Electronic Supplementary Information

Asymmetric hydrogenation of α , β -unsaturated sulfones by a rhodium/thiourea-bisphosphine complex

Yongjie Sun, Jun Jiang, XiaoChong Guo, Jialin Wen* and Xumu Zhang*

Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, China, 518055.

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, China.

Contents

1. General remarks.	2
2. Synthesis of unsaturated sulfone substrates	3
3. General procedures for hydrogenation of unsaturated sulfones.	10
4. Linear dependence of the product ee on the ligand ee.	10
5. Characterization data for chiral sulfones	11
6. Kinetic studies	21
7. Crystal data for 2a	25
8. NMR spectra	30

1. General remarks.

All the reactions dealing with air- or moisture-sensitive compounds were carried out in a dry reaction vessel under an argon atmosphere or in an argon-filled glove box. Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers without further purification. Anhydrous solvents were purchased from J&K Chemical and degassed by bubbling argon over a period of 30 min. Purification of products was carried out by flash chromatography using silica gel (200-300 mesh). Thin layer chromatography was carried out using silica gel plates from Merck (GF254). [Rh(NBD)C1]₂ and other metal precursors were purchased from Heraeus.

¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Avance 400 MHz or on a Bruker Avance 500 MHz spectrometer with tetramethylsilane as the internal standard. Chemical shifts are reported in parts per million (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to the CDCl₃ at 7.27 ppm for ¹H NMR or 77.0 ppm for ¹³C NMR. Data is reported as: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in hertz (Hz) and signal area integration in natural numbers. ¹³C NMR analyses were recorded with ¹H decoupling. Enantiomeric excess values were determined Agilent 1290 Series HPLC instrument. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Rudolph Autopol I polarimeter at 589 nm.

2. Synthesis of unsaturated sulfone substrates

Method A^[1]:

To solution of methyl phenyl sulfone (5 mmol, 0.85 g) in THF (50 mL), cooled to -78 °C, a solution of *n*-BuLi in hexane (2.4 M, 5.5 mmol, 2.29 mL) was added. The mixture was stirred at -78 °C for 30 min before acetophenone (5.5 mmol, 0.61 mL) was added. The resulting solution was stirred at -78 °C for another 90 min and then was treated with aqueous saturated NH₄Cl (20 mL). The aqueous layer was extracted with EtOAc twice (2 × 30 mL). The combined organic layers were dried over NaSO₄, filtered and concentrated.

The crude resulting alcohol and DAMP (0.5 mmol, 66.7 mg) were dissolved in $CH_2Cl_2(30 \text{ mL})$. The mixture was cooled to 0 °C before Et_3N (10 mmol, 1.39 mL) and TFAA (5.5 mmol, 0.73 mL) were successively added. The reaction mixture was stirred at 0 °C for 30 min and was warmed up to room temperature. After stirring overnight, the mixture was hydrolyzed with aqueous saturated NH₄Cl (20 mL). The organic layer was separated and aqueous layer extracted with CH_2Cl_2 twice (2 × 20 mL). The combined layers were dried over NaSO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the sulfone **1a** as a white solid; yield: 62%, 843 mg (for 2 steps).

Method B^[2]:

Under a nitrogen atmosphere, to the solution of methyl phenyl sulfone (5 mmol, 0.85 g) in THF (50 mL), cooled to -78 °C, a solution of *n*-BuLi in hexane (2.4 M, 5.5 mmol, 2.29 mL) was added.

The resulting mixture was then stirred at 0 °C for 30 min, then cooled back to -78 °C, diethyl chlorophosphate (4.75 mmol, 0.69 mL) was added. The temperature naturally reached to rt and the mixture was stirred for another 2 h before NaH (6 mmol, 0.26 g) was added. After stirring for 1 h, methyl 4-oxo-4-phenylbutanoate (4.8 mmol, 0.81 mL) was added and the mixture stirred overnight. After quenching with NH₄Cl (20 mL), the aqueous layer was extracted with CH₂Cl₂ twice (2 × 30 mL). The combined layers were dried over NaSO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the sulfone **11** as a white solid; yield: 40%, 724 mg (for 2 steps).

