MS (EI): 245 (M⁺); HRMS (EI): Calcd for C₁₁H₇F₃NCl: 245.0219 (M⁺), Found: 245.0226. IR (KBr): v_{max} = 3130, 2924, 1900, 1684, 1598, 1553, 1500, 1466, 1438, 1367, 1320, 1286, 1214, 1153, 1108, 1076, 1038, 1017 cm⁻¹.

1-(4-Iodophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5d¹⁴

Colorless solid (152 mg, 90%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.79 (d, J = 8.2 Hz, 2 H), 7.14 (d, J = 8.2 Hz, 2 H), 6.86 (s, 1 H), 6.75-6.77 (m, 1 H), 6.29-6.31 (m, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.80 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 139.11, 138.57, 128.57, 127.36, 122.47 (q, J = 38.4 Hz), 121.37 (q, J = 266.9 Hz), 113.52 (q, J = 3.4 Hz), 109.02, 94.22 ppm.MS (EI): 337 (M⁺); HRMS (EI): Calcd for C₁₁H₇F₃NI: 336.9575 (M⁺), Found: 336.9580. IR (KBr): $v_{max} = 1552, 1493, 1283, 1103, 829, 729, 536 \text{ cm}^{-1}$.

1-(4-Trifluoromethylphenyl)-2-(trifluoromethyl)-1H-pyrrole 5e

Colorless liquid (95 mg, 91%). Eluent: petroleum ether ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.74 (d, *J* = 8.3 Hz, 2 H), 7.53 (d, *J* = 8.2 Hz, 2 H), 6.90-6.93 S39

(m, 1 H), 6.79 (s, 1 H), 6.33 (t, J = 3.0 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.76 (s, 3 F), -62.69 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 142.43, 131.04 (q, J = 33.0 Hz), 127.41 (d, J = 1.8 Hz), 127.10 (d, J = 0.6 Hz), 126.70 (q, J = 3.7 Hz), 124.05 (q, J = 267.2 Hz), 122.66 (q, J = 38.4 Hz), 121.39 (q, J = 267.1 Hz), 114.02 (q, J = 3.4 Hz), 109.44 ppm. MS (EI): 279 (M⁺); HRMS (EI): Calcd for C₁₂H₇F₆N: 279.0483 (M⁺), Found: 279.0490. IR (KBr): $v_{max} = 1468, 1440, 1327, 1284, 1105, 1066, 851, 735$ cm⁻¹.

Ethyl-4-(2-(trifluoromethyl)-1H-pyrrol-1-yl)benzoate 5f

Colorless liquid (121 mg, 85%). Eluent: ethyl acetate/petroleum ether = 1/40 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.14 (d, *J* = 8.4 Hz, 2 H), 7.46 (d, *J* = 8.4 Hz, 2 H), 6.91 (t, *J* = 3.3 Hz, 1 H), 6.79 - 6.73 (m, 1 H), 6.31 (t, *J* = 3.3 Hz, 1 H), 4.41 (q, *J* = 7.1 Hz, 2 H), 1.42 (t, *J* = 7.1 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.69 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 165.96, 143.10, 130.83, 130.79, 127.32, 126.43, 122.48 (q, *J* = 38.3 Hz), 121.37 (q, *J* = 266.9 Hz), 113.90 (q, *J* = 3.2 Hz), 109.25, 61.66, 14.63 ppm. MS (ESI): 284 (M+H⁺); HRMS (ESI): Calcd for C₁₄H₁₃F₃NO₂: 284.0893 (M+H⁺), Found: 284.0893. IR (KBr): v_{max} = 1721, 1610, 1553, 1367, 1283, 1153, 1113, 1078 cm⁻¹.

1-(3-Bromophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5g

Colorless liquid (130 mg, 90%). Eluent: petroleum ether ($R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.62 - 7.54 (m, 2 H), 7.38 - 7.30 (m, 2 H), 6.87 (s, 1 H), 6.75 (s, 1 H), 6.30 (s, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.87 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 140.52, 132.03, 130.57, 130.02, 127.46 (d, J = 1.8 Hz), 125.55, 122.68, 122.58 (q, J = 38.4 Hz), 121.36 (q, J = 265.8 Hz), 113.56 (q, J = 6.9, 3.4 Hz), 109.06 ppm. MS (EI): 289 (M⁺); HRMS (EI): Calcd for C₁₁H₇F₃NBr: 288.9714 (M⁺), Found: 288.9722. IR (KBr): $v_{max} = 1593$, 1486, 1365, 1285, 1153, 1112, 729 cm⁻¹.

1,3,5-Trimethoxy-4-(trifluoromethyl)benzene 5h¹⁵

White solid (95 mg, 80%). Eluent: CH₂Cl₂/petroleum ether = 1: 10 (R_f = 0.4). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 6.13 (s, 2 H), 3.83 (s, 9 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -54.14 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 163.86, 160.78 (q, *J* = 1.2 Hz), 124.68 (q, *J* = 273.3 Hz), 100.81 (q, *J* = 30.2 Hz), 91.64, 56.60, 55.71 ppm. MS (EI): 236 (M⁺); HRMS (EI): Calcd for C₇H₁₂F₄O₄: 236.0672 (M⁺), Found: 236.0677. IR (KBr): v_{max} = 1592, 1474, 1290, 1166, 1115, 1024, 817 cm⁻¹.

Ethyl-2,4-dimethyl-5-(trifluoromethyl)-1H-pyrrole-3-carboxylate 5i¹⁵

Yellow solid (109 mg, 93%). Eluent: ethyl acetate/petroleum ether = 1/8 ($R_f = 0.7$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.63 (s, 1 H), 4.28 (q, J = 7.1 Hz, 2 H), 2.50 (s, 3 H), 2.34 (s, 3 H), 1.35 (t, J = 7.1 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -57.92 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 165.47, 136.83, 123.89 (q, J = 2.8 Hz), 121.68 (q, J = 267.2 Hz), 115.34 (q, J = 37.4 Hz), 112.73, 59.62, 14.38, 13.95, 10.57 ppm. MS (EI): 235 (M⁺); HRMS (EI): Calcd for C₁₀H₁₂F₃NO₂: 235.0820 (M⁺), Found: 235.0813. IR (KBr): $v_{max} = 3275$, 1674, 1491, 1441, 1302, 1209, 1104, 1038 cm⁻¹.

1-(2,4-Dimethyl-5-(trifluoromethyl)-1*H*-pyrrol-3-yl)ethanone 5j¹⁶

Yellow solid (102 mg, 99%). Eluent: ethyl acetate/petroleum ether = 1/4 (R_f = 0.4). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.63 (s, 1 H), 2.52 (s, 3 H), 2.44 (s, 3 H), 2.36 (s, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -58.11 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 195.63, 136.26, 123.02 (q, *J* = 2.6 Hz), 122.95, 121.96 (q, *J* = 267.4

Hz), 115.97 (q, J = 37.0 Hz), 31.51, 15.35, 11.77 ppm. MS (EI): 205 (M⁺); HRMS (EI): Calcd for C₉H₁₀F₃NO: 205.0714 (M⁺), Found: 205.0711. IR (KBr): $v_{max} = 3239$, 1633, 1437, 1304, 1204, 1161, 1110, 1035 cm⁻¹.

Ethyl-5-methyl-3-(trifluoromethyl)imidazo[1.2-a]pyridine-2-carboxylate 5k

Yellow solid (54 mg, 40%). Eluent: ethyl acetate/petroleum ether = 1/3 ($R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.67 (d, J = 8.9 Hz, 1 H), 7.38 (dd, J = 9.0, 7.1 Hz, 1 H), 6.87 (d, J = 7.1 Hz, 1 H), 4.48 (q, J = 7.2 Hz, 2 H), 2.79 (s, 3 H), 1.43 (t, J = 7.1 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -48.44 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 163.82, 148.40, 141.98, 137.86, 128.61, 121.31 (d, J = 267.2 Hz), 117.24, 117.16, 106.79, 62.69, 20.73 (dd, J = 13.4, 6.7 Hz), 14.41 ppm. MS (EI): 272 (M⁺); HRMS (EI): Calcd for C₁₂H₁₁F₃N₂O₂: 272.0773 (M⁺), Found: 205.0775. IR (KBr): $v_{max} = 1742$, 1542, 1513, 1346, 1227, 1112 cm⁻¹.

