Supporting Information

Practical Synthesis of Polysubstituted Unsymmetric 1,10-Phenanthrolines by Palladium Catalyzed Intramolecular Oxidative Cross Coupling of C(sp²)-H and C(sp³)-H Bonds of Carboxamides

Wen-Wu Sun, Ji-Kai Liu,* Bin Wu*

School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.

Contents of Supporting Information

Page S-1: Title of the paper, author's name, and address along with the contents.

- Page S-2: Experimental section.
- Page S-7: Preparation of aminoquinoline carboxamides subsrates.
- Page S-10: General procedure for making δ-Lactams via palladium catalyzed unactivated sp³ C-H/sp² C-H bonds activation and intramolecular cyclization of carboxamides
- Page S-23: Typical procedure for preparing the compound 3
- Page S-33: General procedure for preparing unsymmetric polysubstituted 1,10-phenanthrolines
- Page S-49: Control experiment
- Page S-50: Large scale reaction
- Page S-52: Mechanism studies
- Page S-56: X-ray single-crystal analysis data of compound 18 and 5a
- Page S-59: ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of compounds

Experiment Section

General Methods. All Reactions were performed in sealed tube (capacity 25 mL) sealed with a cap. NMR spectra were recorded on Bruker DPX-400, DRX-500 instruments and calibrated using residual solvent peaks as internal reference, for example CDCl₃ solutions. High resolution mass spectra were performed on API STAR Pulsar. X-ray diffraction was obtained by APEX DUO. TLC analyses were performed on commercial glass plates bearing 0.25 mm layer of Merck Silica gel 60F₂₅₄. Silica gel (Wakogel 300 - 400 mesh) was used for column chromatography. Visualization of the developed chromatogram was performed by fluorescence quenching or KMnO₄ staining.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Pd(OAc)₂, anhydrous AgOAc and DMAP were purchased from Alfar Aesar company and Shanghai Titan Polytron Technologies Inc. All aminoquinoline carboxamides were synthesized from the corresponding acids or acid chlorides with 8-aminoquinoline. All reactions were carried out under an air atmosphere.

Reaction Optimization

0

		O N H N N THF 120 °C, 24 h	6) uiv)		
	Ent	Solvent	Temp [°C]	Time	Yield
ry			[h]	[%]	
	1	Pd(OAc) ₂	120	24	14
	2	PdCl ₂	120	24	8
	3	PdCl ₂ (Ph ₃ P) ₂	120	24	18
	4	Pd(OAc)2(Ph3P)2	120	24	4
	5	Pd ₂ (dba) ₃	120	24	6
	6	PdCl ₂ (dppf) ₂	120	24	11
	7	PdCl ₂ (dippp)	120	24	14
	8	PdCl ₂ (dppe)	120	24	10
	9	PdCl ₂ (dppb)	120	24	8
	10	PdCl ₂ (MeCN) ₂	120	24	9
	11	Pd(PhCN)2Cl2	120	24	11
	12	$PdCl_2[P(cy)_3]_2$	120	24	Trace
	13	RhCl(Ph ₃ P) ₃	120	24	0
	14	RuCl ₂ (Ph ₃ P) ₂	120	24	0

Table S1. Screening of catalyst.

Table S2. Screening of temperature and solvent.

		Pd(OAc) ₂ (10 mol %) AgOAc (3.0 equiv) Solvent, Temp, Time		
Entry	Solvent	Temp [°C]	Time [h]	Yield [%]
1	toluene	120	24	9
2	toluene	90	24	0
3	THF	120	24	14
4	EtOAc	120	24	17
5	CH ₃ CN	120	24	20
6	MeOH	120	24	15
7	EtOH	120	24	20
8	pyridine	120	34	10
9	toluene	160	24	29
10	n-BuOH	160	42	21
11	<i>t</i> -Amyl alcohol	160	24	27
12	1,4-dioxane	160	24	25
13	DMF	160	24	trace
14	DMA	160	15	trace
15	DMSO	160	24	trace
16	H ₂ O	160	34	8

 Table S3. Screening of the amount of additive.

		Pd(OAc) ₂ (10 mol %) AgOAc (3.0 equiv) Additive (x equiv) Toluene, 160 °C, 24 h		
Entry	Additive	Temp [°C]	Time [h]	Yield [%]
1	$Cu(OAc)_2(1 eq)$	120	24	0
2	SnCl4 (0.2 eq)	160	46	0
3	Fe(NO ₃) ₃ (1 eq)	160	24	0

4	FeCl ₃ (0.2 eq)	160	24	17
5	FeCl ₃ (1eq)	160	24	0
6	FeF ₂ (0.2 eq)	160	24	31
7	FeF ₂ (0.5 eq)	160	24	0
8	FeBr ₂ (0.2 eq)	160	24	0
9	FeBr ₃ (0.2 eq)	160	24	0

Table S4. Screening of the amount of ligand.

Entry	Ligand (x mol%)	2 a [%]	3a [%]	4a [%]	Recovered 1a [%]
1	L1 (10)	37	0	16	38
2	L2 (10)	52	0	15	24
3	L3 (10)	53	0	13	20
4 ^{<i>a</i>}	L3 (15)	62	0	11	18
5^b	L3 (20)	69	0	11	16
6	L4 (20)	7	0	5	76
7^a	L4 (15)	30	0	10	46
8	L5 (10)	52	0	10	31
9 ^{<i>a</i>}	L5 (15)	58	0	17	16
10 ^{<i>a</i>}	L6 (15)	70	0	10	18
11 ^a	L7 (15)	71	0	7	19
12 ^{<i>a</i>}	L8 (15)	21	0	0	72
13	L9 (20)	26	0	38	28
14 ^{<i>a</i>}	L9 (15)	55	0	18	12
15 ^{<i>a</i>}	L10 (15)	27	0	10	50
16 ^{<i>a</i>}	L11 (15)	23	0	4	61
17	L12(20)	12	6	0	68

18	L13(20)	58	6	0	18
19	L14(20)	42	0	0	40
20	L14 (100)	26	0	0	50
21	L15 (10)	20	0	16	53

^{*a*} Pd(OAc)₂ (15 mol%) was used. ^{*b*} Pd(OAc)₂ (20 mol%) was used.

 Table S5. Screening of the amount of ligand.

	D NH NH AgOAc (3 equiv) toluene, 160 °C, 48 h	O NH 2b	N, +	O NH J Jb	NH + 1b Recovered 4b
Entry	Ligand (x mol%)	2b [%]	3b [%]	4b [%]	Recovered 1b [%]
1	L16 (20)	48	7	0	28
2	L17 (20)	26	7	0	41
3	L18 (20)	48	1	7	39
4	L19 (20)	27	0	15	45
5	L20 (20)	36	0	15	34

6 L21 (20) 37 0	0	54	
	7		
7 L22 (20) 41 0	/	32	
8 L23 (20) 25 0	15	51	
9 DMAP (20) 48 13	0	10	
10 DMAP (10) 50 15	0	20	
11 DMAP (30) 50 26	0	12	
12 DMAP (40) 72 13	0	6	
13 DMAP (50) 45 12	0	30	
14 DMAP (60) 42 11	0	31	
15 ^{<i>a</i>} DMAP (60) 65 0	0	21	

^{*a*} Pd(OAc)₂ (15 mol%), AgOAc (1.5 equiv), DMAP (15 mol%), toluene, 160 °C, 40h.

Table S6. Synthesis of δ -Lactams derivative by phosphine ligand.

O Pd(OAc) ₂ (15 mol%) NH L7 (15 mol%) AgOAc (3 equiv) R toluent, 160 °C, 48 h	O NH K	O NH NH
	2	4

Entry	R	Yield ^{<i>a</i>} [%] of 2 / 4 / 1	Entry	R	Yield ^{<i>a</i>} [%] of 2 / 4 / 1
1	Н	71 / 7 / 19	6	<i>m</i> -F	37 / 25 / 27
2	<i>p</i> -Me	41 / 25 / 25	7	<i>p</i> -F	41 / 20/ 27
3	o-OMe	22 / 55/ 10	8	o-Cl	33 / 2 / 52
4	<i>m</i> -OMe	63 / 12 / 10	9	<i>p</i> -Cl	55 / 17 / 15
5	p-OMe	42 / 41 / 7	10	<i>m</i> -NO ₂	35 / 1 / 54

^a Isolated yields.

Preparation of aminoquinoline carboxamides subsrates

All carboxamides except 1w were prepared according to literature procedure.¹ 1w was prepared according to literature procedure.² Among them, substrates 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1k, 1l, 1m, 1n, and 1o were known¹.

3-(Naphthalen-2-yl)-*N*-(quinolin-8-yl)propanamide (1p):

To a solution of 3-(2-naphthalenyl)propanoic acid (200.2 mg, 1.0 mmol), 8-aminoquinoline (173.0 mg, 1.2 mmol) in anhydrous DCM (2 mL) was added EDCI (287.6 mg, 1.5 mmol) and DMAP (12.2 mg, 0.1 mmol). The mixture was stirred at room temperature for 24 h. The reaction mixture was then diluted with DCM (30 mL), washed with aq. HCl (1 M, 2 x 30 mL) and brine, dried over anhydrous Na₂SO₄, and concentrated. Purification by flash chromatography (Silica gel, DCM as eluent) afforded the product **1p** as a white solid (212.3 mg, 65% yield). mp 131-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (bs, 1H), 8.80 (dd, *J* = 7.4 and 1.5 Hz, 1H), 8.68 (dd, *J* = 4.2 and 1.7 Hz, 1H), 8.13 (dd, *J* = 8.3 and 1.6 Hz, 1H), 7.83 – 7.20 (m, 4H), 7.63 – 7.32 (m, 6H), 3.32 (t, *J* = 7.8 Hz, 2H), 2.98 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.83, 148.18, 138.40, 138.38, 136.43, 134.54, 133.79, 132.31, 128.31, 128.02, 127.73, 127.65, 127.52, 127.22, 126.73, 126.10, 125.45, 121.68, 121.59, 116.62, 39.78, 31.79; HRMS(EI) Calcd for C₂₂H₁₈N₂O [M⁺]: 326.1419, Found 326.1405; IR (KBr) v_{max} (cm⁻¹) : 3443, 1691, 1524, 1483, 1323, 698.

3-(Naphthalen-1-yl)-N-(quinolin-8-yl)propanamide (1q):

To a solution of 3-(1-naphthalenyl)propanoic acid (400.5 mg, 2.0 mmol), 8-aminoquinoline (288.2.0 mg, 1.0 mmol) in anhydrous DCM (2 mL) was added EDCI (575.1 mg, 3.0 mmol) and DMAP (24.4 mg, 0.2 mmol). The mixture was stirred at room temperature for 24 h. The reaction mixture was then diluted with DCM (30 mL), washed with aq. HCl (1 M, 2 x 30 mL) and brine, dried over anhydrous Na₂SO₄, and concentrated. Purification by flash chromatography (Silica gel, DCM as eluent) afforded the product **1q** as a white solid (455.7 mg, 70% yield). mp 131-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (bs, 1H), 8.87 (d, *J* = 7.3 Hz, 1H), 8.72 (dd, *J* = 4.2 and 1.7 Hz, 1H), 8.17 (d, *J* = 8.3 Hz, 1H), 8.09 (dd, *J* = 8.3 and 1.7 Hz, 1H), 7.88 (dd, *J* = 8.0 and 1.4 Hz, 1H), 7.74 (d, *J* = 7.9 Hz, 1H), 7.62 – 7.33 (m, 7H), 3.63 (t, *J* = 8.0 Hz, 2H), 3.02 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.86,

148.09, 138.25, 136.85, 136.31, 134.44, 133.96, 131.69, 128.91, 127.90, 127.40, 127.12, 126.13, 126.11, 125.66, 125.62, 123.57, 121.58, 121.52, 116.49, 38.87, 28.53; HRMS(EI) Calcd for $C_{22}H_{18}N_{2}O$ [M⁺]: 326.1419, Found 326.1414; IR (KBr) v_{max} (cm⁻¹) : 3442, 1697, 1523, 1325, 781, 660.

3-(Anthracen-9-yl)-*N*-(quinolin-8-yl)propanamide (1r):

To a solution of 3-(9-anthracenyl)propanoic acid (100.1 mg, 0.4 mmol), 8-aminoquinoline (69.2 mg, 0.48 mmol) in anhydrous DCM (2 mL) was added EDCI (115.0 mg, 0.6 mmol) and DMAP (4.9 mg, 0.04 mmol). The mixture was stirred at room temperature for 24 h. The reaction mixture was then diluted with DCM (30 mL), washed with aq. HCl (1 M, 2 x 30 mL) and brine, dried over anhydrous Na₂SO₄, and concentrated. Purification by flash chromatography (Silica gel, DCM as eluent) afforded the product **1r** as a white solid (123.7 mg, 82% yield). mp 160-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (bs, 1H), 8.88 (d, *J* = 7.5 Hz, 1H), 8.70 (dd, *J* = 4.2 and 1.7 Hz, 1H), 8.49 – 8.30 (m, 3H), 8.11 (dd, *J* = 8.3 and 1.7 Hz, 1H), 8.01 (d, *J* = 8.3 Hz, 2H), 7.66 – 7.34 (m, 7H), 4.17 (t, *J* = 8.4 Hz, 2H), 3.03 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.96, 148.16, 138.33, 136.37, 134.49, 132.95, 131.71, 129.64, 129.39, 127.96, 127.49, 126.37, 126.02, 125.01, 124.16, 121.65, 121.62, 116.57, 38.95, 23.57; HRMS(EI) Calcd for C₂₆H₂₀N₂O [M⁺]: 376.1576, Found 376.1577; IR (KBr) v_{max} (cm⁻¹): 3441, 1690, 1526, 1484, 1325, 1159.

3-(1-Acetyl-1H-indol-3-yl)-N-(quinolin-8-yl)propanamide (1s):

3-(3-Indolyl)-N-(8-quinolinyl)propanamide (157.7 mg, 0.5 mmol) and DMAP (12.2 mg, 0.1 mmol) were dissolved in DCE (2 mL). To this solution were added triethylamine (75.9 mg, 0.75 mmol) and acetic anhydride (204.2, 2.0 mmol). The reaction mixture was stirred at 60 °C for 24 h. After cooling down to room temperature, the reaction mixture was diluted with ethyl acetate (5 mL), quenched with a saturated solution of NH₄Cl (10 mL), and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over MgSO₄ and the volatiles were removed under reduced pressure. Purification by flash chromatography (Silica gel, DCM as eluent) afforded the product **1s** a yellow oil (124.9 mg, 70% yield). ¹H NMR

(400 MHz, CDCl₃) δ 9.76 (bs, 1H), 8.76 (d, J = 7.5 Hz, 1H), 8.70 – 8.60 (m, 1H), 8.40 (d, J = 8.2 Hz, 1H), 8.10 – 8.00 (m, 1H), 7.65 – 7.13 (m, 7H), 3.21 – 3.11 (m, 2H), 3.04 – 2.82 (m, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.51, 168.33, 148.05, 138.11, 136.24, 135.88, 134.22, 130.22, 127.80, 127.23, 125.22, 123.42, 122.28, 121.55, 121.31, 118.70, 116.62, 116.40, 37.24, 23.84, 20.68; HRMS(EI) Calcd for C₂₂H₁₉N₃O₂ [M⁺]: 357.1477, Found 357.1478; IR (KBr) v_{max} (cm⁻¹) : 3377, 1688, 1510, 1451, 1383, 750.

N-(Quinolin-8-yl)-1,2,3,4-tetrahydronaphthalene-2-carboxamide (1t):

To a solution of 1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (176.2 mg, 1.0 mmol) and 8-aminoquinoline (173.0 mg, 1.2 mmol) in anhydrous DCM (2 mL) was added EDCI (287.6 mg, 1.5 mmol) and DMAP (12.2 mg, 0.1 mmol). The mixture was stirred at room temperature for 24 h. The reaction mixture was then diluted with DCM (30 mL), washed with aq. HCl (1 M, 2 x 30 mL) and brine, dried over anhydrous Na₂SO₄, and concentrated. Purification by flash chromatography (Silica gel, DCM as eluent) afforded the product **1t** a white solid (276.1 mg, 91% yield). mp 189-191 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.00 (bs, 1H), 8.83 (dd, *J* = 7.6 and 1.4 Hz, 1H), 8.76 (dd, *J* = 4.0 and 1.2 Hz, 1H), 8.09 (dd, *J* = 8.2 and 1.7 Hz, 1H), 7.57 – 7.26 (m, 3H), 7.17 – 7.00 (m, 4H), 3.29 – 3.05 (m, 2H), 3.00 – 2.79 (m, 3H), 2.40 – 2.25 (m, 1H), 2.20 – 1.92 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.96, 148.17, 138.43, 136.36, 135.69, 135.07, 134.51, 129.16, 128.88, 127.92, 127.41, 125.97, 125.86, 121.62, 121.50, 116.51, 43.39, 32.50, 28.73, 26.70; HRMS(EI) Calcd for C₂₀H₁₈N₂O [M⁺]: 302.1419, Found 302.1425; IR (KBr) v_{max} (cm⁻¹) : 3335, 1680, 1523, 1324, 830, 757.