Ethyl 3-(trifluoromethyl)-1*H*-indole-2-carboxylate 51¹⁶

Yellow solid (78 mg, 61%). Eluent: ethyl acetate/petroleum ether = 1/10 ($R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 9.47 (s, 1 H), 7.92 (d, J = 8.2 Hz, 1 H), 7.47 (d, J = 8.3 Hz, 1 H), 7.39 (t, J = 7.5 Hz, 1 H), 7.30 - 7.24 (m, 1 H), 4.48 (q, J = 7.1 Hz, 2 H), 1.45 (t, J = 7.1 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -53.77 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 160.34, 134.50, 126.11, 125.91 (q, J = 4.0 Hz), 124.99 (q, J = 1.5 Hz), 123.83 (q, J = 268.2 Hz), 122.67, 121.96 (q, J = 3.1 Hz), 112.07, 109.97 (q, J = 37.9 Hz), 62.18, 14.00 ppm. MS (EI): 257 (M⁺); HRMS (EI): Calcd for C₁₂H₁₀F₃NO₂: 257.0664 (M⁺), Found: 257.0674. IR (KBr): $v_{max} = 3310$, 1690, 1544, 1266, 1134, 1016, 754 cm⁻¹.

2-(4-Phenyl)-3-(trifluoromethyl)-1*H*-indole 5m¹⁷

Yellow solid (126 mg, 94%). Eluent: ethyl acetate/petroleum ether = 1/20 ($R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.36 (s, 1 H), 7.84 (d, *J* = 7.9 Hz, 1 H), 7.63 - 7.58 (m, 2 H), 7.53 - 7.46 (m, 3 H), 7.42 (d, *J* = 8.0 Hz, 1 H), 7.34 - 7.24 (m, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -52.92 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 138.87 (q, *J* = 3.9 Hz), 135.22, 131.42, 129.71, 129.36, 129.00, 125.93, 125.07 (q, *J* = 267.1 Hz), 123.79, 122.05, 120.38, 111.42, 103.90 (q, *J* = 35.8 Hz) ppm. MS (EI): 261 (M⁺); HRMS (EI): Calcd for C₁₅H₁₀F₃N: 261.0765 (M⁺), Found: 261.0762. IR (KBr): v_{max} = 3408, 1493, 1452, 1168, 1000, 987, 747, 698 cm⁻¹.

2-(4-Fluorophenyl)-3-(trifluoromethyl)-1*H*-indole 5n

Yellow solid (127 mg, 91%). Eluent: ethyl acetate/petroleum ether = 1/15 ($R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.28 (s, 1 H), 7.84 (d, J = 7.5 Hz, 1 H), 7.57 (dd, J = 8.1, 5.5 Hz, 2 H), 7.41 (d, J = 7.7 Hz, 1 H), 7.35 – 7.25 (m, 2 H), 7.19 (t, J = 8.6 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -52.97 (s, 3 F), -111.23 – -111.33 (m, 1 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 163.73 (d, J = 250.0 Hz), 137.78 (q, J = 3.9 Hz), 135.21, 131.28 (dd, J = 8.4, 1.3 Hz), 127.48 (d, J = 3.5 Hz), 125.83 (d, J =1.6 Hz), 125.01 (q, J = 267.4 Hz), 123.95, 122.18, 120.37 (d, J = 1.5 Hz), 116.16 (d, J =21.8 Hz), 111.44, 104.15 (q, J = 35.7 Hz) ppm. MS (EI): 279 (M⁺); HRMS (EI): Calcd for C₁₅H₉F₄N: 279.0671 (M⁺), Found: 279.0668. IR (KBr): $v_{max} = 3400$, 1506, 1446, 1172, 1110, 987, 751 cm⁻¹.

2-(4-Clorophenyl)-3-(trifluoromethyl)-1H-indole 50¹⁸

Yellow solid (134 mg, 91%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.3). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.34 (s, 1 H), 7.82 (d, *J* = 7.8 Hz, 1 H), **S43** 7.51 (d, J = 8.5 Hz, 2 H), 7.45 (d, J = 8.4 Hz, 2 H), 7.40 (d, J = 8.0 Hz, 1 H), 7.33 - 7.23 (m, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -52.88 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 137.46 (q, J = 4.0 Hz), 135.94, 135.27, 130.61, 129.28, 125.81 (q, J = 1.8 Hz), 124.94 (q, J = 267.4 Hz), 124.59, 124.05, 122.22, 120.40 (d, J = 1.5 Hz), 111.49, 104.26 (q, J = 35.8 Hz) ppm. MS (EI): 295 (M⁺); HRMS (EI): Calcd for C₁₅H₉F₃NCl: 295.0376 (M⁺), Found: 295.0373. IR (KBr): v_{max} = 3404, 1490, 1443, 1167, 1089, 987, 834, 747 cm⁻¹.

2-(3-Chloro-4-fluorophenyl)-3-(trifluoromethyl)-1H-indole 5p

Yellow solid (147 mg, 94%). Eluent: ethyl acetate/petroleum ether = 1/20 ($R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.37 (s, 1 H), 7.85 (d, J = 7.7 Hz, 1 H), 7.66 (dd, J = 6.8, 1.8 Hz, 1 H), 7.53 - 7.48 (m, 1 H), 7.44 (d, J = 7.9 Hz, 1 H), 7.35 (t, J = 7.1 Hz, 1 H), 7.33 - 7.27 (m, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -53.24 (s, 3 F), -113.79 (ddd, J = 8.5, 7.1, 4.7 Hz, 1 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 160.33, 157.82, 136.18 (q, J = 4.0 Hz), 135.30, 131.56, 129.53 (dq, J = 7.5, 1.6 Hz), 128.55 (d, J = 4.1 Hz), 125.67 (q, J = 1.6 Hz), 124.82 (q, J = 267.5 Hz), 124.29, 122.37, 120.48 (q, J = 1.5 Hz), 117.30 (d, J = 21.5 Hz), 111.53, 104.72 (q, J = 36.0 Hz) ppm. MS (EI): 313 (M⁺); HRMS (EI): Calcd for C₁₅H₈F₄NCI: 313.0281 (M⁺), Found: 313.0283. IR (KBr): $v_{max} = 3478$, 1496, 1442, 1085, 988, 741, 532 cm⁻¹.

2-(Naphthalen-2-yl)-3-(trifluoromethyl)-1H-indole 5q

Yellow solid (93 mg, 60%). Eluent: ethyl acetate/petroleum ether = 1: 15 (R_f = 0.3). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.43 (s, 1 H), 8.07 (s, 1 H), 7.97 - 7.86 (m, 4 H), 7.70 (d, *J* = 8.3 Hz, 1 H), 7.61 - 7.54 (m, 2 H), 7.43 (d, *J* = 7.2 Hz, 1 H), 7.36 -7.27 (m, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -52.70 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 138.82 (q, *J* = 4.0 Hz), 135.33, 133.71, 133.27, 128.81 (d, *J* = 1.1 Hz), 128.75, 128.72, 128.67, 128.15, 127.43, 127.18, 126.62 (d, J = 1.6 Hz), 126.02 (d, J = 1.8 Hz), 125.16 (q, J = 264.9 Hz), 123.84, 122.09, 120.39 (d, J = 1.6 Hz), 111.46, 104.10 (q, J = 35.8 Hz) ppm. MS (EI): 311 (M⁺); HRMS (EI): Calcd for C₁₉H₁₂F₃N: 311.0922 (M⁺), Found: 311.0927. IR (KBr): $v_{max} = 3409$, 1455, 1280, 1093, 998, 749 cm⁻¹.

General procedure for the trifluoromethylation of sodium arylsulfinate with reagent 1a

Sodium arylsulfinate (0.50 mmol, 1.0 equiv.), reagent **1a** (240 mg, 0.60 mmol, 1.20 equiv.) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under Ar and 5.0 mL of freshly distilled DMSO was added. The tube was quickly sealed with a rubber stopper. The mixture was stirred at room temperature under irradiation of blue LED light for 12 h. 20.0 mL of Water and 40.0 mL of ether was added to the mixture and the organic phase was separated and extracted with water (10.0 mL \times 5), dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash chromatography on silica gel or further purified by Kugelrohr distillation.