N-(Quinolin-8-yl)-2,3-dihydro-1H-indene-2-carboxamide (1u):

To a solution of 2,3-dihydro-1H-indene-2-carboxylic acid (486.6 mg, 3.0 mmol) and 8-aminoquinoline (518.0 mg, 3.6 mmol) in anhydrous DCM (2 mL) was added EDCI (862.7 mg, 4.5 mmol) and DMAP (36.7 mg, 0.3 mmol). The mixture was stirred at room temperature for 24 h. The reaction mixture was then diluted with DCM (30 mL), washed with aq. HCl (1 M, 2 x 30 mL) and brine, dried over anhydrous Na₂SO₄, and concentrated. Purification by flash chromatography (Silica gel, DCM as eluent) afforded the product **1u** as a white solid (588.2 mg, 68% yield). mp 174-176 °C ¹H NMR (400 MHz, CDCl₃) δ 9.98 (bs, 1H), 8.88 – 8.74 (m, 2H), 8.13 (dd, *J* = 8.3 and 1.7 Hz, 1H), 7.60 – 7.34 (m, 3H), 7.30 – 7.12 (m, 4H), 3.67 – 3.25 (m, 5H); ¹³C NMR

(100 MHz, CDCl₃) δ 173.45, 148.24, 141.82, 138.46, 136.44, 134.60, 128.00, 127.49, 126.75, 124.49, 121.69, 121.56, 116.58, 47.33, 36.93; HRMS(EI) Calcd for C₁₉H₁₆N₂O [M⁺]: 288.1263, Found 288.1260; IR (KBr) v_{max} (cm⁻¹) : 3327, 1681, 1524, 1425, 1160, 791.

N-(5-Bromoquinolin-8-yl)-3-phenylpropanamide (1w):

To a solution of **1a** (12.7107 g, 46 mmol) in DMF (50 mL) was added NBS (8.1871 g, 46 mmol). The reaction mixture was stirred at 80 °C for 24 h. After cooling down to room temperature, the reaction mixture was quenched with water, and extracted with ethyl acetate (3 x 100 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated. Purification by flash chromatography (Silica gel, DCM as eluent) afforded the product **1w** as a white solid (12.50 g, 84% yield). mp 189-191 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.71 (bs, 1H), 8.73 (dd, J = 4.2 and 1.6 Hz, 1H), 8.64 (d, *J* = 8.4 Hz, 1H), 8.45 (dd, *J* = 8.5 and 1.7 Hz, 1H), 7.73 (d, *J* = 8.3 Hz, 1H), 7.49 (dd, *J* = 8.5 and 4.1 Hz, 1H), 7.31 – 7.13 (m, 5H), 3.11 (t, *J* = 7.8 Hz, 2H), 2.85 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.85, 148.65, 140.73, 139.02, 136.01, 134.41, 130.99, 128.68, 128.50, 127.20, 126.40, 122.73, 117.02, 114.22, 39.80, 31.48; HRMS(EI) Calcd for C₁₈H₁₅N₂OBr [M+]: 354.0368, Found 354.0370; IR (KBr) v_{max} (cm⁻¹) : 3442, 1687, 1523, 1477, 1364, 701.

Typical procedure to make δ-Lactams via palladium catalyzed unactivated sp³ C-H/sp²C-H bonds activation and intramolecular cyclization of carboxamides:

General procedure: Carboxamide **1** (0.1 mmol), $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), AgOAc (25 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 4 : 1 as eluent) afforded the product **2**.

4-Phenyl-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2a):

1a (27.6 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2a** as a white solid (21.4 mg, 78% yield). mp 135-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (bs, 1H), 8.83 (dd, *J* = 4.2 and 1.7 Hz, 1H), 8.11 (dd, *J* = 8.3 and 1.7 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.36 – 7.28 (m, 2H), 7.29 – 7.20 (m, 3H), 7.15 (d, *J* = 8.4 Hz, 1H), 4.48 (t, *J* = 7.3 Hz, 1H), 3.10 (dd, *J* = 16.4 and 6.9 Hz, 1H), 3.00 (dd, *J* = 16.4 and 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.01, 149.35, 141.90, 136.72, 136.03, 133.19, 129.16, 127.84, 127.47, 126.89, 123.59, 121.88, 121.14, 42.70, 38.84; HRMS(EI) Calcd for C₁₈H₁₄N₂O [M⁺]: 274.1106, Found 274.1091; IR (KBr) v_{max} (cm⁻¹) : 3432, 1682, 1510, 1472, 832, 671.

4-(*p*-Tolyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2b):

1b (29.0 mg, 0.1 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), AgOAc (33.4 mg, 0.2 mmol), DMAP (4.9 mg, 0.04 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2b** as a yellow solid (18.7 mg, 65% yield). mp 94-95 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (bs, 1H), 8.83 (dd, *J* = 4.2 and 1.6 Hz, 1H), 8.11 (dd, *J* = 8.3 and 1.6 Hz, 1H), 7.49 – 7.35 (m, 2H), 7.20 – 7.06 (m, 5H), 4.46 (t, *J* = 7.4 Hz, 1H), 3.09 (dd, *J* = 16.4 and 6.9 Hz, 1H), 2.99 (dd, *J* = 16.4 and 7.9 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.16, 149.34, 138.87, 137.14, 136.75, 136.03, 133.13, 129.83, 127.73, 127.46, 126.91, 123.92, 121.84, 121.11, 42.33, 38.91, 21.17; HRMS(EI) Calcd for C₁₉H₁₆N₂O [M⁺]: 288.1263, Found 288.1263; IR (KBr) v_{max} (cm⁻¹) : 3433, 1688, 1510, 1472, 1380, 820.

4-(2-Methoxyphenyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2c):

1c (30.6 mg, 0.1 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), AgOAc (50.0 mg, 0.3 mmol), DMAP (4.9 mg, 0.04 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2c** as a yellow solid (25.3 mg, 83% yield). mp 144-145 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (bs, 1H), 8.86 (dd, *J* = 4.2 and 1.6 Hz, 1H), 8.14 (dd, *J* = 8.3 and 1.6 Hz, 1H), 7.50 – 7.38 (m, 2H), 7.28 – 7.17 (m, 2H), 6.97 – 6.82 (m, 3H), 4.92 (t, *J* = 6.9 Hz, 1H), 3.88 (s, 3H), 3.10 – 3.03 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.66, 156.99, 149.19, 136.74, 135.99, 133.53, 129.77, 128.61, 128.55, 127.42, 127.08, 123.38, 121.71, 121.01, 120.94, 110.89, 55.41, 37.09, 36.58; HRMS(EI) Calcd for C₁₉H₁₆N₂O₂ [M⁺]: 304.1212, Found 304.1194; IR (KBr) v_{max} (cm⁻¹) : 3440, 1680, 1510, 1488, 1244, 752.

4-(3-Methoxyphenyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2d):

1d (30.6 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product 2d as a yellow solid (22.9 mg, 75% yield). mp 91-93 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (bs, 1H), 8.83 (dd, *J* = 4.2 and 1.6 Hz, 1H), 8.11 (dd, *J* = 8.3 and 1.5 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.30 – 7.13 (m, 2H), 6.88 – 6.71 (m, 3H), 4.46 (t, *J* = 7.4 Hz, 1H), 3.77 (s, 3H), 3.10 (dd, *J* = 16.4 and 6.9 Hz, 1H), 3.00 (dd, *J* = 16.4 and 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.98, 160.17, 149.35, 143.51, 136.73, 136.03, 133.20, 130.20, 127.51, 126.90, 123.45, 121.89, 121.15, 120.19, 114.02, 112.40, 55.34, 42.73, 38.80; HRMS(EI) Calcd for C₁₉H₁₆N₂O₂ [M⁺]: 304.1212, Found 304.1219; IR (KBr) v_{max} (cm⁻¹) : 3440, 1680, 1510, 1487, 1442, 1262.

4-(4-Methoxyphenyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2e):

1e (30.6 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2e** as a yellow solid (21.3 mg, 70% yield). mp 95-97 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.34 (bs, 1H), 8.83 (dd, *J* = 4.2 and 1.6 Hz, 1H), 8.11 (dd, *J* = 8.3 and 1.6 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.19 – 7.09 (m, 3H), 6.92 – 6.83 (m, 2H), 4.44 (t, *J* = 7.3 Hz, 1H), 3.79 (s, 3H), 3.08 (dd, *J* = 16.4 and 6.8 Hz, 1H), 2.97 (dd, *J* = 16.4 and 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.16, 158.92, 149.33, 136.74, 136.03, 133.89, 133.07, 128.86, 127.44, 126.87, 124.06, 121.83, 121.12, 114.52, 55.41, 41.91, 39.02; HRMS(EI) Calcd for C₁₉H₁₆N₂O₂ [M⁺]: 304.1212, Found 304.1234; IR (KBr) v_{max} (cm⁻¹) : 3439, 1683, 1510, 1471, 1247, 830.

4-(Benzo[d][1,3]dioxol-5-yl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2f):

If (32.0 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2f** as a yellow solid (27.6 mg, 87% yield). mp 182-184 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.34 (bs, 1H), 8.86 – 8.78 (m, 1H), 8.11 (d, *J* = 8.3 Hz, 1H), 7.47 – 7.31 (m, 2H), 7.17 (d, *J* = 8.4 Hz, 1H), 6.79 – 6.65 (m, 3H), 5.93 (s, 2H), 4.40 (t, *J* = 7.1 Hz, 1H), 3.07 (dd, *J* = 16.4 and 6.8 Hz, 1H), 2.93 (dd, *J* = 16.3 and 7.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.95, 149.36, 148.28, 146.91, 136.71, 136.02, 135.72, 133.09, 127.49, 126.84, 123.65, 121.89, 121.19, 121.03, 108.70, 108.07, 101.24, 42.42, 39.09; HRMS(EI) Calcd for C₁₉H₁₄N₂O₃ [M⁺]: 318.1004, Found 318.1006; IR (KBr) v_{max} (cm⁻¹) : 3441, 1668, 1506, 1488, 1247,1037.

4-(3-Fluorophenyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2g):

1g (29.4 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product 2g as a yellow solid (19.6 mg, 67% yield). mp 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.28 (bs, 1H), 8.77 (d, J = 3.7 Hz, 1H), 8.06 (d, J = 8.3 Hz, 1H), 7.42 – 7.31 (m, 2H), 7.26 – 7.17 (m, 1H), 7.09 (d, J = 8.4 Hz, 1H), 6.97 – 6.78 (m, 3H), 4.42 (t, J = 7.0 Hz, 1H), 3.05 (dd, J = 16.4 and 6.9 Hz, 1H), 2.90 (dd, J = 16.4 and 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.59, 163.27 (d, J_{c-f} = 245.2 Hz), 149.50, 144.48 (d, J_{c-f} = 6.8 Hz, 1H), 136.75, 136.09, 133.31, 130.73 (d, $J_{c-f} = 8.3$ Hz), 127.64, 126.75, 123.48 (d, J_{c-f} = 2.8 Hz), 122.72, 122.07, 121.36, 114.84 (d, $J_{c-f} = 21.7$ Hz), 114.47 (d, $J_{c-f} = 21.0$ Hz), 42.44, 38.73; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.06; HRMS(EI) Calcd for C₁₈H₁₃N₂OF [M⁺]: 292.1012, Found 292.1025; IR (KBr) v_{max} (cm⁻¹) : 3365, 1671, 1508, 1323, 791, 665.

4-(4-Fluorophenyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2h):

1h (29.4 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2h** as a vellow solid (18.1 mg, 62% yield). mp 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (bs, 1H), 8.84 (dd, J = 4.2 and 1.6 Hz, 1H), 8.12 (dd, J = 8.3 and 1.6 Hz, 1H), 7.50 – 7.37 (m, 2H), 7.21 - 7.12 (m, 3H), 7.05 - 6.95 (m, 2H), 4.48 (t, J = 7.1 Hz, 1H), 3.10 (dd, J = 16.4 and 6.9 Hz, 1H), 2.96 (dd, J = 16.4 and 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.77, 162.11 (d, $J_{c-f} = 244.5$ Hz), 149.46, 137.65 (d, $J_{c-f} = 3.2$ Hz), 136.74, 136.07, 133.20, 129.37 (d, $J_{c-f} = 8.0$ Hz), 127.56, 126.73, 123.32, 122.00, 121.29, 116.03 (d, $J_{c-f} = 21.3$ Hz), 41.99, 38.99; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.16; HRMS(EI) Calcd for C18H13N2OF [M⁺]: 292.1012, Found 292.1023; IR (KBr) v_{max} (cm⁻¹) : 3441, 1686, 1509, 1471, 1222, 832.

4-(2-Chlorophenyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2i):

1i (31.1 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2i** as a yellow solid (23.1 mg, 75% yield). mp 120-121 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.37 (bs, 1H), 8.86 (dd, *J* = 4.2 and 1.6 Hz, 1H), 8.14 (dd, *J* = 8.3 and 1.6 Hz, 1H), 7.52 – 7.38 (m, 3H), 7.24 – 7.10 (m, 3H), 6.95 (dd, *J* = 7.7 and 1.6 Hz, 1H), 5.05 (t, *J* = 6.9 Hz, 1H), 3.12 (dd, *J* = 16.5 and 7.3 Hz, 1H), 3.02 (dd, *J* = 16.5 and 6.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.65, 149.45, 139.05, 136.75, 136.09, 133.83, 133.73, 130.27, 129.18, 128.75, 127.68, 127.62, 126.87, 122.27, 122.05, 121.42, 39.14, 37.28; HRMS(EI) Calcd for C₁₈H₁₃N₂OCl [M⁺]: 308.0716, Found 308.0719; IR (KBr) v_{max} (cm⁻¹) : 3440, 1684, 1510, 1471, 738, 646.

4-(4-Chlorophenyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2j):

1j (31.1 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2j** as a yellow solid (20.5 mg, 66% yield). mp 94-96 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (bs, 1H), 8.84 (dd, *J* = 4.2 and 1.6 Hz, 1H), 8.13 (dd, *J* = 8.3 and 1.5 Hz, 1H), 7.49 – 7.38 (m, 2H), 7.33 – 7.23 (m, 2H), 7.19 – 7.10 (m, 3H), 4.47 (t, *J* = 7.1 Hz, 1H), 3.10 (dd, *J* = 16.4 and 6.9 Hz, 1H), 2.95 (dd, *J* = 16.4 and 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.64, 149.49, 140.42, 136.73, 136.08, 133.32, 133.26, 129.33, 129.19, 127.59, 126.68, 122.95, 122.05, 121.34, 42.13, 38.79; HRMS(EI) Calcd for C₁₈H₁₃N₂OCl [M⁺]: 308.0716, Found 308.0717; IR (KBr) v_{max} (cm⁻¹) : 3433, 1682, 1510, 1490, 1380, 830.

4-(2-Bromophenyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2k):

1k (35.6 mg, 0.1 mmol), Pd(OAc)₂ (2.3 mg, 0.015 mmol), AgOAc (50.0 mg, 0.3 mmol), DMAP (4.9 mg, 0.04 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2k** as a yellow solid (23.1 mg, 65% yield). mp 144-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.37 (bs, 1H), 8.86 (dd, *J* = 4.2 and 1.6 Hz, 1H), 8.14 (dd, *J* = 8.3 and 1.6 Hz, 1H), 7.64 (dd, *J* = 7.8 and 1.4 Hz, 1H), 7.53 – 7.35 (m, 2H), 7.27 – 7.06 (m, 3H), 6.95 (dd, *J* = 7.6 and 1.7 Hz, 1H), 5.04 (t, *J* = 7.0 Hz, 1H), 3.12 (dd, *J* = 16.5 and 7.4 Hz, 1H), 3.01 (dd, *J* = 16.5 and 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.54, 149.45, 140.74, 136.75, 136.09, 133.80, 133.59, 129.28, 129.04, 128.27, 127.68, 126.89, 124.41, 122.34, 122.06, 121.42, 41.70, 37.46; HRMS(EI) Calcd for C₁₈H₁₃N₂OBr [M⁺]: 352.0211, Found 352.0215; IR (KBr) v_{max} (cm⁻¹) : 3442, 1678, 1510, 1472, 767, 662.