[(Trifluoromethyl)sulfonyl]-benzene 6a¹⁹

Yellow liquid (100 mg, 95%). Eluent: ethyl acetate / petroleum ether = 1/100 (R_f = 0.8). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.06 (d, *J* = 7.9 Hz, 2 H), 7.85 (t, *J* = 7.5 Hz, 1 H), 7.69 (t, *J* = 7.9 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -78.47 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 136.87, 131.73, 131.13, 130.21, 120.12 (q, *J* = 325.8 Hz) ppm. MS (EI): 210 (M⁺); HRMS (EI): Calcd for C₇H₅F₃O₂S: 209.9962 (M⁺), Found: 209.9971. IR (KBr): v = 2962, 1261, 1095, 800 cm⁻¹.

1-[4-[(Trifluoromethyl)sulfonyl]phenyl]-ethanone 6b²⁰

Yellow solid (100 mg, 79%). Eluent: ethyl acetate / petroleum ether = 1/100 (R_f = 0.7). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.20 (d, *J* = 8.7 Hz, 2 H), 8.15 (d, *J* = 8.5 Hz, 2 H), 2.69 (s, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -80.64 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 196.51, 143.31, 135.36, 131.57, 129.67, 120.01 (q, J = 325.9 Hz), 27.30 ppm. MS (EI): 252 (M⁺); HRMS (EI): Calcd for C₉H₇F₃O₃S: 252.0068 (M⁺), Found: 252.0075. IR (KBr): v = 1686, 1368, 1220, 1197, 1139, 1081, 780, 641, 604 cm^{-1} .

1-(Trifluoromethoxy)-4-[(trifluoromethyl)sulfonyl]-benzene 6c

Yellow solid (145 mg, 96%). Eluent: ethyl acetate / petroleum ether = 1/80 (R_f = 0.8). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.11 (d, J = 8.9 Hz, 2 H), 7.49 (d, J = 8.2 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -57.69 (s, 3 F), -78.27 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 155.62, 133.63, 129.53, 121.48, 120.45 (q, *J* = 261.2 Hz), 120.02 (q, J = 325.6 Hz) ppm. MS (EI): 294 (M⁺); HRMS (EI): Calcd for C₈H₄F₆O₃S: 293.9785 (M⁺), Found: 293.9784. IR (KBr): v = 1589, 1494, 1374, 1261, 1076, 1017, 809, 613 cm⁻¹.

1-Fluoro-3-[(trifluoromethyl)sulfonyl]-benzene 6d

Colorless liquid (110 mg, 96%). Eluent: ethyl acetate / petroleum ether = 1/100 (R_f = 0.8). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.87 (d, J = 7.8 Hz, 1 H), 7.75 (d, J= 7.3 Hz, 1 H), 7.70 (td, J = 8.1, 5.1 Hz, 1 H), 7.56 (td, J = 8.2, 1.7 Hz, 1 H); ¹⁹F NMR $(375 \text{ MHz}, \text{CDCl}_3) \delta$ -78.09 (s, 3 F), -107.47 (td, J = 7.7, 5.3 Hz, 1 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 162.93 (d, *J* = 254.6 Hz), 133.69 (d, *J* = 7.2 Hz), 132.17 (d, J = 7.7 Hz), 127.06 (d, J = 3.5 Hz), 124.40 (d, J = 21.2 Hz), 120.00 (d, J = 322.4 Hz)Hz), 118.30 (d, J = 25.0 Hz) ppm. MS (EI): 228 (M⁺); HRMS (EI): Calcd for C₇H₄F₄O₂S: 227.9868 (M⁺), Found: 227.9874. IR (KBr): v = 2961, 1261, 1094, 1020, 800 cm^{-1} .

1-Chloro-3-[(trifluoromethyl)sulfonyl]-benzene 6e

Colorless liquid (116 mg, 95%). Eluent: ethyl acetate / petroleum ether = 1/100 (R_f = S47

0.8). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.03 (s, 1 H), 7.95 (d, J = 7.9 Hz, 1 H), 7.82 (d, J = 8.0 Hz, 1 H), 7.64 (t, J = 8.0 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -78.03 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 137.09, 136.71, 131.48, 130.92, 129.20, 124.73, 119.98 (q, J = 325.9 Hz) ppm. MS (EI): 244 (M⁺); HRMS (EI): Calcd for C₇H₄F₃O₂SCl: 243.9573 (M⁺), Found: 243.9579. IR (KBr): v = 2962, 1261, 1020, 800 cm⁻¹.

1-Bromo-3-[(trifluoromethyl)sulfonyl]-benzene 6f

Colorless liquid (140 mg, 97%). Eluent: ethyl acetate / petroleum ether = 1/100 (R_f = 0.8). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.18 (s, 1 H), 7.98 (t, *J* = 7.6 Hz, 2 H), 7.57 (t, *J* = 8.0 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -78.02 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, 293 K, TMS) δ 140.00, 133.72, 133.61, 131.64, 129.63, 124.24, 119.96 (q, *J* = 325.9 Hz) ppm. MS (EI): 287.9 (M⁺); HRMS (EI): Calcd for C₇H₄F₃O₂SBr: 287.9067 (M⁺), Found: 287.9063. IR (KBr): v = 2962, 2920, 1739, 1457, 1261, 1096, 800 cm⁻¹.

Procedure for the preparation of S-4n, S-4p and S-4q²¹

To a dried flask equipped with a stir bar and an argon balloon were added Pterostilbene (5.20 g, 20.0 mmol, 1.00 equiv.), pyridine (3.20 g, 40.0 mmol, 2.00 equiv.), and CH₂Cl₂ (60.0 mL), then trifluoromethanesulfonic anhydride (6.30 g, 30.0 mmol, 1.50 equiv.) was added dropwise at 0 °C. The solution was stirred for 2 h at 0 °C, and then 20.0 mL of water and 30.0 mL of CH₂Cl₂ were added. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified with silica gel chromatography (Eluent: ethyl acetate/petroleum ether: 1/5, R_f = 0.8) to give the product (7.4 g, 94%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.8 Hz, 2 H), 7.24 (d, *J* = 8.8 Hz, 2 H), 7.02 (d, *J* = 1.0 Hz, 2 H), 6.65-6.66 (m, 2 H), 6.42 (t, *J* = 2.2 Hz, 1 H), 3.82 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.85 (s); ¹³C NMR (101 MHz, CDCl₃) δ 161.02, 148.62, 138.56, 137.58, 130.74, 128.00, 126.96, 121.55, 118.73 (q, *J* = 320.9 Hz), 104.77, 100.39, 55.33 ppm. MS (ESI): 389.0 (M+H⁺); HRMS (ESI) Calcd for C₁₇H₁₆O₅F₃S: 389.0665(M+H⁺). Found: 389.0658. IR (KBr): v = 3004, 1593, 1501, 1424, 1205, 1139, 1067, 962 cm⁻¹.

(*E*)-2-(4-(3,5-Dimethoxystyryl)phenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane(S2-4n)

To a 100 mL of Schlenk tube were added anhydrous KOAc (2.94 g, 30.0 mmol, 3.00 equiv), XPhos-Pd-G (84 mg, 1.0 mol%), Xphos (95 mg, 2.0 mol%), B₂(OH)₄ (1.80 g, 20.0 mmol, 2.00 equiv), (E)-4-(3,5-dimethoxystyryl)phenyl trifluoromethanesulfonate (3.90 g, 10.0 mmol, 1.00 equiv.) under argon, followed by fresh distilled EtOH (40.0 mL). The resulting mixture was then stirred at 80 °C for 4 h. The reaction was cooled to room temperature and concentrated. The residue was dissolved in dichloromethane, and pinacol (2.36 g, 20.00 mmol, 2.00 equiv.) was added. After the resulting mixture was stirred at room temperature for 8 h, the reaction mixture was then concentrated. he residue was purified with silica gel chromatography (Eluent: ethyl acetate/petroleum ether: 1/5, $R_f = 0.7$) to give (E)-2-(4-(3,5-dimethoxystyryl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.0 g, 82%) as a white solid (Mp: 65 - 67 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 2 H), 7.51 (d, J = 7.9 Hz, 2 H), 7.10 (s, 2 H), 6.68-6.69 (m, 2 H), 6.41 (s, 1 H), 3.83 (s, 6 H), 1.36 (s, 12 H); ¹³C NMR (101 MHz, CDCl₃) δ 160.96, 139.78, 139.18, 135.14, 129.60, 129.12, 125.84, 104.63, 100.26, 83.79, 55.37, 24.87 ppm. MS (ESI): 367.2 (M+H⁺). HRMS (ESI) Calcd for C₂₂H₂₈O₄¹⁰B: 366.2111 (M+H⁺). Found: 366.2112. IR (KBr): v_{max} = 2993, 1605, 1515, 1359, 1204, 1146, 1088, 964 cm^{-1} .