4-(3-Bromophenyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2l):

11 (35.5 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **21** as a yellow solid (25.2 mg, 71% yield). mp 114-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.36 (bs, 1H), 8.85 (dd, *J* = 4.2 and 1.4 Hz, 1H), 8.13 (dd, *J* = 8.3 and 1.4 Hz, 1H), 7.50 – 7.34 (m, 4H), 7.24 – 7.10 (m, 3H), 4.46 (t, *J* = 7.1 Hz, 1H), 3.11 (dd, *J* = 16.4 and 7.0 Hz, 1H), 2.97 (dd, *J* = 16.4 and 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.50, 149.51, 144.32, 136.75, 136.10, 133.33, 130.96, 130.78, 130.71, 127.65, 126.71, 126.47, 123.21, 122.57, 122.10, 121.41, 42.43, 38.74; HRMS(EI) Calcd for C₁₈H₁₃N₂OBr [M⁺]: 352.0211, Found 352.0209; IR (KBr) v_{max} (cm⁻¹) : 3443, 1675, 1511, 1473, 1385, 685.

4-(4-Bromophenyl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2m):

1m (35.5 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2m** as a yellow solid (26.1 mg, 74% yield). mp 145-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.36 (bs, 1H), 8.88 – 8.81 (m, 1H), 8.13 (d, *J* = 8.3 Hz, 1H), 7.55 – 7.35 (m, 4H), 7.17 – 7.06 (m, 3H), 4.46 (t, *J* = 6.9 Hz, 1H), 3.18 – 3.04 (m, 1H), 3.01 – 2.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.61, 149.49, 140.95, 136.72, 136.08, 133.26, 132.28, 129.56, 127.59, 126.66, 122.84, 122.05, 121.38, 121.35, 42.20, 38.71; HRMS(EI) Calcd for C₁₈H₁₃N₂OBr [M⁺]: 352.0211, Found 352.0213; IR (KBr) v_{max} (cm⁻¹) : 3450, 1677, 1510, 1383, 825, 646.

2-(2-oxo-1,2,3,4-Tetrahydro-1,10-phenanthrolin-4-yl)phenyl acetate (2n):

In (33.4 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (50.0 mg, 0.3 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2n** as a yellow solid (17.3 mg, 52% yield). mp 151-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.39 (bs, 1H), 8.83 (dd, *J* = 4.2 and 1.5 Hz, 1H), 8.10 (dd, *J* = 8.3 and 1.5 Hz, 1H), 7.46 – 7.27 (m, 3H), 7.21 – 7.04 (m, 4H), 4.65 (t, *J* = 8.0 Hz, 1H), 3.15 – 2.90 (m, 2H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.33, 168.76, 149.35, 148.68, 136.56, 136.05, 133.59, 133.29, 129.20, 128.58, 127.47, 126.81, 126.63, 123.22, 122.53, 121.92, 121.25, 37.66, 36.88, 21.03; HRMS(EI) Calcd for C₂₀H₁₆N₂O₃ [M⁺]: 332.1161, Found 332.1153; IR (KBr) ν_{max} (cm⁻¹) : 3345, 1753, 1678, 1510, 1472, 1210.

4-(2-oxo-1,2,3,4-Tetrahydro-1,10-phenanthrolin-4-yl)phenyl acetate (20):

10 (33.4 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **20** as a yellow solid (18.3 mg, 55% yield). mp 87-88 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.38 (bs, 1H), 8.91 – 8.77 (m, 1H), 8.14 (d, *J* = 8.3 Hz, 1H), 7.49 – 7.39 (m, 2H), 7.31 – 7.15 (m, 3H), 7.12 – 7.00 (m, 2H), 4.51 (t, *J* = 7.1 Hz, 1H), 3.13 (dd, *J* = 16.4 and 6.9 Hz, 1H), 3.00 (dd, *J* = 16.3 and 7.5 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.55, 168.84, 149.90, 149.40, 139.38, 136.70, 136.05, 133.13, 128.84, 127.52, 126.84, 123.24, 122.22, 121.95, 121.25, 42.11, 38.81, 21.23; HRMS(EI) Calcd for C₂₀H₁₆N₂O₃ [M⁺]: 332.1161, Found 332.1169; IR (KBr) v_{max} (cm⁻¹) : 3440, 1758, 1682, 1509, 1198, 833.

4-(Naphthalen-2-yl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2p):

1p (32.6 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2P** as a yellow solid (23.8 mg, 73% yield). mp 173-174 °C. ¹H NMR (400 MHz, CDCl₃) 9.42 (bs, 1H), 8.86 (d, *J* = 4.0 Hz, 1H), 8.12 (d, *J* = 8.3 Hz, 1H), 7.87 – 7.61 (m, 4H), 7.53 – 7.33 (m, 5H), 7.16 (d, *J* = 8.4 Hz, 1H), 4.66 (t, *J* = 7.5 Hz, 1H), 3.24 – 3.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.99, 149.39, 139.18, 136.74, 136.05, 133.65, 133.25, 132.77, 129.10, 127.91, 127.78, 127.52, 126.92, 126.71, 126.49, 126.14, 125.80, 123.47, 121.92, 121.18, 42.88, 38.77; HRMS(EI) Calcd for C₂₂H₁₆N₂O [M⁺]: 324.1263, Found 324.1264; IR (KBr) v_{max} (cm⁻¹) : 3442, 1675, 1509, 1380, 757, 646.

4-(Naphthalen-1-yl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2q):

1q (32.6 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2q** as a yellow solid (19.9 mg, 61% yield). mp 160-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.43 (bs, 1H), 8.88 (dd, *J* = 4.2 and 1.7 Hz, 1H), 8.13 (dd, *J* = 8.2 and 1.1 Hz, 1H), 8.11 – 8.03 (m, 1H), 7.98 – 7.89 (m, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.60 – 7.31 (m, 5H), 7.13 – 7.06 (m, 2H), 5.33 (t, *J* = 7.4 Hz, 1H), 3.22 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.00, 149.40, 136.89, 136.78, 136.06, 134.49, 133.73, 131.12, 129.48, 128.27, 127.57, 127.10, 126.56, 125.89, 125.83, 125.75, 123.38, 123.29, 121.94, 121.30, 38.79, 38.13; HRMS(EI) Calcd for C₂₂H₁₆N₂O [M⁺]: 324.1263, Found 324.1268; IR (KBr) ν_{max} (cm⁻¹) : 3432, 1683, 1510, 1471, 1318, 777.

4-(Anthracen-9-yl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2r):

Ir (37.6 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (33.4 mg, 0.20 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2r** as a colorless solid (3.3 mg, 9% yield) and recovered **1r** (20.6 mg, 69%). mp 120-121 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 8.89 (d, *J* = 3.3 Hz, 1H), 8.54 (s, 1H), 8.38 (d, *J* = 8.7 Hz, 1H), 8.18 – 8.02 (m, 3H), 7.87 (d, *J* = 9.0 Hz, 1H), 7.65 – 7.50 (m, 2H), 7.45 (dd, *J* = 8.2 and 4.3 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.73 (d, *J* = 8.5 Hz, 1H), 6.24 (dd, *J* = 14.8 and 7.2 Hz, 1H), 3.71 (dd, *J* = 17.2 and 15.0 Hz, 1H), 3.05 (dd, *J* = 17.4 and 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.31, 149.39, 136.83, 136.11, 132.52, 132.11, 131.83, 131.66, 131.20, 130.16, 129.90, 128.92, 128.54, 127.29, 127.04, 126.77, 126.33, 125.34, 125.27, 124.85, 124.45,

122.86, 121.78, 121.17, 37.16, 36.50.; HRMS(EI) Calcd for $C_{26}H_{18}N_2O$ [M⁺]: 374.1416, Found 374.1419; IR (KBr) v_{max} (cm⁻¹) : 3440, 1676, 1510, 1473, 1284, 1050.

4-(1-Acetyl-1H-indol-3-yl)-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2s):

1s (35.7 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product 2s as a yellow solid (12.6 mg, 34% yield) and recovered **1s** (17.1 mg, 46%). mp 79-80 °C. ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta 9.55$ (bs, 1H), 9.02 (dd, J = 4.2 and 1.7 Hz, 1H), 8.61 (d, J = 8.3Hz, 1H), 8.29 (dd, J = 8.3 and 1.7 Hz, 1H), 7.67 – 7.51 (m, 4H), 7.46 – 7.40 (m, 3H), 4.92 (t, J = 7.2 Hz, 1H), 3.35 (dd, J = 16.3 and 7.8 Hz, 1H), 3.27 (dd, J = 16.3 and 6.8 Hz, 1H), 2.69 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.00, 168.52, 149.49, 136.76, 136.55, 136.12, 133.15, 128.88, 127.67, 126.52, 125.79, 123.80, 123.04, 122.43, 122.16, 122.06, 121.39, 119.40, 117.17, 37.22, 34.16, 24.17; HRMS(EI) Calcd for $C_{22}H_{17}N_{3}O_{2}$ [M⁺]: 355.1321, Found 355.1319; IR (KBr) v_{max} (cm⁻¹) : 3436, 1687, 1450, 1327, 1215, 1019.

6,7,8,12-Tetrahydronaphtho[2,1][1,10]phenanthrolin-6(5H)-one (2t):

It (32.8 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2t** as a colorless solid (8.6 mg, 26% yield) and recovered **1t** (21.6 mg, 66%). mp 203-204 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.27 (bs, 1H), 8.81 (dd, *J* = 4.2 and 1.7 Hz, 1H), 8.13 (dd, *J* = 8.3 and 1.7 Hz, 1H), 7.55 – 7.02 (m, 7H), 4.47 (d, *J* = 5.7 Hz, 1H), 3.20 – 2.85 (m,

3H), 2.38 - 2.18 (m, 1H), 2.18 - 2.00 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.03, 149.31, 136.80, 136.70, 136.01, 134.05, 132.25, 129.72, 129.70, 127.49, 127.37, 127.25, 125.81, 123.56, 121.76, 120.76, 40.72, 40.49, 26.98, 21.47; HRMS(EI) Calcd for C₂₀H₁₆N₂O [M⁺]: 300.1263, Found 300.1265; IR (KBr) v_{max} (cm⁻¹) : 3340, 1673, 1511, 1474, 1383, 658.

6,7-Dihydro-5H-indeno[2,1][1,10]phenanthrolin-6(11H)-one (2u):

1u (28.8 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product 2u as a colorless solid (5.6 mg, 20% yield) and recovered 1u (15.7 mg, 55%). mp 228-230 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.34 (bs, 1H), 8.79 (dd, J = 4.2 and 1.7 Hz, 1H), 8.16 (dd, J = 8.3 and 1.7 Hz, 1H), 7.63 (d, J = 8.3 Hz, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.43 (dd, J = 8.4 and 4.2 Hz, 1H), 7.36 - 7.26 (m, 1H), 7.25 - 7.05 (m, 3H), 4.72 (d, J = 7.05 (m, 2H))8.0 Hz, 1H), 3.77 (dd, J = 15.8 and 2.6 Hz, 1H), 3.57 (td, J = 7.8 and 2.6 Hz, 1H), 3.38 (dd, J = 15.8 and 7.6 Hz, 1H), ¹³C NMR (150 MHz, CDCl₃) δ 170.81, 149.23, 143.08, 141.66, 136.73, 136.03, 132.10, 127.61, 127.55, 127.52, 126.90, 124.94, 123.84, 121.82, 120.99, 120.06, 47.27, 45.03, 35.67. HRMS(EI) Calcd for C19H14N2O $[M^+]$: 286.1106, Found 286.1105; IR (KBr) v_{max} (cm⁻¹) : 3364, 1667, 1511, 1477, 1290, 690.

6-Chloro-4-phenyl-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2v):

1v (31.1 mg, 0.1 mmol), $Pd(OAc)_2$ (2.3 mg, 0.01 mmol), AgOAc (33.0 mg, 0.2 mmol), DMAP (4.9 mg, 0.04 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2v** as a yellow solid (24.8 mg, 80%)

yield). mp 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.24 (bs, 1H), 8.82 – 8.75 (m, 1H), 8.41 (d, *J* = 8.5 Hz, 1H), 7.51 – 7.42 (m, 1H), 7.34 – 7.10 (m, 6H), 4.37 (t, *J* = 7.4 Hz, 1H), 3.08 – 2.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.66, 149.85, 141.20, 137.17, 133.16, 132.52, 129.34, 127.80, 127.77, 126.65, 125.46, 124.18, 123.88, 122.61, 42.62, 38.75; HRMS(EI) Calcd for C₁₈H₁₃N₂OCl [M⁺]: 308.0716, Found 308.0713; IR (KBr) v_{max} (cm⁻¹) : 3441, 1701, 1505, 1466, 1365, 703.

6-Bromo-4-phenyl-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2w):

1w (35.5 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (33.0 mg, 0.2 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2w** as a yellow solid (30.1 mg, 85% yield). mp 144-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.34 (bs, 1H), 8.85 (dd, *J* = 4.2 and 1.5 Hz, 1H), 8.46 (dd, *J* = 8.5 and 1.6 Hz, 1H), 7.54 (dd, *J* = 8.5 and 4.2 Hz, 1H), 7.45 – 7.18 (m, 6H), 4.46 (t, *J* = 7.4 Hz, 1H), 3.10 (dd, *J* = 16.5 and 6.9 Hz, 1H), 3.00 (dd, *J* = 16.5 and 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.64, 149.86, 141.22, 137.30, 135.71, 133.23, 130.22, 129.36, 127.79, 126.75, 124.43, 122.96, 113.99, 42.56, 38.80; HRMS(EI) Calcd for C₁₈H₁₃N₂OBr [M⁺]: 352.0211, Found 352.0223; IR (KBr) v_{max} (cm⁻¹) : 3440, 1698, 1502, 1464, 927, 703.

6-Methoxy-4-phenyl-3,4-dihydro-1,10-phenanthrolin-2(1H)-one (2x):

1x (30.6 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25.0 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2x** as a yellow solid (19.8 mg, 65% yield). mp 66-68 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.16 (bs, 1H),

8.83 (dd, J = 4.2 and 1.5 Hz, 1H), 8.50 (dd, J = 8.4 and 1.5 Hz, 1H), 7.41 (dd, J = 8.4 and 4.2 Hz, 1H), 7.36 – 7.16 (m, 5H), 6.48 (s, 1H), 4.43 (t, J = 6.9 Hz, 1H), 3.83 (s, 3H), 3.11 (dd, J = 16.3 and 7.0 Hz, 1H), 2.96 (dd, J = 16.3 and 6.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.58, 150.37, 149.78, 141.94, 137.41, 131.10, 129.09, 127.76, 127.42, 126.50, 123.31, 120.93, 119.96, 104.70, 55.84, 43.23, 39.15; HRMS(EI) Calcd for C₁₉H₁₆N₂O₂ [M⁺]: 304.1212, Found 304.1220; IR (KBr) ν_{max} (cm⁻¹) : 3382, 1680, 1478, 1130, 1096, 702.

4-(4-Bromophenyl)-1,10-phenanthrolin-2(1H)-one(3m):

1m (35.5 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (83.5 mg, 0.5 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 1 : 2 as eluent) afforded the product **3m** as a yellow solid (29.1 mg, 83% yield). mp 214-216 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.85 (bs, 1H), 8.93 (dd, *J* = 4.1 and 1.3 Hz, 1H), 8.20 (dd, *J* = 8.2 and 1.3 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.58 (dd, *J* = 8.2 and 4.2 Hz, 1H), 7.54 (d, *J* = 8.9 Hz, 1H), 7.47 (d, *J* = 8.9 Hz, 1H), 7.37 (d, *J* = 8.3 Hz, 2H), 6.76 (s, 1H); 13C NMR (100 MHz, CDCl₃) δ 161.40, 151.81, 149.60, 136.92, 136.10, 136.02, 135.94, 132.16, 130.58, 128.32, 123.83, 123.62, 123.49, 123.15, 120.80, 116.66; HRMS(EI) Calcd for C₁₈H₁₁N₂OBr [M⁺]: 350.0055, Found 350.0060; IR (KBr) v_{max} (cm⁻¹) : 3440, 1681, 1664, 1461, 1009, 743.