(E)-(4-(3,5-Dimethoxystyryl)phenyl)boronic acid (S-4n)

To a 250 mL round-bottom flask were added (*E*)-2-(4-(3,5-dimethoxystyryl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.20 g, 3.30 mmol), NaIO₄ (4.20 g, 20.0 mmol), NH₄OAc (1.50 g, 20.0 mmol), acetone (80.0 mL), and H₂O (40.0 mL). After stirring at room temperature for 48 h, the reaction mixture was filtered with a pad of

Celite. The filtrate was concentrated. The residue was diluted with ethyl acetate (200.0 mL) and washed with saturated brine. The organic layer was filtered through a pad of MgSO₄ and concentrated. The residue was purified with flash column chromatography through a short silica gel column to afford the corresponding boronic acid as a pale yellow solid. The product was used in the next step without purification.

1-(3-Methylbenzyl)-4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methyl)piperazine (S1-4p)

To a 100 mL of Schlenk tube were added anhydrous KOAc (2.94 g, 30.0 mmol, 3.00 equiv), XPhos-Pd-G (84 mg, 1.0 mol%), Xphos (95 mg, 2.0 mol%), B₂(OH)₄ (1.80 g, 20.0 mmol, 2.001-((4-chlorophenyl)(phenyl)methyl)-4-(3equiv.), methylbenzyl)piperazine (3.90 g, 10.0 mmol, 1.00 equiv.) under argon, followed by fresh distilled EtOH (40.0 mL). The resulting mixture was then stirred at 80 °C for 4 h. The reaction was cooled to room temperature and concentrated. The residue was dissolved in dichloromethane, and pinacol (2.36 g, 20.0 mmol, 2.00 equiv.) was added. After the resulting mixture was stirred at room temperature for 8 h, the reaction mixture was then concentrated. The residue was purified with silica gel chromatography (Eluent: ethyl acetate/petroleum ether: 1/3, $R_f = 0.7$) to give 1-(3-methylbenzyl)-4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl)methyl)piperazine (3.6 g, 75% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.1 Hz, 2 H), 7.43-7.37 (m, 4 H), 7.24-7.02 (m, 7 H), 4.23 (s, 1 H), 3.46 (s, 2 H), 2.46-2.31 (m, 12 H), 1.29 (s, 12 H); ¹³C NMR (101 MHz, cdcl₃) δ 146.09, 142.42, 137.82, 137.65, 134.93, 129.93, 128.37, 127.96, 127.90, 127.67, 127.27, 126.84, 126.31, 83.59, 76.31, 63.02, 53.28, 51.82, 24.79, 21.33 ppm. MS (ESI): 483.3 (M+H⁺). HRMS (ESI) Calcd for

 $C_{31}H_{40}O_2N_2{}^{10}B$: 482.3214(M+H⁺). Found: 482.3213. IR (KBr): $v_{max} = 2976$, 1663, 1610, 1452 cm⁻¹.

1-(3-Methylbenzyl)-4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)methyl)piperazine (S-4p)

To a 100 mL of Schlenk tube were added anhydrous KOAc (2.94 g, 30.0 mmol, 3.00 equiv), XPhos-Pd-G (84 mg, 1.0 mol%), Xphos (95 mg, 2.0 mol%), B₂(OH)₄ (1.80 g, 20.0 mmol, 2.00 equiv), 1-((4-chlorophenyl)(phenyl)methyl)-4-(3-methylbenzyl)piperazine (3.90 g, 10.0 mmol) under argon, followed by fresh distilled EtOH (40.0 mL). The resulting mixture was then stirred at 80 °C for 4 h. The reaction was cooled to room temperature and concentrated. The residue was diluted with ethyl acetate and washed with saturated brine. The organic layer was filtered through a pad of MgSO₄ and concentrated. Use EA to dissolve the oil and add petroleum ether to get yellow precipitation. The product was used in the next step without purification.

Ethyl-2-(4-((6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[d]oxazol-2-

yl)oxy)phenoxy)propanoate (S1-4q)

To a 100 mL of Schlenk tube were added anhydrous KOAc (0.75 g, 7.5 mmol, 3.0 equiv), XPhos-Pd-G (21 mg, 1.0 mol%), Xphos (24 mg, 2.0 mol%), $B_2(OH)_4$ (0.45 g, 5.0 mmol, 2.00 equiv), ethyl-2-(4-((5-chlorobenzo[*d*]oxazol-2-yl)oxy)propanoate (0.90 g, 2.5 mmol, 1.0 equiv.) under argon, followed by

fresh distilled EtOH (10.0 mL). The resulting mixture was then stirred at 80 °C for 4 h. The reaction was cooled to room temperature and concentrated. The residue was dissolved in dichloromethane, and pinacol (0.59 g, 5.0 mmol, 2.0 equiv) was added. After the resulting mixture was stirred at room temperature for 8 h, the reaction mixture was then concentrated. The residue was purified with silica gel chromatography (Eluent: ethyl acetate/petroleum ether: 1/3, $R_f = 0.7$) to give 1-(3-methylbenzyl)-4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl)methyl)piperazine (0.68 g, 60% yield) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1 H), 7.72 (d, *J* = 7.8 Hz, 1 H), 7.48 (d, *J* = 7.8 Hz, 1 H), 7.33 (d, *J* = 9.0 Hz, 2 H), 6.95 (d, *J* = 9.0 Hz, 2 H), 4.73 (q, *J* = 6.7 Hz, 1 H), 4.24 (q, *J* = 7.1 Hz, 2 H), 1.63 (d, *J* = 6.7 Hz, 3 H), 1.36 (s, 12 H), 1.27 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 172.24, 163.61, 156.06, 148.65, 147.19, 143.87, 131.52, 121.60, 118.38, 116.60, 116.38, 116.01, 84.30, 73.57, 61.75, 25.20, 18.88, 14.47 ppm. MS (ESI): 454.0 (M+H⁺). HRMS (ESI) Calcd for C₂₄H₂₉O₇N¹⁰B: 453.2068 (M+H⁺); Found: 453.2067. IR (KBr): ν_{max} = 2980, 1752, 1618, 1502, 1297, 1167, 718 cm⁻¹.

2-(4-((1-Ethoxy-1-oxopropan-2-yl)oxy)pbenoxy)benzo[*d*]oxazol-6-yl)boronic acid (S-4q)

To a 100 mL of Schlenk tube were added anhydrous KOAc (0.75 g, 7.5 mmol, 3.0 equiv), XPhos-Pd-G (21 mg, 1.0 mol%), Xphos (24 mg, 2.0 mol%), B₂(OH)₄ (0.45 g, 5.0 mmol, 2.00 equiv), ethyl-2-(4-((6-chlorobenzo[d]oxazol-2-yl)oxy)phenoxy)propanoate (0.90 g, 2.5 mmol, 1.0 equiv.) under argon, followed by fresh distilled EtOH (10.0 mL). The resulting mixture was then stirred at 80 °C for 4 h. The reaction was cooled to room temperature and concentrated. The residue was purified with silica gel chromatography (Eluent: ethyl acetate/petroleum ether: 1/10 to ethyl acetate) to give brown oil. The product was used in the next step without purification.

References

[1] Nikolaienko, P.; Rueping, M. Chem. Eur. J. 2016, 22, 2620.

[2] Noritake, S.; Shibata, N.; Nakamura, S.; Toru, T.; Shiro, M. *Eur. J. Org. Chem.* **2008**, 20, 3465.