Typical procedure for preparing the compound 3

4-Phenyl-1,10-phenanthrolin-2(1H)-one (3a):

A mixture of the **2a** (109.0 mg, 0.4 mmol) and DDQ (272.4 mg, 1.2 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3a** as a yellow solid (81.2 mg,

76% yield). mp 83-85 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.86 (bs, 1H), 8.92 (dd, J = 4.2 and 1.5 Hz, 1H), 8.19 (dd, J = 8.2 and 1.5 Hz, 1H), 7.65 – 7.40 (m, 8H), 6.80 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.67, 153.10, 149.48, 137.06, 136.97, 136.06, 135.89, 129.07, 128.97, 128.88, 128.26, 124.25, 123.49, 123.03, 120.62, 117.10; HRMS(EI) Calcd for C₁₈H₁₂N₂O [M⁺]: 272.0950, Found 272.0945; IR (KBr) v_{max} (cm⁻¹) : 3441, 1657, 1464, 1380, 772, 704.

4-(p-Tolyl)-1,10-phenanthrolin-2(1H)-one (3b):

A mixture of the **2b** (103.0 mg, 0.36 mmol) and DDQ (245.0 mg, 1.2 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3b** as a yellow solid (93.1 mg, 90% yield). mp 167-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.80 (bs, 1H), 8.90 (dd, *J* = 4.3 and 1.6 Hz, 1H), 8.17 (dd, *J* = 8.2 and 1.6 Hz, 1H), 7.62 (d, *J* = 8.9 Hz, 1H), 7.55 (dd, *J* = 8.2 and 4.3 Hz, 1H), 7.44 (d, *J* = 8.9 Hz, 1H), 7.40 – 7.31 (m, 4H), 6.77 (s, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.66, 153.07, 149.38, 139.05, 136.92, 136.00, 135.82, 134.12, 129.53, 128.87, 128.18, 124.30, 123.39, 122.83, 120.47, 117.14, 21.43; HRMS(EI) Calcd for C₁₉H₁₄N₂O [M⁺]: 286.1106, Found 286.1102; IR (KBr) v_{max} (cm⁻¹) : 3441, 1660, 1374, 819, 744, 646.

4-(2-Methoxyphenyl)-1,10-phenanthrolin-2(1H)-one (3c):

A mixture of the **2c** (97.4 mg, 0.32 mmol) and DDQ (217.9 mg, 0.96 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3c** as a yellow solid (76.1 mg, 79% yield). mp 179-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.81 (bs, 1H), 8.88 (d, *J* = 3.1 Hz, 1H), 8.15 (dd, *J* = 8.2 and 1.2 Hz, 1H), 7.58 – 7.44 (m, 2H), 7.40 (d, *J* = 8.8 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.15 – 7.03 (m, 2H), 6.77 (s, 1H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.94, 156.59, 150.78, 149.19, 136.99, 135.92, 135.14, 130.61, 128.18, 126.02, 124.77, 123.75, 123.19, 121.10,

120.29, 117.80, 111.22, 55.61; HRMS(EI) Calcd for $C_{19}H_{14}N_2O_2$ [M⁺]: 302.1055, Found 302.1050; IR (KBr) v_{max} (cm⁻¹) : 3441, 1653, 1462, 1377, 1257, 832.

4-(3-Methoxyphenyl)-1,10-phenanthrolin-2(1H)-one (3d):

A mixture of the **2d** (91.3 mg, 0.3 mmol) and DDQ (204.3 mg, 0.96 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3d** as a yellow solid (83.6 mg, 92% yield). mp 157-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.82 (bs, 1H), 8.87 (dd, *J* = 4.2 and 1.4 Hz, 1H), 8.15 (dd, *J* = 8.2 and 1.5 Hz, 1H), 7.59 (d, *J* = 8.9 Hz, 1H), 7.53 (dd, *J* = 8.2 and 4.3 Hz, 1H),7.46 – 7.39 (m, 2H), 7.07– 6.95 (m, 3H), 6.77 (s, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.58, 159.81, 152.86, 149.37, 138.25, 136.80, 135.99, 135.71, 129.89, 128.17, 124.14, 123.41, 122.78, 121.24, 120.58, 116.93, 114.58, 114.43, 55.46; HRMS(EI) Calcd for C₁₉H₁₄N₂O₂ [M⁺]: 302.1055, Found 302.1056; IR (KBr) v_{max} (cm⁻¹) : 3437, 1663, 1465, 1269, 1026, 716.

4-(4-Methoxyphenyl)-1,10-phenanthrolin-2(1H)-one (3e):

A mixture of the **2e** (122.0 mg, 0.4 mmol) and DDQ (272.4 mg, 1.2 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3e** as a yellow solid (76.1 mg, 84% yield). mp 220-222 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.79 (bs, 1H), 8.89 (dd, *J* = 4.2 and 1.5 Hz, 1H), 8.17 (dd, *J* = 8.2 and 1.5 Hz, 1H), 7.64 (d, *J* = 8.9 Hz, 1H), 7.55 (dd, *J* = 8.2 and 4.3 Hz, 1H), 7.48– 7.38 (m, 3H), 7.08– 7.12 (m, 2H), 6.76 (s, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.69, 160.33, 152.73, 149.39, 136.95, 136.01, 135.87, 130.32, 129.31, 128.18, 124.30, 123.40, 122.72, 120.47, 117.21, 114.31, 55.54; HRMS(EI) Calcd for C₁₉H₁₄N₂O₂ [M⁺]: 302.1055, Found 302.1052; IR (KBr) v_{max} (cm⁻¹) : 3448, 1653, 1515, 1465, 1253, 831.

4-(Benzo[d][1,3]dioxol-5-yl)-1,10-phenanthrolin-2(1H)-one (3f):

A mixture of the **2f** (31.8 mg, 0.1 mmol) and DDQ (68.1 mg, 0.3 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3f** as a yellow solid (16.2 mg, 51% yield). mp 202-204 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.84 (bs, 1H), 8.90 (d, *J* = 3.3 Hz, 1H), 8.23 – 8.14 (m, 1H), 7.66 (d, *J* = 8.9 Hz, 1H), 7.56 (dd, *J* = 8.2 and 4.2 Hz, 1H), 7.46 (d, *J* = 8.9 Hz, 1H), 6.96 (s, 3H), 6.76 (s, 1H), 6.07 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.67, 149.46, 148.42, 148.08, 136.96, 136.04, 135.88, 130.76, 128.23, 124.20, 123.48, 122.88, 120.60, 117.15, 109.48, 108.81, 101.65; HRMS(EI) Calcd for C₁₉H₁₂N₂O₃ [M⁺]: 316.0848, Found 316.0848; IR (KBr) v_{max} (cm⁻¹) : 3440, 1658, 1506, 1489, 1250, 1034.

4-(3-Fluorophenyl)-1,10-phenanthrolin-2(1H)-one (3g):

A mixture of the **2g** (87.7 mg, 0.3 mmol) and DDQ (204.3 mg, 0.9 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3g** as a yellow solid (68.8 mg, 79% yield). mp 188-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.82 (bs, 1H), 8.88 (d, *J* = 3.7 Hz, 1H), 8.17 (dd, *J* = 8.2 and 1.0 Hz, 1H), 7.61 – 7.39 (m, 4H), 7.29 – 7.11 (m, 3H), 6.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.78 (d, *J*_{c-f} = 246.4 Hz), 161.32, 151.56 (d, *J*_{c-f} = 1.9 Hz), 149.50, 139.01 (d, *J*_{c-f} = 7.7 Hz), 136.78, 136.04, 135.86, 130.59 (d, *J*_{c-f} = 8.3 Hz), 128.23, 124.69 (d, *J*_{c-f} = 3.1 Hz), 123.73, 123.55, 123.13, 120.78, 116.53, 116.13 (d, *J*_{c-f} = 4.0 Hz), 115.92 (d, *J*_{c-f} = 2.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -111.86; HRMS(EI) Calcd for C₁₈H₁₁N₂OF [M⁺]: 290.0855, Found 290.0854; IR (KBr) v_{max} (cm⁻¹) : 3441, 1664, 1264, 826, 735, 718.

4-(4-Fluorophenyl)-1,10-phenanthrolin-2(1H)-one (3h):

A mixture of the **2h** (117.0 mg, 0.4 mmol) and DDQ (272.4 mg, 1.2 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3h** as a yellow solid (82.8 mg, 71% yield). mp 166-168 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.82 (bs, 1H), 8.90 (dd, *J* = 4.2 and 1.5 Hz, 1H), 8.18 (dd, *J* = 8.3 and 1.5 Hz, 1H), 7.64 – 7.39 (m, 5H), 7.26 – 7.18 (m, 2H), 6.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.24 (d, *J*_{c-f} = 247.4 Hz), 161.44, 151.94, 149.53, 136.88, 136.06, 135.91, 133.00 (d, *J*_{c-f} = 3.5 Hz), 130.77 (d, *J*_{c-f} = 8.2 Hz), 128.25, 123.90, 123.54, 123.19, 120.71, 116.89, 116.00 (d, *J*_{c-f} = 21.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -112.24; HRMS(EI) Calcd for C₁₈H₁₁N₂OF [M⁺]: 290.0855, Found 290.0861; IR (KBr) v_{max} (cm⁻¹) : 3440, 1686, 1663, 1513, 1225, 842.

4-(2-Chlorophenyl)-1,10-phenanthrolin-2(1H)-one (3i):

A mixture of the **2i** (77.2 mg, 0.25 mmol) and DDQ (170.3 mg, 0.75 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3i** as a yellow solid (67.5 mg, 87% yield). mp 200-202 °C . ¹H NMR (400 MHz, CDCl₃) δ 10.86 (bs, 1H), 8.90 (dd, *J* = 4.2 and 1.4 Hz, 1H), 8.17 (dd, *J* = 8.2 and 1.4 Hz, 1H), 7.62 – 7.31 (m, 6H), 7.19 (d, *J* = 8.8 Hz, 1H), 6.76 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.59, 150.59, 149.45, 136.89, 136.06, 135.84, 135.46, 132.98, 130.76, 130.38, 130.04, 128.36, 127.31, 124.04, 123.87, 123.46, 120.81, 117.07; HRMS(EI) Calcd for C₁₈H₁₁N₂OCl [M⁺]: 306.0560, Found 306.0572; IR (KBr) v_{max} (cm⁻¹) : 3443, 1654, 1622, 1463, 832, 764.

4-(4-Chlorophenyl)-1,10-phenanthrolin-2(1H)-one (3j):

A mixture of the **2j** (93.8 mg, 0.3 mmol) and DDQ (204.3 mg, 0.9 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3j** as a yellow solid (86.2 mg, 94% yield). mp 210-211 °C · ¹H NMR (400 MHz, CDCl₃) δ 10.84 (bs, 1H), 8.92 (dd, *J* = 4.2 and 1.4 Hz, 1H), 8.19 (dd, *J* = 8.3 and 1.5 Hz, 1H), 7.62 – 7.38 (m, 7H), 6.76 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.41, 151.79, 149.58, 136.91, 136.09, 135.99, 135.45, 135.31, 130.31, 129.20, 128.30, 123.83, 123.60, 123.19, 120.78, 116.73; HRMS(EI) Calcd for C₁₈H₁₁N₂OCI [M⁺]: 306.0560, Found 306.0572; IR (KBr) v_{max} (cm⁻¹) : 3441, 1685, 1664, 1460, 1093, 825. HRMS(EI) Calcd for C₁₄H₁₇N₃O₄ [M⁺]: 291.1235; Found 291.1235; IR (KBr) v_{max} (cm⁻¹) : 3441, 1685, 1664, 1460, 1093, 825.

4-(2-Bromophenyl)-1,10-phenanthrolin-2(1H)-one (3k):

A mixture of the **2k** (106.0 mg, 0.3 mmol) and DDQ (204.3 mg, 0.9 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3k** as a yellow solid (86.5 mg, 82% yield). mp 155-156 °C . ¹H NMR (400 MHz, CDCl₃) δ 10.85 (bs, 1H), 8.92 (dd, J = 4.3 and 1.5 Hz, 1H), 8.19 (dd, J = 8.2 and 1.6 Hz, 1H), 7.69 – 7.36 (m, 7H), 6.76 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.33, 151.36, 149.59, 139.01, 136.85, 136.10, 135.95, 132.15, 131.81, 130.48, 128.31, 127.61, 123.76, 123.62, 123.30, 122.93, 120.88, 116.60; HRMS(EI) Calcd for C₁₈H₁₁N₂OBr [M⁺]: 350.0055, Found 350.0060; IR (KBr) v_{max} (cm⁻¹) : 3441, 1657, 1623, 1465, 839, 715.

4-(3-Bromophenyl)-1,10-phenanthrolin-2(1H)-one (3l):

A mixture of the **2l** (115.0 mg, 0.33 mmol) and DDQ (227.0 mg, 0.99 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3l** as a yellow solid (93.0 mg, 82% yield). mp 185-187 °C · ¹H NMR (400 MHz, CDCl₃) δ 10.87 (bs, 1H), 8.94 (dd, *J* = 4.2 and 1.4 Hz, 1H), 8.20 (dd, *J* = 8.2 and 1.4 Hz, 1H), 7.70 – 7.38 (m, 7H), 6.77 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.37, 151.40, 149.63, 139.06, 136.91, 136.12, 136.00, 132.17, 131.85, 130.50, 128.35, 127.63, 123.80, 123.65, 123.35, 122.96, 120.89, 116.65; HRMS(EI) Calcd for C₁₈H₁₁N₂OBr [M⁺]: 350.00555, Found 350.0051; IR (KBr) v_{max} (cm⁻¹) : 3441, 1656, 1623, 1466, 840, 716.

4-(4-Bromophenyl)-1,10-phenanthrolin-2(1H)-one(3m):

A mixture of the **2m** (40.0 mg, 0.11 mmol) and DDQ (77.0 mg, 0.33 mmol) in toluene (2 mL) was stirred refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl3/MeOH = 40/1) to get the product **3m** as a yellow solid (29.1 mg, 75% yield). mp 214-216 °C · ¹H NMR (400 MHz, CDCl₃) δ 10.85 (bs, 1H), 8.93 (dd, *J* = 4.1 and 1.3 Hz, 1H), 8.20 (dd, *J* = 8.2 and 1.3 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.58 (dd, *J* = 8.2 and 4.2 Hz, 1H), 7.54 (d, *J* = 8.9 Hz, 1H), 7.47 (d, *J* = 8.9 Hz, 1H), 7.37 (d, *J* = 8.3 Hz, 2H), 6.76 (s, 1H); 13C NMR (100 MHz, CDCl₃) δ 161.40, 151.81, 149.60, 136.92, 136.10, 136.02, 135.94, 132.16, 130.58, 128.32, 123.83, 123.62, 123.49, 123.15, 120.80, 116.66; HRMS(EI) Calcd for C₁₈H₁₁N₂OBr [M⁺]: 350.0055, Found 350.0060; IR (KBr) v_{max} (cm⁻¹) : 3440, 1681, 1664, 1461, 1009, 743.

2-(2-oxo-1,2-Dihydro-1,10-phenanthrolin-4-yl)phenyl acetate (3n):

A mixture of the **2n** (30.0 mg, 0.09 mmol) and DDQ (61.5 mg, 0.27 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3n** as a yellow solid (18.9 mg, 64% yield). mp 100-102 °C . ¹H NMR (400 MHz, CDCl₃) δ 10.87 (bs, 1H), 8.92 (d, *J* = 3.0 Hz, 1H), 8.18 (dd, *J* = 8.2 and 1.4 Hz, 1H), 7.62 – 7.49 (m, 2H), 7.47 – 7.22 (m, 5H), 6.77 (s, 1H), 1.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.05, 161.49, 149.48, 148.99, 147.98, 136.83, 136.12, 135.45, 130.68, 130.36, 129.83, 128.36, 126.42, 124.20, 123.83, 123.51, 123.30, 120.75, 117.16, 20.80; HRMS(EI) Calcd for C₂₀H₁₄N₂O₃ [M⁺]: 330.1004, Found 330.1008; IR (KBr) v_{max} (cm⁻¹) : 3440, 1768, 1664, 1463, 1370, 1188.

4-(2-oxo-1,2-Dihydro-1,10-phenanthrolin-4-yl)phenyl acetate (30):

A mixture of the **20** (66.5 mg, 0.2 mmol) and DDQ (136.2 mg, 0.6 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **30** as a yellow solid (40.2 mg, 62% yield). mp 104-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.86 (bs, 1H), 8.89 (s, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.69 – 7.37 (m, 5H), 7.27 (d, *J* = 8.2 Hz, 2H), 6.78 (s, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.44, 161.49, 152.09, 151.28, 149.45, 136.85, 136.03, 135.85, 134.51, 130.10, 128.23, 124.03, 123.50, 123.09, 122.13, 120.68, 116.86, 21.28; HRMS(EI) Calcd for C₂₀H₁₄N₂O₃ [M⁺]: 330.1004, Found 330.0999; IR (KBr) v_{max} (cm⁻¹) : 3448, 1751, 1664, 1375, 1200, 837.