- [3] Saidalimu, I.; Tokunaga, E.; Shibata, N.; ACS Catal. 2015, 5, 4668.
- [4] Li, L.; Chen, Q.; Guo, Y. J. Org. Chem. 2014, 79, 5145.
- [5] Maji, A.; Hazra, A.; Maiti, D. Org, Lett. 2014, 16, 4524.
- [6] Su, X.; Huang, H.; Yuan, Y.; Li, Y. Angew. Chem. Int. Ed. 2017, 56, 1338.
- [7] Liu, T.; Shen, Q. Org. Lett., 2011, 13, 2342.
- [8] Shibata, Y.; Otake, Y.; Hirano, M.; Tanaka, K. Org. Lett., 2009, 11, 689.
- [9] Liu, Y.; Shao, X.; Zhang, P.; Lu, L.; Shen, Q. Org. Lett., 2015, 17, 2752.
- [10] Mizuno, C.; Schrader, K.; Rimando, A. J. Agric. Food Chem., 2008, 56, 9140.
- [11] Ye, Y.; Sanford, M. J. Am. Chem. Soc., 2012, 134, 9034.
- [12] Rossi, S.; Butta, W. Farmaco Sci. 1961, 16, 326.
- [13] Wiehn, M.; Vinegradova, E.; Togni, A. J. Fluorine Chem, 2010, 131, 951.
- [14] Jacquet, J.; Blanchard, S.; Derat, E.; Murr, M.; Fensterbank, L. *Chem. Sci.* 2016, 7, 3020.
- [15] Cheng, Y.; Yuan, X.; Ma, J.; Yu, S. Chem. Eur. J. 2015, 21, 8355.
- [16] G, O'Brien, A.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran, P.; Blackmond,
- D. Angew, Chem. Int, Ed. 2014, 53, 11868
- [17] Wu, Y.; Zhang, H.; Jin, R.; Lan, Q.; Wang, X. Adv. Synth. Catal. 2016, 358, 3528.
- [18] Knoon, T.; Chae, J.; Ishihara, T.; Yamanaka, H. J. Org. Chem., 2004, 69, 8258.
- [19] Lin, X.; Wang, G.; Li, H.; Huang, Y.; He, W.; Ye, D.; Huang, K.; Yuan, Y.;
- Weng, Z. Tetrahedron, 2013, 69, 2628
- [20] Zhang, K.; Xu, X.; Qing, F. J. Org. Chem. 2015, 80, 7658.
- [21] a) Molander, G.; Trice, S.; Dreher, S. J. Am. Chem. Soc. 2010, 132, 17701; b)
- Graham, T.; Doyle, A. Org. Lett., 2012, 14, 1616.

S55

¹H NMR spectrum of 3-trifluoromethylseleno-nitrobenzene

¹⁹F NMR spectrum of 3-trifluoromethylseleno-nitrobenzene

¹H NMR spectrum of 2-trifluoromethylseleno-nitrobenzene

¹⁹F NMR spectrum of 2-trifluoromethylseleno-nitrobenzene

¹H NMR spectrum of 4-trifluoromethylseleno-anisole

¹⁹F NMR spectrum of 4-trifluoromethylseleno-anisole

¹⁹F NMR spectrum of 4-trifluoromethylseleno-biphenyl

S59

¹⁹F NMR spectrum of 4-trifluoromethylseleno-chlorobenzene

¹⁹F NMR spectrum of trifluoromethyl-(4-nitrophenyl) bis(carbomethoxy) methylide 1a

¹H NMR spectrum of trifluoromethyl-3-nitrophenyl) bis(carbomethoxy) methylide 1b

S62

¹⁹F NMR spectrum of trifluoromethyl-3-nitrophenyl) bis(carbomethoxy) methylide 1b

¹³C NMR spectrum of trifluoromethyl-3-nitrophenyl) bis(carbomethoxy) methylide 1b

¹⁹F NMR spectrum of trifluoromethyl-(2-nitrophenyl) bis(carbomethoxy) methylide 1c

¹H NMR spectrum of trifluoromethyl-(4-methoxylphenyl) bis(carbomethoxy) methylide 1d

S65

¹⁹F NMR spectrum of trifluoromethyl-(4-methoxylphenyl) bis(carbomethoxy) methylide 1d

¹³C NMR spectrum of trifluoromethyl-(4-methoxylphenyl) bis(carbomethoxy) methylide 1d

S67

S68

S69

¹H NMR spectrum of methyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-

¹H NMR spectrum of Ethyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2carboxylate 2b

¹³C NMR spectrum of methyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-

¹⁹F NMR spectrum of Ethyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2carboxylate 2b

¹³C NMR spectrum of Ethyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2carboxylate 2b

¹⁹F NMR spectrum of Isopropyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*indene-2-carboxylate 2c

¹H NMR spectrum of Methyl 6-chloro-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2d

¹⁹F NMR spectrum of Methyl 6-chloro-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2d

¹³C NMR spectrum of Methyl 6-chloro-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2d

-191. 18	169.59 167.01 √165.62 155.00 154.90	128 45 128 35 127 88 127 88 122 28 1117, 56 1117, 56 1113, 45 113, 45	-77.36 64.09 63.82 63.30 -54.02	-34. 29
----------	---	---	---	---------

¹H NMR spectrum of Adamantyl 4-fluoro-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate 2e

¹⁹F NMR spectrum of Adamantyl 4-fluoro-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate 2e

¹H NMR spectrum of Methyl 5-chloro-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate 2f

¹H NMR spectrum of Methyl 6-methoxy-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate 2g

¹⁹F NMR spectrum of Methyl 6-methoxy-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate 2g

¹H NMR spectrum of Adamantyl-1,1-dimethyl-3-oxo-2-(trifluoromethyl)-2,3dihydro-1*H*-indene-2-carboxylate 2h

¹³C NMR spectrum of Adamantyl-1,1-dimethyl-3-oxo-2-(trifluoromethyl)-2,3dihydro-1*H*-indene-2-carboxylate 2h

¹⁹F NMR spectrum of Methyl-7-bromo-1-oxo-2-(trifluoromethyl)-1,2,3,4tetrahydronaphthalene-2-carboxylate 2i

^{30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 11 (}ppm)

¹H NMR spectrum of Methyl-5-methoxy-1-oxo-2-(trifluoromethyl)-1,2,3,4tetrahydronaphthalene-2-carboxylate 2j

¹⁹F NMR spectrum of Adamantyl-5-oxo-6-(trifluoromethyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6-carboxylate 2k

¹H NMR spectrum of Adamantyl-5-oxo-6-(trifluoromethyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6-carboxylate 2k

¹H NMR spectrum of 3,3,3-trifluoro-1-phenylpropan-1-one 3a

¹³C NMR spectrum of 3,3,3-trifluoro-1-phenylpropan-1-one 3a

¹H NMR spectrum of 1-(4-tert-butylphenyl)-3,3,3-trifluoropropan-1-one 3b

¹⁹F NMR spectrum of 1-(4- *tert*-butylphenyl)-3,3,3-trifluoropropan-1-one 3b

¹³C NMR spectrum of 1-(4- *tert*-butylphenyl)-3,3,3-trifluoropropan-1-one 3b

¹H NMR spectrum of 1-(4-bromophenyl)-3,3,3-trifluoropropan-1-one 3c

¹³C NMR spectrum of 1-(4-bromophenyl)-3,3,3-trifluoropropan-1-one 3c

^{270 250 230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50} f1(ppm)

¹H NMR spectrum of 1-(4-chlorophenyl)-3,3,3-trifluoropropan-1-one 3d

¹⁹F NMR spectrum of 1-(4-chlorophenyl)-3,3,3-trifluoropropan-1-one 3d

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹³C NMR spectrum of 1-(4-chlorophenyl)-3,3,3-trifluoropropan-1-one 3d

¹H NMR spectrum of 1-(4-nitrophenyl)-3,3,3-trifluoropropan-1-one 3e

¹H NMR spectrum methyl-4-(3,3,3-trifluoropropanoyl)benzoate of 3f

¹⁹F NMR spectrum methyl-4-(3,3,3-trifluoropropanoyl)benzoate of 3f

62 07 62 10 62 13

¹H NMR spectrum of 2-(trifluoromethyl)-2,3-dihydro-1H-inden-1-one 3g

¹³C NMR spectrum of 2-(trifluoromethyl)-2,3-dihydro-1H-inden-1-one 3g

¹H NMR spectrum of 2-(trifluoromethyl)-3,4-dihydronaphthalen-1(2H)-one 3i

¹³C NMR spectrum of 2-(trifluoromethyl)-3,4-dihydronaphthalen-1(2H)-one 3i

S99

¹⁹F NMR spectrum of 1-(2-chloro-4-(4-chlorophenoxy)phenyl)-3,3,3trifluoropropan-1-one 3j

¹H NMR spectrum of 1-Phenyl-2-(trifluoromethyl)butan-1-one 3k

¹³C NMR spectrum of 1-phenyl-2-(trifluoromethyl)butan-1-one 3k -194.36 8522233 -20.26 -11.38 50. 73 50. 73 50. 23 50. 23 583 $\begin{array}{c} 136 \\ 123 \\$ 222 -126.23 -123.44 -120.65 23 18 23 28 23 <u>ស៊ូស៊ូស៊</u>ូស៊ូ mm Marrie 51.0 50.0 fl (ppm) 52.0 WINNERMANN 127 126 125 124 123 122 121 120 f1 (ppm)

S102

¹H NMR spectrum of 4-(trifluoromethyl)biphenyl 4a

¹⁹F NMR spectrum of 4-(trifluoromethyl)biphenyl 4a

¹³C NMR spectrum of 4-(trifluoromethyl)biphenyl 4a

¹H NMR spectrum of 1-(benzyloxy)-4-(trifluoromethyl)benzene 4b

¹⁹F NMR spectrum of 1-(benzyloxy)-4-(trifluoromethyl)benzene 4b

¹³C NMR spectrum of 1-(benzyloxy)-4-(trifluoromethyl)benzene 4b

¹⁹F NMR spectrum of 1-chloro-2-ethoxy-4-(trifluoromethyl)-benzene 4c

¹H NMR spectrum of 1-pyrrolidinyl[4-(trifluoromethyl)phenyl]-methanone 4d

¹³C NMR spectrum of 1-chloro-2-ethoxy-4-(trifluoromethyl)-benzene 4c

¹³C NMR spectrum of 1-pyrrolidinyl[4-(trifluoromethyl)phenyl]-methanone 4d

¹⁹F NMR spectrum of 2-(trifluoromethyl)naphthalene 4e

H NMR spectrum of 5-bromo-N-boc-2-(trifluoromethyl)-1-H-Indole 4f

¹⁹F NMR spectrum of 5-bromo-N-boc-2-(trifluoromethyl)-1-H-Indole 4f

¹³C NMR spectrum of 5-bromo-N-boc-2-(trifluoromethyl)-1-H-Indole 4f

^{250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20} fl (ppm)

-90 -100 f1 (ppm) 0 -10 -20 -30 -50 -60 -70 -150 -160 -170 -180 -190 -200 -40 -80 -110 -120 -130 -140

¹³C NMR spectrum of 2-(trifluoromethyl)benzofurane 4g

¹⁹F NMR spectrum of 4-(trifluoromethyl)-dibenzofuran 4h

¹³C NMR spectrum of 4-(trifluoromethyl)-dibenzofuran 4h

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 fl (ppm)

¹⁹F NMR spectrum of 2-(trifluoromethyl)benzo[b]thiophene 4i

0 -10 -30 -40 -50 -70 -100 f1 (ppm) -110 -120 -150 -160 -170 -180 -190 -200 -20 -60 -80 -90 -130 -140

¹³C NMR spectrum of 2-(trifluoromethyl)benzo[b]thiophene 4i

¹H NMR spectrum of 1-(trifluoromethyl)-thianthrene 4j

¹³C NMR spectrum of 1-(trifluoromethyl)-thianthrene 4j

S117

¹H NMR spectrum of 4-[5-(trifluoromethyl)-2-pyrimidinyl]-morpholine 4k

¹⁹F NMR spectrum of 4-[5-(trifluoromethyl)-2-pyrimidinyl]-morpholine 4k

-100 f1 (ppm) 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

¹³C NMR spectrum of 4-[5-(trifluoromethyl)-2-pyrimidinyl]-morpholine 4k

¹H NMR spectrum of 6-(trifluoromethyl)quinolone 4l

¹³C NMR spectrum of 6-(trifluoromethyl)quinolone 4l

¹⁹F NMR spectrum of 9-[3-(trifluoromethyl)phenyl]-9*H*-carbazole 4m

¹³C NMR spectrum of 9-[3-(trifluoromethyl)phenyl]-9*H*-carbazole 4m

¹H NMR spectrum of (8*R*,9*S*,13*S*,14*S*)-13-methyl-3-(trifluoromethyl)-7,8,9,11,12,13,15,16-octahydro-6H-cyclopenta[*a*]phenanthren-17(14*H*)-one 40

¹³C NMR spectrum of (name) (8*R*,9*S*,13*S*,14*S*)-13-methyl-3-(trifluoromethyl)-7,8,9,11,12,13,15,16-octahydro-6H-cyclopenta[*a*]phenanthren-17(14*H*)-one 40

¹H NMR spectrum of 1,3-dimethoxy-5-[(1*E*)-2-[4-(trifluoromethyl)phenyl] ethenyl]-benzene 4n

¹⁹F NMR spectrum of 1,3-dimethoxy-5-[(1*E*)-2-[4-(trifluoromethyl)phenyl] ethenyl]-benzene 4n

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm)

¹³C NMR spectrum of 1,3-dimethoxy-5-[(1*E*)-2-[4-(trifluoromethyl)phenyl] ethenyl]-benzene 4n

¹H NMR spectrum of 1-[(3-methylphenyl)methyl]-4-[phenyl[4-(trifluoromethyl) phenyl]methyl]-piperazine 4p

¹³C NMR spectrum of 1-[(3-methylphenyl)methyl]-4-[phenyl[4-(trifluoromethyl) phenyl]methyl]-piperazine 4p

4-00000000000-400-04	
99999999994999999999999999999999999999	52
	4,0
22000000000000000000000000000000000000	22
	52

-21.67

¹⁹F NMR spectrum of ethyl-2-[4-(5-trifluoromethylbenzoxazol-2yloxy)phenoxy]propionate 4q

¹H NMR spectrum of ethyl-4-[8-(trifluoromethyl)-5,6-dihydro-11*H*-benzo[5,6] cyclohepta[1,2-*b*]pyridin-11-ylidene]-1-piperidinecarboxylate 3r

¹⁹F NMR spectrum of Ethyl-4-[8-(trifluoromethyl)-5,6-dihydro-11*H*-benzo[5,6] cyclohepta[1,2-*b*]pyridin-11-ylidene]-1-piperidinecarboxylate 3r

¹³C NMR spectrum of Ethyl-4-[8-(trifluoromethyl)-5,6-dihydro-11*H*-benzo[5,6] cyclohepta[1,2-*b*]pyridin-11-ylidene]-1-piperidinecarboxylate 3r

¹H NMR spectrum of 1-phenyl-2-(trifluoromethyl)-1*H*-pyrrole 5a

¹⁹F NMR spectrum of 1-phenyl-2-(trifluoromethyl)-1*H*-pyrrole 5a

¹³C NMR spectrum of 1-phenyl-2-(trifluoromethyl)-1*H*-pyrrole 5a

¹H NMR spectrum of 1-(4-fluorophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5b

¹⁹F NMR spectrum of 1-(4-fluorophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5b

¹³C NMR spectrum of 1-(4-fluorophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5b

¹H NMR spectrum of 2-(4-clorophenyl)-3-(trifluoromethyl)-1*H*-indole 5c

¹⁹F NMR spectrum of 2-(4-clorophenyl)-3-(trifluoromethyl)-1H-indole 5c

10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -125 -135 -145 -155 f1 (ppm)

¹³C NMR spectrum of 2-(4-clorophenyl)-3-(trifluoromethyl)-1*H*-indole 5c

¹H NMR spectrum of 1-(4-iodophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5d

¹³C NMR spectrum of 1-(4-iodophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5d

S136

¹H NMR spectrum of methyl 4-(2-(trifluoromethyl)-1*H*-pyrrol-1-yl)benzoate 5f

¹³C NMR spectrum of Methyl 4-(2-(trifluoromethyl)-1*H*-pyrrol-1-yl)benzoate 5f

¹H NMR spectrum of 1-(3-bromophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5g

¹⁹F NMR spectrum of 1-(3-bromophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5g

¹³C NMR spectrum of 1-(3-bromophenyl)-2-(trifluoromethyl)-1*H*-pyrrole 5g

¹H NMR spectrum of 1,3,5-trimethoxy-4-(trifluoromethyl)benzene 5h

¹³C NMR spectrum of 1,3,5-trimethoxy-4-(trifluoromethyl)benzene 5h

S141

¹⁹F NMR spectrum of ethyl 2,4-dimethyl-5-(trifluoromethyl)-1*H*-pyrrole-3carboxylate 5i

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 11 (ppm)

S142

¹³C NMR spectrum of ethyl 2,4-dimethyl-5-(trifluoromethyl)-1*H*-pyrrole-3-

S143

f1 (ppm)