4-(Naphthalen-2-yl)-1,10-phenanthrolin-2(1H)-one (3p):

A mixture of the **2p** (64.9 mg, 0.2 mmol) and DDQ (136.2 mg, 0.6 mmol) in toluene (2 mL) was stirred refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3p** as a yellow solid (54.6 mg, 85% yield). mp 189-190 °C · ¹H NMR (400 MHz, CDCl₃) δ 10.88 (bs, 1H), 8.98 – 8.86 (m, 1H), 8.17 (d, *J* = 8.1 Hz, 1H), 8.05 – 7.85 (m, 4H), 7.69 – 7.39 (m, 6H), 6.88 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.58, 153.01, 149.44, 136.92, 136.01, 135.88, 134.47, 133.34, 133.26, 128.50, 128.37, 128.29, 128.23, 127.93, 127.04, 126.94, 126.48, 124.24, 123.45, 123.26, 120.63, 117.14; HRMS(EI) Calcd for C₂₂H₁₄N₂O [M⁺]: 322.1106, Found 322.1102; IR (KBr) v_{max} (cm⁻¹) : 3350, 1663, 1464, 1030, 828, 749.

4-(Naphthalen-1-yl)-1,10-phenanthrolin-2(1H)-one (3q):

A mixture of the **2q** (64.9 mg, 0.2 mmol) and DDQ (136.2 mg, 0.6 mmol) in toluene (2 mL) was stirred refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3q** as a yellow solid (46.9 mg, 73% yield). mp 206-207 °C . ¹H NMR (400 MHz, CDCl₃) δ 10.95 (bs, 1H), 8.95 (d, *J* = 4.3 Hz, 1H), 8.15 (dd, *J* = 8.2 and 1.6 Hz, 1H), 7.99 (dd, *J* = 16.2 and 8.2 Hz, 2H), 7.69 – 7.45 (m, 5H), 7.38 (t, J = 7.5 Hz, 1H), 7.31 (d, J = 8.9 Hz, 1H), 7.08 (d, *J* = 8.8 Hz, 1H), 6.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.75, 152.09, 149.50, 137.00, 136.09, 135.50, 134.65, 133.63, 131.47, 129.37, 128.59, 128.40, 126.92, 126.83, 126.50, 125.83, 125.56, 124.66, 124.42, 123.47, 120.69, 118.26; HRMS(EI) Calcd for C₂₂H₁₄N₂O [M⁺]: 322.1106, Found 322.1098; IR (KBr) v_{max} (cm⁻¹) : 3443, 1656, 1464, 1372, 781, 653.

6-Chloro-4-phenyl-1,10-phenanthrolin-2(1H)-one (3v):

A mixture of the **2v** (92.6 mg, 0.3 mmol) and DDQ (204.3 mg, 0.9 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3v** as a yellow solid (68.5 mg, 74% yield). mp 130-132 °C · ¹H NMR (600 MHz, CDCl₃) δ 10.83 (bs, 1H), 8.99 (d, *J* = 3.4 Hz, 1H), 8.60 (dd, *J* = 8.4 and 1.5 Hz, 1H), 7.73 – 7.67 (m, 2H), 7.61 – 7.44 (m, 5H), 6.81 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 161.36, 152.25, 150.03, 137.44, 136.42, 135.03, 133.47, 129.37, 129.12, 128.88, 126.43, 124.35, 124.15, 123.85, 123.71, 117.07; HRMS(EI) Calcd for C₁₈H₁₁N₂OC1 [M⁺]: 306.0560, Found 306.0575; IR (KBr) v_{max} (cm⁻¹) : 3441, 1670, 1461, 1386, 748, 698.

6-Bromo-4-phenyl-1,10-phenanthrolin-2(1H)-one (3w):

A mixture of the **2w** (92.6 mg, 0.3 mmol) and DDQ (204.3 mg, 0.9 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3w** as a yellow solid (68.5 mg, 74% yield). mp 180-182 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.82 (bs, 1H), 8.94 (d, *J* = 4.2 Hz, 1H), 8.55 (dd, *J* = 8.5 and 1.5 Hz, 1H), 7.87 (s, 1H), 7.73 – 7.42 (m, 6H), 6.80 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.29, 152.08, 149.98, 137.43, 136.40, 135.98, 135.60, 129.36, 129.12, 128.88, 127.54, 127.36, 124.39, 123.86, 117.69, 114.09; HRMS(EI) Calcd for C₁₈H₁₁N₂OBr [M⁺]: 350.0055, Found 350.0050; IR (KBr) v_{max} (cm⁻¹) : 3450, 1676, 1659, 1385, 748, 698.

6-Methoxy-4-phenyl-1,10-phenanthrolin-2(1H)-one (3x):

A mixture of the 2x (30.4 mg, 0.1 mmol) and DDQ (68.1 mg, 0.3 mmol) in toluene (2 mL) was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 30 mL), dried over anhydrous

Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3x** as a yellow solid (21.0 mg, 70% yield). mp 150-151 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.70 (bs, 1H), 8.91 (d, *J* = 4.3 Hz, 1H), 8.56 (d, *J* = 8.2 Hz, 1H), 7.64 – 7.40 (m, 6H), 6.80 (d, *J* = 18.6 Hz, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.25, 152.59, 149.86, 149.70, 137.53, 137.33, 131.29, 130.67, 129.03, 128.91, 128.80, 123.45, 122.82, 122.02, 116.80, 100.29, 55.79; HRMS(EI) Calcd for C₁₉H₁₄N₂O₂ [M⁺]: 302.1055, Found 302.1059; IR (KBr) v_{max} (cm⁻¹) : 3440, 1656, 1606, 1124, 1102, 613.

3,6-Dibromo-4-phenyl-1,10-phenanthrolin-2(1H)-one (9):

A solution of Bromine (119.0 mg, 0.296 mmol) in bromobenzene (1 mL) was added dropwise to a solution of **2a** (204.0 mg, 0.74 mmol) in bromobenzene (3 mL) at room temperature. The reaction mixture was stirred at 160 °C for 12 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum, diluted with DCM (50 mL), washed with aq. NH4OH (30 mL) and brine, dried over anhydrous Na₂SO4, and concentrated. Purification by flash chromatography (Silica gel, DCM as eluent) afforded the product **9** as a yellow solid (276.7 mg, 87% yield). mp 225-226 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.96 (bs, 1H), 8.93 (d, *J* = 3.5 Hz, 1H), 8.50 (d, *J* = 7.7 Hz, 1H), 7.68 (dd, *J* = 8.5 and 4.2 Hz, 1H), 7.64 – 7.50 (m, 3H), 7.42 (s, 1H), 7.32 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.58, 151.20, 150.24, 137.00, 136.44, 136.02, 133.78, 129.28, 129.17, 128.53, 127.58, 127.42, 124.56, 121.94, 118.51, 114.64; HRMS(EI) Calcd for C₁₈H₁₀N₂OBr₂ [M⁺]: 427.9160, Found 427.9147; IR (KBr) v_{max} (cm⁻¹) : 3443, 1664, 1540, 1444, 1388, 929.

General procedure for preparing unsymmetric polysubstituted 1,10-phenanthrolines:

2-Bromo-4-phenyl-1,10-phenanthroline (5a):

3a (81.7 mg, 0.3 mmol) was suspended in dry toluene (2 mL). POBr₃ (430.0 mg, 1.5 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded

the product **5a** as a yellow solid (79.9 mg, 80% yield). mp 173-175 °C . ¹H NMR (400 MHz, CDCl₃) δ 9.20 (dd, J = 4.2 and 1.5 Hz, 1H), 8.18 (dd, J = 8.0 and 1.4 Hz, 1H), 7.83 – 7.65 (m, 3H), 7.60 (dd, J = 8.0 and 4.4 Hz, 1H), 7.55 – 7.42 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 151.08, 150.93, 147.15, 145.24, 142.21, 136.60, 135.93, 129.56, 129.05, 128.85, 128.73, 127.86, 126.79, 125.96, 123.92, 123.58; HRMS(EI) Calcd for C₁₈H₁₁N₂Br [M⁺]: 334.0106, Found 334.0094; IR (KBr) v_{max} (cm⁻¹) : 3440, 1539, 1486, 1130, 869, 700.

2-Bromo-4-(p-tolyl)-1,10-phenanthroline (5b):

3b (80.0 mg, 0.28 mmol) was suspended in dry toluene (2 mL). POBr₃(400.0 mg, 1.4 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5b** as a yellow solid (64.3 mg, 67% yield). mp 171-173 °C . ¹H NMR (400 MHz, CDCl₃) δ 9.22 (dd, *J* = 4.3 and 1.7 Hz, 1H), 8.21 (dd, *J* = 8.1 and 1.6 Hz, 1H), 7.86 (d, *J* = 9.1 Hz, 1H), 7.72 (d, *J* = 9.1 Hz, 1H), 7.69 (s, 1H), 7.63 (dd, *J* = 8.1 and 4.3 Hz, 1H), 7.41 – 7.32 (m, 4H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.27, 150.96, 147.23, 145.35, 142.32, 139.16, 135.96, 133.77, 129.60, 129.56, 128.78, 127.90, 126.69, 126.14, 124.13, 123.60, 21.43; HRMS(EI) Calcd for C₁₉H₁₃N₂Br [M⁺]: 348.0262, Found 348.0264; IR (KBr) v_{max} (cm⁻¹) : 3429, 1727, 1538, 1491, 1131, 868, 733.

2-Chloro-4-(2-methoxyphenyl)-1,10-phenanthroline (5c):

3c (30.2 mg, 0.1 mmol), PCl₅(41.6 mg, 0.2 mmol) and anhydrous DCM (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred at 80 °C for 12 h. After cooling down to room temperature, the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5c** as a yellow solid (26.0 mg, 81% yield). mp 111-113 °C · ¹H NMR (400 MHz, CDCl₃) δ 9.23 (dd, J = 4.2 and 1.4 Hz, 1H), 8.22 (dd, J = 8.0 and 1.3 Hz, 1H), 7.69 (d, J = 9.0 Hz, 1H),

7.64 (dd, J = 8.0 and 4.3 Hz, 1H), 7.56 (t, J = 4.5 Hz, 2H), 7.54 – 7.48 (m, 1H), 7.30 (dd, J = 7.3 and 1.5 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 7.09 (d, J = 8.4 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.74, 151.16, 150.77, 149.18, 146.32, 145.55, 135.93, 131.24, 130.80, 128.93, 126.79, 126.24, 125.79, 125.26, 124.66, 123.47, 121.03, 111.33, 55.65; HRMS(EI) Calcd for C₁₉H₁₃N₂OCl [M⁺]: 320.0716, Found 320.0724; IR (KBr) v_{max} (cm⁻¹): 3441, 1546, 1489, 1131, 840, 736.

2-Methoxy-4-(2-methoxyphenyl)-1,10-phenanthroline (14):

Into a 25mL of round-bottomed flask was charged with **3c** (60.4 mg, 0.2 mmol) and NaHCO₃ (75.6 mg, 0.9 mmol). Then 5 mL of CH₂Cl₂ was added to the flask, followed by addition of BF₄OMe₃ (88.8 mg, 0.6 mmol). Then the reaction mixture was stirred at refluxing condition under N₂ atmosphere for 48 h. The reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by preparative TLC plate (CHCl₃: MeOH = 30 : 1 as eluent) afforded the product **14** as a yellow solid (17.8 mg, 28% yield). mp 120-121 °C · ¹H NMR (400 MHz, CDCl₃) δ 9.18 (dd, *J* = 4.2 and 1.5 Hz, 1H), 8.18 (dd, *J* = 8.0 and 1.5 Hz, 1H), 7.70 – 7.41 (m, 4H), 7.29 (dd, *J* = 7.4 and 1.5 Hz, 1H), 7.16 – 6.98 (m, 3H), 4.35 (s, 3H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.95, 156.83, 149.96, 149.01, 145.67, 144.60, 136.03, 131.24, 130.21, 128.98, 127.01, 125.02, 124.38, 123.04, 122.42, 120.89, 114.66, 111.24, 55.64, 53.98; HRMS(ESI) Calcd for C₂₀H₁₆N₂O₂ [M+H]⁺: 317.1290, Found 317.1290; IR (KBr) v_{max} (cm⁻¹) : 3441, 1591, 1561, 1365, 1210, 1020.

ÒМе

2-Chloro-4-(3-methoxyphenyl)-1,10-phenanthroline (5d):

3d (30.2 mg, 0.1 mmol), PCl₅(41.6 mg, 0.2 mmol) and anhydrous DCM (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred at 80 °C for 12 h. After cooling down to room temperature, the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5d** as a yellow solid (27.3 mg, 85% yield). mp 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.23 (d, *J*

= 3.0 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 9.1 Hz, 1H), 7.73 (d, J = 9.1 Hz, 1H), 7.65 (dd, J = 8.0 and 4.3 Hz, 1H), 7.58 (s, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.15 – 6.95 (m, 3H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.92, 151.62, 151.17, 150.92, 146.68, 145.33, 138.20, 136.07, 130.02, 128.90, 126.70, 125.85, 124.32, 123.99, 123.68, 122.01, 115.28, 114.58, 55.58; HRMS(EI) Calcd for C₁₉H₁₃N₂OCl [M⁺]: 320.0716, Found 320.0718; IR (KBr) v_{max} (cm⁻¹) : 3441, 1547, 1488, 1230, 1132, 836.

2-Chloro-4-(4-methoxyphenyl)-1,10-phenanthroline (5e):

3e (30.2 mg, 0.1 mmol), PCl₅(41.6 mg, 0.2 mmol) and anhydrous DCM (2 ml) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred at 80 °C for 12 h. After cooling down to room temperature, the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5e** as a yellow solid (25.3 mg, 79% yield). mp 114-115 °C . ¹H NMR (400 MHz, CDCl₃) δ 9.21 (d, *J* = 2.9 Hz, 1H), 8.20 (d, *J* = 7.1 Hz, 1H), 7.88 (d, *J* = 9.1 Hz, 1H), 7.70 (d, *J* = 9.1 Hz, 1H), 7.61 (dd, *J* = 8.0 and 4.3 Hz, 1H), 7.53 (s, 1H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.06 (d, *J* = 8.5 Hz, 2H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.37, 151.47, 151.16, 150.86, 146.77, 145.41, 135.91, 130.97, 129.08, 128.80, 126.48, 125.93, 124.27, 123.97, 123.55, 114.39, 55.54; HRMS(ESI) Calcd for C₁₉H₁₃N₂OCl [M⁺]: 321.0795, Found 321.0793; IR (KBr) v_{max} (cm⁻¹) : 3442, 1608, 1543, 1494, 1248, 838.

2-Methoxy-4-(4-methoxyphenyl)-1,10-phenanthroline (15):

Into a 25mL of round-bottomed flask was charged with **3e** (30.2 mg, 0.1 mmol). Then 1 mL of CH₂Cl₂ was added to the flask, followed by addition of BF₄OMe₃ (74.0 mg, 0.5 mmol). Then the reaction mixture was stirred at refluxing condition under N₂ atmosphere for 48 h. The reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by preparative TLC plate (CHCl₃: MeOH = 30 : 1 as eluent) afforded the product **15** as a yellow solid (8.6 mg, 27% yield). mp 116-118 °C · ¹H NMR (400 MHz, CDCl₃) δ 9.18 (dd, *J* = 4.3 and 1.6 Hz, 1H), 8.22 (dd, *J* = 8.1 and 1.6 Hz, 1H), 7.86 (d, *J* = 9.0 Hz, 1H), 7.65 – 7.54 (m, 2H),
7.48 – 7.42 (m, 2H), 7.10 – 7.04 (m, 3H), 4.35 (s, 3H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.96, 160.01, 151.49, 150.13, 145.62, 145.21, 136.16, 130.91, 130.44, 128.98, 124.55, 123.80, 123.29, 122.65, 114.21, 113.83, 55.56, 54.04; HRMS(EI) Calcd for C₂₀H₁₆N₂O₂ [M⁺]: 316.1212, Found 316.1212; IR (KBr) v_{max} (cm⁻¹) : 3441, 1614, 1591, 1364, 1213, 835.

4-(Benzo[d][1,3]dioxol-5-yl)-2-chloro-1,10-phenanthroline (5f):

3f (31.6 mg, 0.1 mmol), PCl₅(41.6 mg, 0.2 mmol) and anhydrous DCM (2 ml) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred at 80 °C for 12 h. After cooling down to room temperature, the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5f** as a yellow solid (25.9 mg, 77% yield). mp 192-194 °C . ¹H NMR (600 MHz, CDCl₃) δ 9.27 (dd, *J* = 4.3 and 1.6 Hz, 1H), 8.28 (dd, *J* = 8.0 and 1.6 Hz, 1H), 7.95 (d, *J* = 9.1 Hz, 1H), 7.78 (d, *J* = 9.1 Hz, 1H), 7.69 (dd, *J* = 8.0 and 4.4 Hz, 1H), 7.58 (s, 1H), 7.01 (s, 3H), 6.11 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 151.38, 151.27, 150.88, 148.54, 148.23, 146.65, 145.21, 136.26, 130.54, 128.90, 126.64, 125.98, 124.47, 124.03, 123.74, 123.71, 110.11, 108.90, 101.76; HRMS(ESI) Calcd for C₁₉H₁₂N₂O₂Cl [M+H]⁺: 335.0587, Found 335.0587; IR (KBr) v_{max} (cm⁻¹) : 3441, 1630, 1488, 1251, 1230, 1036.

2-Bromo-4-(3-fluorophenyl)-1,10-phenanthroline (5g):

3g (61.3 mg, 0.21 mmol) was suspended in dry toluene (2 mL). POBr₃ (303.0 mg, 1.01 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5g** as a yellow solid (73.7 mg, 99% yield). mp 203-205 °C . ¹H NMR (400 MHz, CDCl₃) δ 9.25 (dd, *J* = 4.3 and 1.7 Hz, 1H), 8.24 (dd, *J* = 8.1 and 1.7 Hz, 1H), 7.78 (dd, *J* = 14.3 and 9.12 Hz, 2H), 7.71 (s, 1H), 7.66 (dd, *J* = 8.1 and 4.3 Hz, 1H),

7.59 – 7.49 (m, 1H), 7.33 – 7.18 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.80 (d, $J_{c-f} = 246.8$ Hz), 151.12, δ 149.59 (d, $J_{c-f} = 1.9$ Hz), 147.22, 145.21, 142.18, δ 138.67 (d, $J_{c-f} = 7.8$ Hz), 136.02, δ 130.64 (d, $J_{c-f} = 8.3$ Hz), 128.81, 127.79, 127.19, 125.70, δ 125.42 (d, $J_{c-f} = 3.1$ Hz), 123.76, 123.53, δ 116.73 (d, $J_{c-f} = 22.3$ Hz), δ 116.11 (d, $J_{c-f} = 20.9$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -111.74; HRMS(EI) Calcd for C₁₈H₁₀N₂FBr [M⁺]: 352.0011, Found 352.0008; IR (KBr) v_{max} (cm⁻¹) : 3433, 1728, 1545, 1480, 1126, 796.

2-Bromo-4-(4-fluorophenyl)-1,10-phenanthroline (5h):

3h (67.0 mg, 0.23 mmol) was suspended in dry toluene (2 mL). POBr₃ (330.8 mg, 1.15 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5h** as a yellow solid (60.9 mg, 75% yield). mp 197-199 °C . ¹H NMR (400 MHz, CDCl₃) δ 9.23 (dd, *J* = 4.3 and 1.7 Hz, 1H), 8.22 (dd, *J* = 8.1 and 1.7 Hz, 1H), 7.76 (dd, *J* = 14.8 and 9.1 Hz, 2H), 7.68 (s, 1H), 7.64 (dd, *J* = 8.1 and 4.4 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.30 – 7.20 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.30 (d, *J*_{c-f} = 248.0 Hz), 151.12, 150.03, 147.25, 145.28, 142.27, 136.02, 132.66 (d, *J*_{c-f} = 3.5 Hz), 131.46 (d, *J*_{c-f} = 8.2 Hz), 128.81, 127.97, 127.06, 126.00, 123.74, 123.67, 116.09 (d, *J*_{c-f} = 21.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -112.02; HRMS(EI) Calcd for C₁₈H₁₀N₂FBr [M⁺]: 352.0011, Found 352.0013; IR (KBr) v_{max} (cm⁻¹) : 3441, 1602, 1541, 1492, 1225, 1131, 837.

2-Bromo-4-(2-chlorophenyl)-1,10-phenanthroline (5i):

3i (15.3 mg, 0.05 mmol) was suspended in dry toluene (2 mL). POBr₃ (71.7 mg, 0.25 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5i** as a yellow solid (14.2 mg, 78% yield). mp 192-193 °C . ¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, *J* = 4.3 Hz, 1H), 8.28 (d, *J* = 8.0 Hz, 1H), 7.82 – 7.64 (m, 3H),

7.62 – 7.32 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 150.80, 148.50, 146.63, 144.91, 142.14, 136.59, 135.40, 133.31, 131.29, 130.63, 130.14, 129.06, 128.47, 127.25, 127.14, 126.43, 124.13, 123.85; HRMS(EI) Calcd for C₁₈H₁₀N₂ClBr [M⁺]: 367.9716, Found 367.9709; IR (KBr) v_{max} (cm⁻¹) : 3441, 1619, 1543, 1468, 1126, 836.

2-Bromo-4-(4-chlorophenyl)-1,10-phenanthroline (5j):

3j (61.0 mg, 0.20 mmol) was suspended in dry toluene (2 mL). POBr₃ (286.7 mg, 1.00 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5j** as a yellow solid (50.0 mg, 67% yield). mp 219-220 °C . ¹H NMR (400 MHz, CDCl₃) δ 9.23 (dd, *J* = 4.3 and 1.7 Hz, 1H), 8.22 (dd, *J* = 8.1 and 1.7 Hz, 1H), 7.80 – 7.72 (m, 2H), 7.70 – 7.61 (m, 2H), 7.56 – 7.50 (m, 2H), 7.47 – 7.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.14, 149.82, 147.25, 145.25, 142.25, 136.05, 135.48, 135.07, 130.95, 129.23, 128.83, 127.82, 127.15, 125.82, 123.79, 123.57; HRMS(EI) Calcd for C₁₈H₁₀N₂ClBr [M⁺]: 367.9716, Found 367.9697; IR (KBr) v_{max} (cm⁻¹) : 3441, 1630, 1539, 1486, 1133, 1059, 836.

2-Bromo-4-(2-bromophenyl)-1,10-phenanthroline (5k):

3k (35.1 mg, 0.10 mmol) was suspended in dry toluene (2 mL). POBr₃ (143.0 mg, 0.50 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product**5k** as a yellow solid (38.0 mg, 92% yield). mp 190-191 °C · ¹H NMR (400 MHz, CDCl₃) δ 9.28 – 9.18 (m, 1H), 8.29 – 8.14 (m, 1H), 7.84 – 7.58 (m, 6H), 7.46 – 7.36 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.16, 149.33, 147.22, 145.21, 142.19, 138.63, 136.05, 132.41, 132.19, 130.45, 128.83, 128.28, 127.83, 127.28, 125.70, 123.79, 123.48, 123.01; HRMS(EI) Calcd for C₁₈H₁₀N₂Br₂ [M⁺]: 411.9211, Found 411.9214; IR (KBr) v_{max} (cm⁻¹) : 3440, 1620, 1542, 1129, 1059, 870, 833.

2-Bromo-4-(3-bromophenyl)-1,10-phenanthroline (5l):

31 (70.4 mg, 0.20 mmol) was suspended in dry toluene (2 mL). POBr₃ (286.7 mg, 1.00 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **51** as a yellow solid (53.2 mg, 64% yield). mp 233-235 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.22 (d, *J* = 3.3 Hz, 1H), 8.23 (d, *J* = 7.6 Hz, 1H), 7.84 – 7.57 (m, 6H), 7.40 (d, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.96, 149.30, 147.00, 144.94, 142.10, 138.52, 136.23, 132.34, 132.16, 130.42, 128.81, 128.24, 127.79, 127.22, 125.67, 123.81, 123.48, 122.96; HRMS(EI) Calcd for C₁₈H₁₀N₂Br₂ [M⁺]: 411.9211, Found 411.9216; IR (KBr) v_{max} (cm⁻¹) : 3442, 1631, 1543, 1473, 1129, 1060.

2-Bromo-4-(4-bromophenyl)-1,10-phenanthroline (5m):

3m (7.1 mg, 0.02 mmol) was suspended in dry toluene (1 mL). POBr₃ (28.6 mg, 0.10 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5m** as a yellow solid (5.2 mg, 63% yield). mp 222-224 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.30 – 9.20 (m, 1H), 8.27 – 8.21 (m, 1H), 7.73 – 7.56 (m, 6H), 7.42 – 7.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.11, 149.84, 147.21, 145.18, 142.26, 136.15, 135.55, 132.21, 131.22, 128.87, 127.78, 127.18, 125.77, 123.83, 123.69, 123.60; HRMS(EI) Calcd for C₁₈H₁₀N₂Br₂ [M⁺]: 411.9211, Found 411.9221; IR (KBr) v_{max} (cm⁻¹) : 3441, 1622, 1538, 1486, 1133, 834.

2-(2-Chloro-1,10-phenanthrolin-4-yl)phenyl acetate (5n):

3n (16.5 mg, 0.05 mmol), PCl₅ (31.2 mg, 0.15 mmol) and anhydrous DCM (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred at 80 °C for 12 h. After cooling down to room temperature, the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5n** as a yellow solid (12.4 mg, 71% yield). mp 93-95 °C · ¹H NMR (400 MHz, CDCl₃) δ 9.23 (dd, *J* = 4.3 and 1.5 Hz, 1H), 8.24 (dd, *J* = 8.1 and 1.4 Hz, 1H), 7.73 (d, *J* = 9.1 Hz, 1H), 7.66 (dd, *J* = 8.1 and 4.3 Hz, 1H), 7.63 – 7.52 (m, 3H), 7.47 – 7.39 (m, 2H), 7.30 (d, *J* = 8.2 Hz, 1H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.97, 151.08, 151.00, 148.19, 147.47, 146.43, 145.30, 136.14, 131.18, 130.64, 129.89, 129.01, 126.88, 126.54, 126.16, 124.93, 123.98, 123.75, 123.33, 20.61; HRMS(EI) Calcd for C₂₀H₁₃N₂O₂Cl [M⁺]: 348.0666, Found 348.0671; IR (KBr) v_{max} (cm⁻¹) : 3441, 1766, 1547, 1489, 1188, 838.

4-(2-Chloro-1,10-phenanthrolin-4-yl)phenyl acetate (50):

3o (33.0 mg, 0.1 mmol), PCl₅(41.6 mg, 0.2 mmol) and anhydrous DCM (2 ml) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred at 80 °C for 12 h. After cooling down to room temperature, the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5o** as a yellow solid (21.6 mg, 62% yield). mp 153-155 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.26 (dd, J = 4.3, 1.7 Hz, 1H), 8.27 (dd, J = 8.0 and 1.6 Hz, 1H), 7.89 (d, J = 9.1 Hz, 1H), 7.78 (d, J = 9.1 Hz, 1H), 7.69 (dd, J = 8.0 and 4.3 Hz, 1H), 7.60 (s, 1H), 7.56 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.55, 151.39, 151.23, 151.07, 150.79, 146.77, 145.35, 136.11, 134.46, 130.85, 128.93, 126.91, 125.79, 124.50, 123.80, 122.30, 21.37; HRMS(EI) Calcd for C₂₀H₁₃N₂O₂Cl [M⁺]: 348.0666, Found 348.0670; IR (KBr) ν_{max} (cm⁻¹) : 3440, 1752, 1546, 1493, 1201, 839.

2-Bromo-4-(naphthalen-2-yl)-1,10-phenanthroline (5p):

3p (96.7 mg, 0.3 mmol) was suspended in dry toluene (3 mL). POBr₃ (430.0 mg, 1.5 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5p** as a yellow solid (86.1 mg, 74% yield). mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.24 – 9.14 (m, 1H), 8.15 (d, *J* = 7.9 Hz, 1H), 7.99 – 7.81 (m, 4H), 7.81 – 7.43 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 150.97, 150.86, 147.07, 145.13, 142.15, 135.89, 133.90, 133.10, 133.05, 128.97, 128.66, 128.47, 128.24, 127.97, 127.82, 127.09, 126.96, 126.87, 126.81, 126.00, 123.88, 123.55. HRMS(EI) Calcd for C₂₂H₁₃N₂Br [M⁺]: 384.0262, Found 384.0259; IR (KBr) v_{max} (cm⁻¹) : 3441, 1620, 1564, 1541, 1489, 1125, 863.

2-Bromo-4-(naphthalen-1-yl)-1,10-phenanthroline (5q):

3q (96.7 mg, 0.3 mmol) was suspended in dry toluene (3 mL). POBr₃ (430.0 mg, 1.5 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5q** as a yellow solid (95.5 mg, 83% yield). mp 93-95 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.25 (dd, *J* = 4.3 and 1.8 Hz, 1H), 8.15 (dd, *J* = 8.1 and 1.8 Hz, 1H), 8.01 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H) 7.78 (s, 1H), 7.70 – 7.39 (m, 5H), 7.39 – 7.20 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.82, 149.86, 146.69, 145.07, 142.15, 135.88, 133.91, 133.34, 131.42, 129.35, 128.79, 128.75, 128.42, 127.47, 127.16, 126.82, 126.78, 126.34, 125.39, 125.22, 124.21, 123.51; HRMS(EI) Calcd for C₂₂H₁₃N₂Br [M⁺]: 384.0262, Found 384.0270; IR (KBr) v_{max} (cm⁻¹) : 3427, 1563, 1540, 1489, 1127, 778.

2-Bromo-6-chloro-4-phenyl-1,10-phenanthroline (5v):

3v (30.7 mg, 0.1 mmol) was suspended in dry toluene (1 mL). POBr₃ (143.4 mg, 0.5 mmol) was added. The reaction mixture was vigorously stirred at 100 °C for 12 h under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5v** as a yellow solid (31.4 mg, 85% yield). mp 205-207 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.26 (dd, *J* = 4.4 and 1.7 Hz, 1H), 8.63 (dd, *J* = 8.3 and 1.7 Hz, 1H), 7.90 (s, 1H), 7.78 – 7.67 (m, 2H), 7.62 – 7.43 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 151.53, 150.39, 146.17, 145.68, 142.49, 136.05, 133.27, 130.69, 129.52, 129.37, 129.11, 128.51, 127.04, 125.75, 124.14, 123.35; HRMS(EI) Calcd for C₁₈H₁₀N₂ClBr [M⁺]: 367.9716, Found 367.9710; IR (KBr) v_{max} (cm⁻¹) : 3441, 1631, 1601, 1540, 1488, 1388, 1131, 879.

2,6-Dibromo-4-phenyl-1,10-phenanthroline (5w):

In a 25 mL round-bottomed flask was placed substrate **3w** (25.0 mg, 0.07 mmol) and POBr₃ (500 mg). Then the reaction mixture was stirred at 80 °C for 24 h. The reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 4 : 1) afforded the product **5w** as a yellow solid (24.0 mg, 83% yield). mp 278-280 °C.¹H NMR (400 MHz, CDCl₃) δ 9.27 (dd, *J* = 4.3 and 1.6 Hz, 1H), 8.65 (dd, *J* = 8.3 and 1.6 Hz, 1H), 8.16 (s, 1H), 7.80 – 7.71 (m, 2H), 7.63 – 7.47 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 151.65, 150.37, 146.65, 145.74, 142.71, 136.09, 136.06, 129.60, 129.45, 129.19, 128.64, 128.22, 127.32, 126.36, 124.50, 121.59; HRMS(ESI) Calcd for C₁₈H₁₁N₂Br₂ [M+H]⁺: 412.9289, Found 412.9282; IR (KBr) v_{max} (cm⁻¹) : 3440, 1631, 1597, 1538, 1487, 1129, 878, 701.

2-Chloro-6-methoxy-4-phenyl-1,10-phenanthroline (5x):

3x (15.1 mg, 0.05 mmol), PCl₅ (20.8 mg, 0.1 mmol) and anhydrous DCM (2 ml) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred at 80 °C for 12 h. After cooling down to room temperature, the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5x** as a yellow solid (12.3 mg, 83% yield). mp 185-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.23 (dd, J = 4.2 and 1.5 Hz, 1H), 8.66 – 8.62 (m, 1H), 7.75 – 7.45 (m, 7H), 7.02 (s, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.17, 151.17, 150.12, 148.50, 145.73, 143.02, 137.28, 130.85, 129.25, 128.89, 126.30, 124.41, 123.52, 123.11, 98.47, 55.68; HRMS(EI) Calcd for C₁₉H₁₃N₂OCl [M⁺]: 320.0716, Found 320.0706; IR (KBr) v_{max} (cm⁻¹) : 3443, 1619, 1547, 1397, 1259, 1114.