-:

-1

¹H NMR spectrum of ethyl-5-methyl-3-(trifluoromethyl)imidazo[1.2-a]pyridine-2-carboxylate 5k

¹⁹F NMR spectrum of ethyl-5-methyl-3-(trifluoromethyl)imidazo[1.2-a]pyridine-2-carboxylate 5k

¹³C NMR spectrum of ethyl-5-methyl-3-(trifluoromethyl)imidazo[1.2-a]pyridine-2 corboxylate 5k

¹H NMR spectrum of ethyl 3-(trifluoromethyl)-1*H*-indole-2-carboxylate 5l

S147

¹⁹F NMR spectrum of 2-(4-phenyl)-3-(trifluoromethyl)-1*H*-indole 5m

10 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

S148

¹³C NMR spectrum of 2-(4-phenyl)-3-(trifluoromethyl)-1*H*-indole 5m

¹H NMR spectrum of 2-(4-fluorophenyl)-3-(trifluoromethyl)-1*H*-indole 5n

Т 13.5 11.5 12.5 10.5

¹³C NMR spectrum of 2-(4-fluorophenyl)-3-(trifluoromethyl)-1*H*-indole 5n

¹H NMR spectrum of 2-(4-clorophenyl)-3-(trifluoromethyl)-1*H*-indole 50

¹⁹F NMR spectrum of 2-(4-clorophenyl)-3-(trifluoromethyl)-1*H*-indole 50

¹³C NMR spectrum of 2-(4-clorophenyl)-3-(trifluoromethyl)-1*H*-indole 50

¹H NMR spectrum of 2-(3-chloro-4-fluorophenyl) -3-(trifluoromethyl)-1*H*-indole 5p

¹³C NMR spectrum of 2-(3-chloro-4-fluorophenyl) -3-(trifluoromethyl)-1*H*-indole 5p

¹⁹F NMR spectrum of 2-(naphthalen-2-yl)-3-(trifluoromethyl)-1*H*-indole 5q

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹H NMR spectrum of [(trifluoromethyl)sulfonyl]-benzene 6a

¹⁹F NMR spectrum of [(trifluoromethyl)sulfonyl]-benzene 6a

¹³C NMR spectrum of [(trifluoromethyl)sulfonyl]-benzene 6a

¹H NMR spectrum of 1-[4-[(trifluoromethyl)sulfonyl]phenyl]-ethanone 6b

¹⁹F NMR spectrum of 1-[4-[(trifluoromethyl)sulfonyl]phenyl]-ethanone 6b

¹³C NMR spectrum of 1-[4-[(trifluoromethyl)sulfonyl]phenyl]-ethanone 6b

¹H NMR spectrum of 1-(trifluoromethoxy)-4-[(trifluoromethyl) sulfonyl]-benzene 6c

¹³C NMR spectrum of 1-(Trifluoromethoxy)-4-[(trifluoromethyl)sulfonyl]benzene 6c

¹⁹F NMR spectrum of 1-fluoro-3-[(trifluoromethyl)sulfonyl]-benzene 6d

¹³C NMR spectrum of 1-fluoro-3-[(trifluoromethyl)sulfonyl]-benzene 6d

Т

¹³C NMR spectrum of 1-chloro-3-[(trifluoromethyl)sulfonyl]-benzene 6e

S162

¹H NMR spectrum of 1-bromo-3-[(trifluoromethyl)sulfonyl]-benzene 6f

¹⁹F NMR spectrum of 1-bromo-3-[(trifluoromethyl)sulfonyl]-benzene 6f

¹³C NMR spectrum of (*E*)-4-(3,5dimethoxystyryl)phenyltrifluoromethanesulfonate (S1-4n)

¹³C NMR spectrum of (*E*)-2-(4-(3,5-dimethoxystyryl)phenyl)-4,4,5,5-tetramethyl -1,3,2-dioxaborolane(S2-4n)

S166

¹³C NMR spectrum of 1-(3-methylbenzyl)-4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)- phenyl)methyl)piperazine (S1-4p)

S167

¹H NMR spectrum of ethyl-2-(4-((6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzo[d]oxazol-2-yl)oxy)phenoxy)propanoate (S1-4q)

¹³C NMR spectrum of ethyl-2-(4-((6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzo[d]oxazol-2-yl)oxy)phenoxy)propanoate (S1-4q)

.,	172.24 163.61 156.06 148.65 143.87	- 131.52 121.60 118.38 116.60 116.60	- 61.75	25.20 14.47	
				1	

Figure S1. X-ray structure of reagent 1a.

Identification code	cd16760		
Empirical formula	C12 H10 F3 N O6 Se		
Formula weight	400.17		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.809(8) Å	α= 66.084(14)°.	
	b = 9.877(8) Å	β= 65.463(14)°.	
	c = 9.925(8) Å	$\gamma = 64.347(15)^{\circ}.$	
Volume	758.0(10) Å ³		
Ζ	2		
Density (calculated)	1.753 Mg/m ³		
Absorption coefficient	2.539 mm ⁻¹		
F(000)	396		
Crystal size	0.200 x 0.160 x 0.100 mm ³		
Theta range for data collection	2.346 to 25.497°.		
Index ranges	-11<=h<=8, -11<=k<=8, -12<=l<=11		
Reflections collected	4158		
Independent reflections	2778 [R(int) = 0.0283]		
Completeness to theta = 25.242°	99.2 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	0.7456 and 0.4196		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2778 / 0 / 210		
Goodness-of-fit on F ²	1.001		
Final R indices [I>2sigma(I)]	R1 = 0.0435, $wR2 = 0.0930$		
R indices (all data)	R1 = 0.0583, wR2 = 0.0982		
Extinction coefficient	n/a		
Largest diff. peak and hole	hole 1.051 and -0.447 e.Å ⁻³		

Table S1. Crystal data and structure refinement for cd16760.

	Х	У	Z	U(eq)
Se(1)	8580(1)	9123(1)	6836(1)	28(1)
F(1)	5884(4)	11341(3)	6137(3)	66(1)
F(2)	5331(3)	10033(3)	8487(3)	51(1)
F(3)	5835(3)	9016(4)	6728(3)	60(1)
N(1)	7901(5)	10515(5)	12623(4)	45(1)
O(1)	11232(4)	7382(4)	4920(3)	50(1)
O(2)	11056(4)	4969(3)	6097(4)	55(1)
O(3)	8583(4)	4625(3)	8705(4)	59(1)
O(4)	7054(4)	6828(3)	9400(3)	44(1)
O(5)	8217(5)	9412(5)	13721(4)	73(1)
O(6)	7496(6)	11858(5)	12595(4)	83(1)
C(1)	6221(6)	9922(5)	7096(5)	39(1)
C(2)	9160(5)	6978(4)	7193(4)	32(1)
C(3)	10546(6)	6496(5)	5976(5)	36(1)
C(4)	12437(8)	4464(6)	4873(6)	73(2)
C(5)	8289(5)	6017(5)	8447(5)	37(1)
C(6)	6253(7)	5935(6)	10822(6)	66(2)
C(7)	8344(5)	9497(4)	8722(4)	29(1)
C(8)	8789(5)	8279(5)	9945(5)	33(1)
C(9)	8650(5)	8609(5)	11243(5)	36(1)
C(10)	8058(5)	10146(5)	11248(4)	31(1)
C(11)	7677(5)	11384(5)	9999(5)	35(1)
C(12)	7823(5)	11050(5)	8708(4)	33(1)

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³)for cd16760. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Se(1)-C(2)	1.858(4)
Se(1)-C(7)	1.954(4)
Se(1)-C(1)	2.033(5)
F(1)-C(1)	1.326(5)
F(2)-C(1)	1.311(5)
F(3)-C(1)	1.324(5)
N(1)-O(6)	1.201(5)
N(1)-O(5)	1.223(5)
N(1)-C(10)	1.483(5)
O(1)-C(3)	1.223(5)
O(2)-C(3)	1.338(5)
O(2)-C(4)	1.449(6)
O(3)-C(5)	1.213(5)
O(4)-C(5)	1.352(5)
O(4)-C(6)	1.434(5)
C(2)-C(5)	1.429(6)
C(2)-C(3)	1.440(6)
C(4)-H(4A)	0.9600
C(4)-H(4B)	0.9600
C(4)-H(4C)	0.9600
C(6)-H(6A)	0.9600
C(6)-H(6B)	0.9600
C(6)-H(6C)	0.9600
C(7)-C(8)	1.382(6)
C(7)-C(12)	1.387(5)
C(8)-C(9)	1.393(6)
C(8)-H(8)	0.9300
C(9)-C(10)	1.372(6)
C(9)-H(9)	0.9300
C(10)-C(11)	1.390(6)
C(11)-C(12)	1.386(5)
C(11)-H(11)	0.9300
С(12)-Н(12)	0.9300
C(2)-Se(1)-C(7)	107.55(17)
C(2)-Se(1)-C(1)	104.85(19)

 Table S3. Bond lengths [Å] and angles [°] for cd16760.