3,6-Dibromo-2-chloro-4-phenyl-1,10-phenanthroline (10):

In a 25 mL of round-bottomed flask was placed substrate **9** (27.2 mg, 0.063 mmol) and POCl₃(1 mL). Then the reaction mixture was refluxed for 8 h. The reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 4 : 1) afforded the product **10** as a yellow solid (25.7 mg, 91% yield). mp 273-275 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.25 (dd, *J* = 4.3 and 1.4 Hz, 1H), 8.60 (dd, *J* = 8.3 and 1.3 Hz, 1H), 7.75 (dd, *J* = 8.3 and 4.3 Hz, 1H), 7.70 – 7.53 (m, 4H), 7.37 – 7.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.83, 151.46, 151.15, 145.30, 143.76, 137.01, 136.11, 129.40, 129.13, 129.06, 128.15, 127.88, 127.60, 124.62, 122.37, 122.22; HRMS(ESI) Calcd for C₁₈H₁₀N₂ClBr₂ [M+H]⁺: 446.8899, Found 446.8892; IR (KBr) v_{max} (cm⁻¹) : 3451, 1635, 1482, 1381, 1172, 912.

6-Bromo-2-chloro-4-phenyl-1,10-phenanthroline (11):

In a 25 mL of round-bottomed flask was placed substrate **3w** (25.0 mg, 0.07 mmol) and POCl₃(1 mL). Then the reaction mixture was stirred at 80 °C for 8 h. The reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 2 : 1) afforded the product **11** as a yellow solid (21.9 mg, 85% yield). mp 185-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.26 (dd, *J* = 4.3 and 1.5 Hz, 1H), 8.64 (dd, *J* = 8.3 and 1.5 Hz, 1H), 8.16 (s, 1H), 7.76 (dd, *J* = 8.3 and 4.3 Hz, 1H), 7.67 – 7.41 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.61, 151.57, 150.97, 146.21, 145.80, 136.27, 136.02, 129.57, 129.45, 129.18, 128.26, 127.19, 126.14, 125.07, 124.46, 121.44; HRMS(ESI) Calcd for C₁₈H₁₁N₂ClBr [M+H]⁺: 368.9794, Found 368.9789; IR (KBr) v_{max} (cm⁻¹) : 3441, 1631, 1600, 1543, 1489, 1134, 885.

2-Methoxy-4-phenyl-1,10-phenanthroline (6):

5a (33.5 mg, 0.1 mmol), PdCl₂ (0.9 mg, 0.005 mmol), K₂CO₃ (41.5 mg, 0.3 mmol) and MeOH (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 80 °C in a pre-heated oil bath for 24 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **6** as a yellow solid (24.3 mg, 85% yield). mp 143-145 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.19 (dd, *J* = 4.4 and 1.8 Hz, 1H), 8.19 (dd, *J* = 8.1 and 1.8 Hz, 1H), 7.79 (d, *J* = 9.0 Hz, 1H), 7.66 – 7.41 (m, 7H), 7.07 (s, 1H), 4.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.84, 151.68, 150.12, 145.54, 145.13, 138.08, 136.10, 129.57, 128.93, 128.67, 128.54, 124.38, 123.53, 123.37, 122.63, 113.89, 54.01; HRMS(EI) Calcd for C₁₉H₁₄N₂O [M⁺]: 286.1106, Found 286.1092; IR (KBr) v_{max} (cm⁻¹) : 3441, 1619, 1590, 1557, 1460, 1367, 1217.

2-Ethoxy-4-phenyl-1,10-phenanthroline (7):

5a (16.8 mg, 0.05 mmol), PdCl₂ (0.4 mg, 0.0025 mmol), K₂CO₃ (20.7 mg, 0.15 mmol) and EtOH (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 80 °C in a pre-heated oil bath for 24 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product the product **7** as a yellow solid (12.8 mg, 85% yield). mp 87-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.18 (dd, *J* = 4.4 and 1.8 Hz, 1H), 8.20 (dd, *J* = 8.1 and 1.8 Hz, 1H), 7.80 (d, *J* = 9.0 Hz, 1H), 7.64 – 7.44 (m, 7H), 7.07 (s, 1H), 4.85 (q, *J* = 7.1 Hz, 2H), 1.52 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.68, 151.62, 150.11, 145.60, 145.22, 138.18, 136.11, 129.60, 128.96, 128.68, 128.53, 124.42, 123.46, 123.26, 122.61, 114.04, 62.35, 14.76, HRMS(EI) Calcd for C₂₀H₁₆N₂O [M⁺]: 300.1263, Found 300.1257; IR (KBr) v_{max} (cm⁻¹) : 3440, 1619, 1589, 1556, 1376, 1210, 706.

4-Phenyl-1,10-phenanthroline-2-carbonitrile (8):

In a 10 mL of glass tube was placed substrate **5a** (106.0 mg, 0.32 mmol), CuCN (28.3 mg, 0.32 mmol) and DMF (1 mL). After the reaction mixture was mixed well with stirring at room temperature for about 5 min, the glass tube was placed into the CEM microwave reactor and sealed with a pressure lock. The reaction mixture was stirred at 160 °C for 0.5 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. The residue was dissolved with DCM (30 mL), washed with aq. NH4OH (3 x 30 mL) and brine, dried over anhydrous Na₂SO₄, and concentrated. Purification by flash chromatography (Silica gel, CHCl₃: MeOH= 50 : 1) afforded the product **8** as a yellow solid (82.6 mg, 92% yield). mp 208-210 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.29 – 9.20 (m, 1H), 8.26 (dd, *J* = 8.0 and 3.2 Hz, 1H), 7.96 – 7.79 (m, 3H), 7.74 – 7.64 (m, 1H), 7.63 – 7.42 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 151.30, 150.35, 147.29, 145.53, 136.22, 136.17, 132.98, 129.59, 129.52, 129.46, 129.08, 128.89, 128.20, 126.64, 124.25, 123.70, 117.59; HRMS(EI) Calcd for C₁₉H₁₁N₃ [M⁺]: 281.0953, Found 281.0954; IR (KBr) v_{max} (cm⁻¹) : 3441, 1615, 1486, 1374, 843, 705.

(3aS,8aR)-2-(4-Phenyl-1,10-phenanthrolin-2-yl)-8,8a-dihydro-3aH-indeno[1,2-d] oxazole (16): In a 25mL of sealed tube was placed substrate 8 (28.1 mg, 0.10 mmol) and amino (22.4 mg, 0.15 mmol). Then 2 mL of anhydrous toluene was added to the tube, followed by addition of ZnCl₂ (1.4 mg, 0.01 mmol). The tube was tightly capped. The reaction mixture was stirred at 140 °C in a pre-heated oil bath for 48 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (CHCl₃: MeOH = 4 : 1 as eluent) afforded the product 16 as a yellow solid (31.8 mg, 77% yield). mp 258-260 °C. $[\alpha]^{25}_{D}$ +196.8 (c 1.20, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 9.37 (dd, J = 4.7 and 1.5 Hz, 1H), 8.45 (dd, J = 8.2 and 1.5 Hz, 1H), 8.25 – 8.12 (m, 2H), 8.07 – 7.88 (m, 3H), 7.71 - 7.48 (m, 5H), 7.42 - 7.23 (m, 3H), 6.12 (d, J = 7.8 Hz, 1H), 6.01 - 5.92 (m, 1H), 3.77 – 3.44 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.48, 154.54, 150.69, 141.79, 140.87, 140.54, 139.24, 138.69, 137.73, 135.64, 130.29, 129.58, 129.45, 129.38, 128.89, 128.68, 128.24, 128.20, 128.15, 126.66, 124.88, 123.93, 122.11, 90.20, 74.27, 39.16; HRMS(EI) Calcd for C₂₈H₁₉N₃O [M⁺]: 413.1528, Found 413.1522; IR (KBr) v_{max} (cm⁻¹) : 3454, 1642, 1615, 1461, 1386, 1165, 999.

6-Bromo-2-(9H-carbazol-9-yl)-4-phenyl-1,10-phenanthroline (12):

NaH (60% dispersion in mineral oil, 4.4 mg, 0.11 mmol) was added in portions at 0 °C to a stirred solution of carbazole (16.7 mg, 0.1 mmol) in DMF (2 mL). After the reaction was stirred at 0 °C for 30 min, **5w** (37.0 g, 0.1 mmol) was added to the reaction mixture. The reaction mixture was stirred at 130 °C for 24 h. Then, the reaction mixture was cooled down to ambient temperature, poured into H₂O (3 mL) and extracted with EtOAc (3 x 10 mL). The combined organic phase was dried over Na₂SO₄ and concentrated under vacuum. Purification by flash chromatography (Silica gel, CHCl₃: MeOH= 50 : 1) afforded the product **12** as a yellow solid (37.1 mg, 74% yield). mp 125-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.26 (dd, *J* = 4.3 and 1.7 Hz,

1H), 8.67 (dd, J = 8.3 and 1.7 Hz, 1H), 8.27 (d, J = 9.2 Hz, 3H), 8.13 (d, J = 7.7 Hz, 2H), 7.98 (s, 1H), 7.76 (dd, J = 8.3 and 4.3 Hz, 1H), 7.65 – 7.53 (m, 5H), 7.50 (t, J = 7.7 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.24, 151.08, 150.74, 146.53, 146.20, 139.70, 137.18, 135.81, 129.63, 129.53, 129.21, 129.16, 128.28, 127.30, 126.68, 125.22, 124.91, 124.15, 121.56, 120.34, 120.28, 119.37, 111.91; HRMS(EI) Calcd for C₃₀H₁₈N₃Br [M⁺]: 499.0684, Found 499.0699; IR (KBr) v_{max} (cm⁻¹) : 3440, 1630, 1602, 1490, 1449, 1391, 1172, 752.

9-(9H-Carbazol-9-yl)-7-phenyl-1,10-phenanthroline-5-carbonitrile (13):

In a 10 mL of glass tube was placed substrate 12 (25.0 mg, 0.05 mmol), CuCN (4.5 mg, 0.05 mmol) and DMF (1 mL). After the reaction mixture was mixed well with stirring at room temperature for about 5 min, the glass tube was placed into the CEM microwave reactor and sealed with a pressure lock. The reaction mixture was stirred at 160 °C for 0.5 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. The residue was dissolved with DCM (10 mL), washed with aq. NH4OH (3 x 10mL) and brine, dried over anhydrous Na₂SO₄, and concentrated. Purification by flash chromatography (Silica gel, CHCl₃: MeOH= 50 : 1) afforded the product 13 as a yellow solid (12.5 mg, 56% yield). mp 223-225 $^{\circ}C_{-}^{1}H$ NMR (400 MHz, CDCl₃) δ 9.35 (dd, J = 4.2 and 1.6 Hz, 1H), 8.65 (dd, J = 8.3 and 1.7 Hz, 1H), 8.43 (s, 1H), 8.35 (d, J = 8.3 Hz, 2H), 8.22 – 8.03 (m, 3H), 7.84 (dd, J =8.2 and 4.3 Hz, 1H), 7.74 – 7.58 (m, 5H), 7.51 (t, J = 7.7 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.27, 152.47, 152.08, 148.38, 145.64, 139.49, 136.56, 133.67, 132.66, 129.72, 129.66, 129.42, 126.96, 125.36, 124.61, 123.30, 122.22, 120.41, 119.22, 117.03, 112.30, 108.02, HRMS(EI) Calcd for C₃₁H₁₈N₄ [M⁺]: 446.1531, Found 446.1539; IR (KBr) v_{max} (cm⁻¹) : 3441, 1584, 1549, 2220, 1491, 1449, 1382, 751.

2-((3S,4R)-2-oxo-4-phenyl-1,2,3,4-tetrahydro-1,10-phenanthrolin-3-yl)isoindoline -1,3-dione

1y (42.1 mg, 0.1 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), AgOAc (25 mg, 0.15 mmol), NaOAc (8.2 mg, 0.1 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous

toluene (10 ml) were added in turn into a 25 ml glass sealed tube, the reaction mixture was then tightly capped and stirred for 5 minutes at room temperature for proper mixing of the reactants, then submerged into an oil bath pre-heated to 160 °C for 48 hours. After cooling to room temperature, the reaction mixture was concentrated under vacuum, use preparative TLC plate (petroleum ether : ethyl acetate = 4 : 1 as eluent) to get the product **2y** (26.5 mg, 63% yield). $[\alpha]^{25}$ D -32.6 (*c* 1.35, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 9.56 (s, 1H), 8.86 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.13 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.81 – 7.62 (m, 4H), 7.46 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.41 – 7.24 (m, 6H), 6.83 (d, *J* = 8.5 Hz, 1H), 5.52 (d, *J* = 14.4, 1H), 5.46 (d, *J* = 14.4, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.72, 164.99, 149.63, 137.71, 136.43, 136.08, 134.40, 134.15, 132.31, 131.81, 129.36, 129.25, 128.19, 127.52, 126.30, 123.69, 123.63, 123.46, 122.13, 121.46, 54.92, 45.78; HRMS(EI) Calcd for C₂₆H₁₇N₃O₂ [M⁺]: 419.1270, Found 419.1278; IR (KBr) V(cm⁻¹) : 1717, 1632, 1471, 1390, 1115.

(3S,4R)-3-amino-4-phenyl-3,4,7,8,9,10-hexahydro-1,10-phenanthrolin-2(1H)-one 2y (78 mg, 0.19 mmol) was dissolved in MeOH (3 mL) and (5%) Pd/C (19.8 mg) was added. The reaction mixture was stirred at 40 °C for 24 hours under H₂ (balloon). The reaction mixture was filtered through celite, and washed with MeOH. The MeOH solution was concentrated in vacuum and used in the next step without further purification.

In a 10 mL of glass tube was placed substrate **2a**, N₂H₄·H₂O (95 mg, 1.9 mmol) and n-BuOH (5ml). Then the mixture was stirred at 90 °C for 1 h. The mixture was cooled to room temperature and concentrated under vacuum. Purification by flash chromatography (Silica gel, eluent: CHCl₃ : MeOH = 4 : 1) to get the product **2y**' as a yellow solid (38.3 mg, 70% yield over two steps). $[\alpha]^{25}D$ -49.4 (*c* 0.75, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.49 – 7.12 (m, 5H), 6.58 (d, *J* = 7.8 Hz, 1H), 5.91 (d, *J* = 7.7 Hz, 1H), 4.02 (d, *J* = 12.4, 1H), 3.94 (d, *J* = 12.4, 1H), 3.40 – 3.31 (m, 2H), 2.73 (t, *J* = 5.9 Hz, 2H), 2.00 – 1.75 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 173.07, 139.67, 132.41, 129.39, 129.04, 127.54, 125.17, 125.14, 124.39, 122.79, 122.45, 116.80, 55.27, 50.95, 42.32, 27.26, 21.87; HRMS(EI) Calcd for C₁₈H₁₉N₃O [M⁺]: 293.1528, Found 293.1529; IR (KBr) V(cm⁻¹) : 1681, 1582, 1285, 750, 701.

2i (5.2 mg, 0.017 mmol) and AgOAc (5.6 mg, 0.034 mmol) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred for 5 minutes at room temperature. Then the reaction mixture was stirred at 160 °C in a pre-heated oil bath for 48 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 1 : 1 as eluent) afforded the product **3i** as a yellow solid (1.3 mg, 26% yield) with recovered starting material **2i** (3.1 mg, 60%).

2i (5.6 mg, 0.018 mmol) and Ag₂O (8.4 mg, 0.036 mmol) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred for 5 minutes at room temperature. Then the reaction mixture was stirred at 160 °C in a pre-heated oil bath for 48 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 1 : 1 as eluent) afforded the product **3i** as a yellow solid (1.8 mg, 33% yield) with recovered starting material **2i**(2.7 mg, 48%).

1a (3.3158 g, 12 mmol), Pd(OAc)₂ (269.4 mg, 1.2 mmol), AgOAc (6.0091 g, 36 mmol), DMAP (586.4 mg, 4.8 mmol) and anhydrous toluene (60 mL) were added in turn into a 150 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 48 hours. After cooling down to room temperature, DDQ (5.448 g, 24 mmol) was added into the reaction mixture. The reaction mixture was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 100 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3a** as a yellow solid (1.863 g, 57% yield).

3a (1.0892 g, 4 mmol) was suspended in dry toluene (30 mL). POBr₃ (5.7336 g, 20 mmol) was added. The reaction mixture was vigorously stirred at 110 $^{\circ}$ C for 12 h

under nitrogen atmosphere. Then the reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 1 : 1) afforded the product **5a** as a yellow solid (1.02 g, 76% yield).