C(7)-Se(1)-C(1)	94.69(17)
O(6)-N(1)-O(5)	123.8(4)
O(6)-N(1)-C(10)	118.9(4)
O(5)-N(1)-C(10)	117.2(4)
C(3)-O(2)-C(4)	115.2(4)
C(5)-O(4)-C(6)	116.7(3)
F(2)-C(1)-F(3)	108.6(4)
F(2)-C(1)-F(1)	107.4(4)
F(3)-C(1)-F(1)	108.1(4)
F(2)-C(1)-Se(1)	114.1(3)
F(3)-C(1)-Se(1)	110.5(3)
F(1)-C(1)-Se(1)	107.9(3)
C(5)-C(2)-C(3)	127.0(4)
C(5)-C(2)-Se(1)	123.8(3)
C(3)-C(2)-Se(1)	109.1(3)
O(1)-C(3)-O(2)	121.7(4)
O(1)-C(3)-C(2)	124.0(4)
O(2)-C(3)-C(2)	114.4(4)
O(2)-C(4)-H(4A)	109.5
O(2)-C(4)-H(4B)	109.5
H(4A)-C(4)-H(4B)	109.5
O(2)-C(4)-H(4C)	109.5
H(4A)-C(4)-H(4C)	109.5
H(4B)-C(4)-H(4C)	109.5
O(3)-C(5)-O(4)	121.1(4)
O(3)-C(5)-C(2)	126.6(4)
O(4)-C(5)-C(2)	112.3(3)
O(4)-C(6)-H(6A)	109.5
O(4)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
O(4)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(8)-C(7)-C(12)	122.4(4)
C(8)-C(7)-Se(1)	121.4(3)
C(12)-C(7)-Se(1)	116.0(3)
C(7)-C(8)-C(9)	119.2(4)
C(7)-C(8)-H(8)	120.4

C(9)-C(8)-H(8)	120.4
C(10)-C(9)-C(8)	117.8(4)
C(10)-C(9)-H(9)	121.1
C(8)-C(9)-H(9)	121.1
C(9)-C(10)-C(11)	123.5(3)
C(9)-C(10)-N(1)	118.4(4)
C(11)-C(10)-N(1)	118.0(4)
C(12)-C(11)-C(10)	118.4(4)
С(12)-С(11)-Н(11)	120.8
С(10)-С(11)-Н(11)	120.8
C(11)-C(12)-C(7)	118.5(4)
С(11)-С(12)-Н(12)	120.8
C(7)-C(12)-H(12)	120.8

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Se(1)	36(1)	26(1)	23(1)	-7(1)	-7(1)	-12(1)
F(1)	61(2)	51(2)	62(2)	2(2)	-31(2)	-3(2)
F(2)	35(2)	70(2)	47(2)	-27(1)	-4(1)	-13(1)
F(3)	52(2)	83(2)	70(2)	-37(2)	-23(2)	-22(2)
N(1)	50(3)	61(3)	35(2)	-18(2)	-6(2)	-27(2)
O(1)	57(2)	39(2)	42(2)	-12(2)	2(2)	-20(2)
O(2)	62(2)	32(2)	48(2)	-17(1)	6(2)	-10(2)
O(3)	70(3)	29(2)	58(2)	-10(2)	0(2)	-19(2)
O(4)	48(2)	32(2)	41(2)	-9(1)	0(2)	-16(1)
O(5)	97(3)	82(3)	43(2)	-21(2)	-34(2)	-14(2)
O(6)	151(4)	69(3)	48(2)	-23(2)	-23(2)	-51(3)
C(1)	45(3)	43(3)	32(2)	-10(2)	-12(2)	-16(2)
C(2)	41(3)	26(2)	28(2)	-7(2)	-7(2)	-13(2)
C(3)	51(3)	29(2)	30(2)	-8(2)	-15(2)	-11(2)
C(4)	79(5)	45(3)	65(4)	-27(3)	13(3)	-14(3)
C(5)	45(3)	33(2)	33(2)	-7(2)	-11(2)	-14(2)
C(6)	63(4)	58(3)	48(3)	-9(3)	18(3)	-31(3)
C(7)	34(3)	32(2)	22(2)	-7(2)	-4(2)	-16(2)
C(8)	34(3)	32(2)	37(2)	-10(2)	-13(2)	-9(2)
C(9)	37(3)	40(2)	33(2)	-6(2)	-11(2)	-18(2)
C(10)	30(3)	48(3)	26(2)	-15(2)	-3(2)	-20(2)
C(11)	39(3)	33(2)	37(2)	-12(2)	-7(2)	-15(2)
C(12)	41(3)	29(2)	27(2)	-4(2)	-9(2)	-15(2)

Table S4. Anisotropic displacement parameters (Å² × 10³) for cd16760. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	х	У	Z	U(eq)
H(4A)	12180	4930	3917	110
H(4B)	12775	3347	5101	110
H(4C)	13273	4780	4792	110
H(6A)	5689	5488	10615	99
H(6B)	5521	6604	11475	99
H(6C)	7012	5114	11328	99
H(8)	9177	7251	9901	40
H(9)	8948	7814	12079	43
H(11)	7333	12412	10029	42
H(12)	7577	11849	7852	39

Table S5. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters (Å² × 10³) for cd16760.

Table S6.	Torsion	angles [°]	for cd16760.
-----------	---------	------------	--------------

C(7)-Se(1)-C(2)-C(5)	54.4(4)
C(1)-Se(1)-C(2)-C(5)	-45.5(4)
C(7)-Se(1)-C(2)-C(3)	-128.5(3)
C(1)-Se(1)-C(2)-C(3)	131.6(3)
C(4)-O(2)-C(3)-O(1)	-1.6(7)
C(4)-O(2)-C(3)-C(2)	179.3(5)
C(5)-C(2)-C(3)-O(1)	179.1(5)
Se(1)-C(2)-C(3)-O(1)	2.1(6)
C(5)-C(2)-C(3)-O(2)	-1.8(7)
Se(1)-C(2)-C(3)-O(2)	-178.8(3)
C(6)-O(4)-C(5)-O(3)	8.2(7)
C(6)-O(4)-C(5)-C(2)	-170.4(4)
C(3)-C(2)-C(5)-O(3)	0.9(8)
Se(1)-C(2)-C(5)-O(3)	177.4(4)
C(3)-C(2)-C(5)-O(4)	179.4(4)
Se(1)-C(2)-C(5)-O(4)	-4.0(6)
C(12)-C(7)-C(8)-C(9)	2.8(6)
Se(1)-C(7)-C(8)-C(9)	177.8(3)
C(7)-C(8)-C(9)-C(10)	0.5(6)
C(8)-C(9)-C(10)-C(11)	-3.7(6)
C(8)-C(9)-C(10)-N(1)	179.9(4)
O(6)-N(1)-C(10)-C(9)	174.5(4)
O(5)-N(1)-C(10)-C(9)	-4.5(6)
O(6)-N(1)-C(10)-C(11)	-2.1(6)
O(5)-N(1)-C(10)-C(11)	178.9(4)
C(9)-C(10)-C(11)-C(12)	3.5(7)
N(1)-C(10)-C(11)-C(12)	179.9(4)
C(10)-C(11)-C(12)-C(7)	-0.1(6)
C(8)-C(7)-C(12)-C(11)	-3.0(6)
Se(1)-C(7)-C(12)-C(11)	-178.2(3)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(9)-H(9)O(2)#1	0.93	2.61	3.425(6)	146.9
C(11)-H(11)O(3)#2	0.93	2.58	3.297(6)	134.1
C(12)-H(12)O(1)#3	0.93	2.43	3.190(5)	138.6

Table S7. Hydrogen bonds for cd16760 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+2 #2 x,y+1,z #3 -x+2,-y+2,-z+1