1w (1.067 g, 3 mmol), Pd(OAc)₂ (67.4 mg, 0.3 mmol), AgOAc (1.502 g, 9 mmol), DMAP (146.6 mg, 1.2 mmol) and anhydrous toluene (25 mL) were added in turn into a 50 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 48 hours. After cooling down to room temperature, DDQ (2.043 g, 9mmol) was added into the reaction mixture. The reaction mixture was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 100 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by flash chromatography (Silica gel, eluent: CHCl₃/MeOH = 40/1) to get the product **3w** as a yellow solid (746 mg, 71% yield).

1w (10.67 g, 30 mmol), Pd(OAc)₂ (0.674 g, 3 mmol), AgOAc (15.02 g, 90 mmol), DMAP (1.466 g, 1.2 mmol) and anhydrous toluene (150 mL) were added in turn into a 250 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 48 hours. After cooling down to room temperature, DDQ (20.43 g, 90 mmol) was added into the reaction mixture. The reaction mixture was stirred under refluxing condition for 12 h. After cooling down to room temperature, aqueous NaOH solution (2 M) was added slowly to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ (3 x 250 mL), dried over anhydrous Na₂SO₄, and concentrated. The

residue was purified by flash chromatography (Silica gel, eluent: $CHCl_3/MeOH = 40/1$) to get the product **3w** as a yellow solid (6.9638 g, 66% yield).

In a 25 mL of round-bottomed flask was placed substrate 3w (1.054 g, 3 mmol) and POCl₃ (10 mL). Then the reaction mixture was stirred at 80 °C for 12 h. The reaction mixture was neutralized by addition of aqueous saturated sodium bicarbonate and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Purification by flash chromatography (Silica gel, eluent: petroleum ether : ethyl acetate = 2 : 1) afforded the product **11** as a yellow solid (0.6 g, 54% yield).

Mechanism Studies

Pd(OAc)₂ (112.3 mg, 0.5 mmol) was added to a solution of **1a** (138.2 mg, 0.5 mmol) in CH₃CN (4 mL). The reaction mixture was stirred at 70 °C for 4 h, and then the solvent was removed under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 1 : 2 as eluent) afforded the product **17** (179.1 mg, 85% yield) as a green powder. ¹H NMR (400 MHz, DMSO) δ 9.04 (d, *J* = 4.1 Hz, 1H), 8.96 (d, *J* = 7.6 Hz, 1H), 8.53 (d, *J* = 8.1 Hz, 1H), 7.75 – 7.35 (m, 5H), 7.28 – 7.02 (m, 3H), 3.46 (dd, *J* = 17.0 and 8.3 Hz, 2H), 3.15 (d, *J* = 7.6 Hz, 1H), 2.36 (d, *J* = 16.9 Hz, 1H), 2.08 (s, 2H); ¹³C NMR (100MHz, DMSO) δ 184.60, 151.49, 151.03, 146.22, 145.43, 139.99, 130.56, 129.54, 129.44, 128.35, 125.57, 122.63, 119.97, 119.94, 119.02, 51.53, 30.68, 2.10; HRMS(EI) Calcd for C₂₀H₁₇NOPd [M⁺]: 421.0406, Found 421.0408; IR (KBr) v_{max} (cm⁻¹) : 3441, 2918, 1602, 1499, 1462, 1389, 825.

1a (82.9 mg, 0.3 mmol), $Pd(OAc)_2$ (45.0 mg, 0.2 mmol), DMAP (48.9 mg, 0.4 mmol) and anhydrous toluene (5 mL) were added in turn into a 100 mL of round-bottomed flask. The reaction mixture was stirred at 110 °C for 24 h, and then the solvent was removed under vacuum. Purification by preparative TLC plate (dichloromethane :

ethyl acetate = 6 : 1 as eluent) afforded the product **18** (83.1 mg, 83% yield) as a orange powder. ¹H NMR (400 MHz, CDCl₃) δ 9.11 (dd, *J* = 7.9 and 1.2 Hz, 1H), 8.10 (dd, *J* = 8.3 and 1.6 Hz, 1H), 7.97 (d, *J* = 7.0 Hz, 2H), 7.63 (dd, *J* = 4.6 and 1.6 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 8.1, 1H), 7.15 (dd, *J* = 8.3 and 4.6 Hz, 1H), 7.04 – 6.86 (m, 5H), 6.42 (d, *J* = 6.8 Hz, 2H), 3.50 – 3.31 (m, 2H), 3.12 – 3.00 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 186.49, 154.09, 152.42, 150.96, 146.66, 145.55, 137.80, 129.90, 129.36, 128.22, 126.33, 122.11, 120.63, 120.51, 118.20, 107.48, 49.71, 39.36, 26.32; HRMS(ESI) Calcd for C₂₅H₂₅N₄OPd [M⁺]: 503.1063, Found 503.1053; IR (KBr) v_{max} (cm⁻¹) : 3354, 2913, 1686, 1612, 1530, 1459, 1386, 1342, 1226, 825.

18 (50.3 mg, 0.1 mmol) and anhydrous toluene (2 mL) were added into a 10 mL of glass sealed tube under N₂. The tube was then tightly capped. The reaction mixture was stirred for 5 minutes at room temperature, and then stirred at 160 $^{\circ}$ C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum and monitored by TLC and crude ¹H NMR. It indicated that there was no reaction occurred.

18 (10.1 mg, 0.02 mmol) and anhydrous toluene (2 mL) were added into a 10 mL of glass sealed tube in air. The tube was then tightly capped. The reaction mixture was stirred for 5 minutes at room temperature, and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 4 : 1 as eluent) afforded the product **1a** (1.9 mg, 35% yield), **2a** (0.9 mg, 16% yield), **4a** (1.5 mg, 27% yield).

18 (25.1 mg, 0.05 mmol), AgOAc (12.5 mg, 0.075 mmol) and anhydrous toluene (5 mL) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred for 5 minutes at room temperature, and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 4 : 1 as eluent) afforded the product **1a** (9.9 mg, 72% yield).

17 (42.2 mg, 0.1 mmol), AgOAc (25 mg, 0.15 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was then tightly capped. The reaction mixture was stirred for 5 minutes at room temperature, and then stirred at 160 °C in a pre-heated oil bath for 40 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 4 : 1 as eluent) afforded the product **2a** (7.5 mg, 27% yield), **4a** (,3.0mg, 11% yield) and **1a** (11.8 mg, 43%).

1a (27.6 mg, 0.1 mmol), 17 (6.3 mg, 0.015 mmol), AgOAc (25 mg, 0.15 mmol), and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 hours. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product the product **2a** (4.7 mg, 15% yield based on **1a** and **17**), **4a** (3.8 mg, 12% yield) and recovered starting material (18.9 mg, 60%).

1a (27.6 mg, 0.1 mmol), 18 (7.5 mg, 0.015 mmol), AgOAc (25 mg, 0.15 mmol), and anhydrous toluene (4 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 hours. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product 2a (14.2 mg, 45% yield based on 1a and 18) and recovered starting material (14.9 mg, 47%).

1a (27.6 mg, 0.1 mmol), 17 (6.3 mg, 0.015 mmol), AgOAc (25 mg, 0.15 mmol), DMAP (7.3 mg, 0.06 mmol) and anhydrous toluene (2 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 hours. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product the product 2a (19.5 mg, 62% yield based on 1a and 17), 4a (1.6 mg, 5% yield) and recovered starting material (9.5 mg, 30%).

1a (27.6 mg, 0.1 mmol), **18** (7.5 mg, 0.015 mmol), AgOAc (25 mg, 0.15 mmol), DMAP (5.5 mg, 0.045 mmol) and anhydrous toluene (4 mL) were added in turn into a 25 mL of glass sealed tube. The tube was tightly capped. The reaction mixture was stirred for 5 minutes at room temperature and then stirred at 160 °C in a pre-heated oil bath for 40 hours. After cooling down to room temperature, the reaction mixture was concentrated under vacuum. Purification by preparative TLC plate (petroleum ether : ethyl acetate = 2 : 1 as eluent) afforded the product **2a** (23.0 mg, 73% yield based on **1a** and **18**) and recovered starting material (5.0 mg, 18%).

X-ray single-crystal analysis data of compound 18 and 5a.

X-ray single-crystal analysis data of compound **18** (Summary of Data CCDC 1472966).

Figure 4. ORTEP view of compound 18.

Displacement ellipsoids are drawn at the 30% probability level.

Table 5. Cryst	al data and	structure	refinement	for comp	oound 18.
~				1	

Empirical formula	C51 H56 Cl2 N8 O5 Pd2	
Formula weight	1144.74	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Orthorhombic, P n a 21	
Unit cell dimensions	a = 25.795(4) Å alpha = 90°.	
	b = 9.1440(15) Å beta = 90°.	
	c = 21.256(4) Å gamma = 90°.	
Volume	5013.7(15) Å ³	
Z, Calculated density	4, 1.517 Mg/m ³	
Absorption coefficient	0.879 mm ⁻¹	
F(000)	2336	
Crystal size	1.46 x 0.18 x 0.10 mm	
Theta range for data collection	1.85 to 30.55° .	
Limiting indices	-35<=h<=35, -12<=k<=12, -29<=l<=26	

Reflections collected / unique	49980 / 13756 [R(int) = 0.0498]		
Completeness to theta $= 30.55$	95.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9172 and 0.3602		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	13756 / 409 / 617		
Goodness-of-fit on F^2	1.088		
Final R indices [I>2sigma(I)]	R1 = 0.0720, wR2 = 0.2088		
R indices (all data)	R1 = 0.0827, $wR2 = 0.2181$		
Absolute structure parameter	0.00		
Largest diff. peak and hole	4.795 and -2.050 e. Å ⁻³		

X-ray single-crystal analysis data of compound **5a** (Summary of Data CCDC 1472967).

Figure 4. ORTEP view of compound 5a.

Displacement ellipsoids are drawn at the 30% probability level.

Table 5. Crystal data and structure refinement for compound 5a.				
Empirical formula	C18 H11 Br N2			
Formula weight	335.20			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system, space group	Monoclinic, C 2/c			

Table 5. Crystal data and structure refinement for compound 5a.

Unit cell dimensions	a = 26.203(4) Å	$alpha = 90^{\circ}.$		
1	b = 10.6440(15) Å	beta = $106.633(2)^{\circ}$.		
	c = 30.852(4) Å	$gamma = 90^{\circ}.$		
Volume	8245(2) Å ³		
Z, Calculated density	24, 1.620	Mg/m ³		
Absorption coefficient	2.985 mm ⁻¹	2.985 mm ⁻¹		
F(000)	4032			
Crystal size	0.65 x 0.60	0.65 x 0.60 x 0.60 mm		
Theta range for data collection 1.62 to 30.16°.				
Limiting indices -36-	<=h<=36, -14<=k<=	=14, -42<=1<=42		
Reflections collected / unique 42824 / 11605 [R(int) = 0.0620]				
Completeness to theta = 30.16 95.4 %				
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.2675 and	0.2675 and 0.2472		
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	11605 / 0 / 568	11605 / 0 / 568		
Goodness-of-fit on F^2	1.022			
Final R indices [I>2sigma(I)]	R1 = 0.0469, wR2 = 0.0980			
R indices (all data)	R1 = 0.0794,	R1 = 0.0794, $wR2 = 0.1102$		
Largest diff. peak and hole	1.334 and -1.2	1.334 and -1.210 e. Å ⁻³		

References

1. Sun, W.-W.; Cao, P.; Mei, R.-Q.; Li, Y.; Ma, Y.-L.; Wu, B. Org. Lett. 2014, 16, 480-483.

2. Piscitelli, F.; Regina, G. L.; Silvestri, R. Org. Prep. Proced. Int. 2008, 40, 204-208.

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of compounds

¹H NMR spectrum (400 MHz) of compound **1t** in CDCl₃

¹H NMR spectrum (400 MHz) of compound **2g** in CDCl₃

⁰ ¹H NMR (400 MHz, CDCl₂)

 ^{13}C NMR spectrum (100 MHz) of compound 3e in CDCl_3

¹H NMR spectrum (400 MHz) of compound **3f** in CDCl₃

 ^{13}C NMR spectrum (100 MHz) of compound 3f in CDCl_3

¹H NMR spectrum (400 MHz) of compound **3g** in CDCl₃

 ^{13}C NMR spectrum (100 MHz) of compound 3g in CDCl_3

164.0138 161.315 161.3215 161.3215 161.3215 161.3215 161.3215 161.3215 139.0433 139.0433 139.0433 139.0433 139.0433 139.0435 124.7092 1124.7092 1124.7092 1124.7092 1124.7092 1124.7092 1124.7092 1124.7092 1125.31313 116.15334 116.15334 116.15334 116.1532 1

¹H NMR spectrum (400 MHz) of compound **3i** in CDCl₃

¹H NMR (400 MHz, CDCl₃)

¹H NMR spectrum (400 MHz) of compound **3j** in CDCl₃

¹H NMR spectrum (400 MHz) of compound **3k** in CDCl₃

fl (ppm)

f1 (ppm)

 ^{13}C NMR spectrum (100 MHz) of compound 3v in CDCl_3

 ^{13}C NMR spectrum (100 MHz) of compound 5a in CDCl_3

¹H NMR spectrum (400 MHz) of compound **5c** in CDCl₃

90 80 fl (ppm)

¹H NMR spectrum (400 MHz) of compound **5g** in CDCl₃

¹³C NMR spectrum (100 MHz) of compound **5g** in CDCl₃

¹H NMR spectrum (400 MHz) of compound 5i in CDCl₃

¹H NMR spectrum (400 MHz) of compound 5j in CDCl₃

¹³C NMR spectrum (100 MHz) of compound **5j** in CDCl₃

¹H NMR spectrum (400 MHz) of compound **5k** in CDCl₃

¹³C NMR spectrum (100 MHz) of compound **5k** in CDCl₃

¹H NMR spectrum (400 MHz) of compound **5l** in CDCl₃

¹³C NMR spectrum (100 MHz) of compound **51** in CDCl₃

¹H NMR spectrum (400 MHz) of compound **5m** in CDCl₃

¹H NMR (400 MHz, CDCl₃)

¹³C NMR spectrum (100 MHz) of compound **5m** in CDCl₃

¹H NMR spectrum (400 MHz) of compound **5p** in CDCl₃

¹³C NMR spectrum (100 MHz) of compound **5p** in CDCl₃

¹³C NMR spectrum (100 MHz) of compound **5q** in CDCl₃

¹H NMR spectrum (400 MHz) of compound **5v** in CDCl₃

2	0	2	0	3	•	~	3	50	-	~	ŝ	m	•	8	-	~	~		•	
0	50	0	5	00	4	-	3	00	2	-	-	0	0	4	0	3	3	-	0	
~	9	5	5	3	~	-	-	0	50	4	3	2	-	50	4	4	0	00	50	
24	2	2	2	v	v	9	9	00	~	-	-	~	~	50	5	50	4	4	2	
															100					
0	0	0	0	8	œ	8	8	~	~		•	~	5	-	P	•	-	-	-	
1	_ L_		1	- L_	- 4	1.	- 2			11	1	-	- 1	1	1.1		- 1	- In	_	
	1.1	-	× .			SF-			-	~~~	-	_		-						

 ^{13}C NMR spectrum (100 MHz) of compound 5v in CDCl_3

¹H NMR spectrum (400 MHz) of compound **11** in CDCl₃

¹H NMR spectrum (400 MHz) of compound 6 in CDCl₃

¹H NMR spectrum (400 MHz) of compound 7 in CDCl₃

¹H NMR spectrum (400 MHz) of compound 8 in CDCl₃

100 90 f1 (ppm) Ó

¹H NMR spectrum (400 MHz) of compound 16 in CDCl₃

¹H NMR spectrum (400 MHz) of compound 12 in CDCl₃

¹H NMR spectrum (400 MHz) of compound 13 in CDCl₃

9.3572 9.3572 9.3456 9.3425 9.3425 8.6638 8.6430 8.4333 8.4333 8.4333 8.4333 8.4333 8.4333 8.4333 8.4333 8.4333 8.4333 8.4333 7.8551 7.8551 7.8551 7.4946 7.4946 7.4946 7.5338 7.4946 7.4946 7.4946 7.5338 7.2589

¹H NMR spectrum (400 MHz) of compound 17 in CDCl₃

¹H NMR spectrum (400 MHz) of compound 18 in CDCl₃
9.1211 9.1013 9.10913 9.10913 9.10913 8.10503 8.10503 9.105030

¹H NMR spectrum (400 MHz) of compound 2y in CDCl₃

8, 1181 8, 1140 9, 1173 17, 7850 77, 7850 77, 7850 77, 7850 77, 7867 77, 7567 77, 7867 77, 7867 77, 7866 78, 78666 78, 78666 78, 78666 78, 78666 78, 7

5.5397 5.5036 5.4756 5.4395 5.4395

 ^1H NMR spectrum (400 MHz) of compound 2y' in CDCl_3