(*E*)-1-methyl-4-((2-phenylprop-1-en-1-yl)sulfonyl)benzene (1a)

Synthesized with method A.

White solid, yield: 62%, 843 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.83 (m, 2H), 7.42 – 7.32 (m, 7H), 6.62 – 6.58 (m, 1H), 2.52 (d, *J* = 1.2 Hz, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.02, 144.19, 140.23, 139.27, 129.89, 129.86, 128.74, 127.80, 127.33, 126.34, 21.66, 17.19. *m/z* (ESI–MS): calc. 273.0944 [M+H]⁺, found 273.0938 [M+H]⁺.

(*E*)-1-fluoro-4-(1-tosylprop-1-en-2-yl)benzene (**1b**)

Synthesized with method A.

White solid, yield: 65%, 942 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.82 (m, 2H), 7.42 – 7.31 (m, 4H), 7.05 (t, J = 8.6 Hz, 2H), 6.56 (d, J = 1.2 Hz, 1H), 2.51 (d, J = 1.2 Hz, 3H), 2.45 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ163.64 (d, J = 250.6 Hz), 151.71, 144.29, 139.15, 136.23, 136.20, 129.93, 128.29 (d, J = 8.4 Hz), 127.77 (d, J = 1.3 Hz), 127.34, 115.78 (d, J = 21.7 Hz), 21.66, 17.24. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -110.86. *m/z* (ESI–MS): calc. 291.0850 [M+H]⁺, found 391.0843 [M+H]⁺.

(*E*)-1-chloro-4-(1-tosylprop-1-en-2-yl)benzene (1c)

Synthesized with method A.

White solid, yield: 60%, 918 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.81 (m, 2H), 7.39 – 7.31 (m, 6H), 6.58 (q, *J* = 1.2 Hz, 1H), 2.50 (d, *J* = 1.2 Hz, 3H), 2.45 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.52, 144.37, 139.03, 138.59, 135.93, 129.96, 128.96, 128.21, 127.68, 127.37, 21.67, 17.10. *m/z* (ESI–MS): calc. 307.0554 [M+H]⁺, found 307.0548 [M+H]⁺.

(*E*)-1-bromo-4-(1-tosylprop-1-en-2-yl)benzene (1d)

Synthesized with method A.

White solid, yield: 63%, 1.1g.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.28 – 7.22 (m, 2H), 6.58 (d, *J* = 1.2 Hz, 1H), 2.50 (d, *J* = 1.0 Hz, 3H), 2.45 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.59, 144.39, 139.09, 139.00, 131.93, 129.96, 128.24, 127.92, 127.37, 124.21, 21.68, 17.06. *m*/*z* (ESI–MS): calc.353.0028 [M+H]⁺, found 353.0016 [M+H]⁺.

(*E*)-1-methyl-4-((2-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl)sulfonyl)benzene (1e) Synthesized with method A.

White solid, yield: 50%, 850 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.82 (m, 2H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 6.61 (d, *J* = 1.3 Hz, 1H), 2.55 (d, *J* = 1.3 Hz, 3H), 2.46 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.28, 144.57, 143.88, 138.76, 131.57 (q, *J* = 32.8 Hz), 130.02, 129.66, 127.10 (q, *J* = 66.6 Hz), 125.73 (q, *J* = 3.7 Hz), 123.74 (q, *J* = 272.3 Hz), 21.68, 17.25. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -62.85. *m/z* (ESI–MS): calc. 341.0818 [M+H]⁺, found 341.0810 [M+H]⁺.

(*E*)-1-methyl-4-((2-(p-tolyl)prop-1-en-1-yl)sulfonyl)benzene (1f)

Synthesized with method A.

White solid, yield: 54%, 772 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.80 (m, 2H), 7.37 – 7.27 (m, 4H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.59 (d, *J* = 1.2 Hz, 1H), 2.49 (d, *J* = 1.2 Hz, 3H), 2.44 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.95, 144.07, 140.23, 139.43, 137.19, 129.85, 129.42, 127.29, 126.87, 126.26, 21.65, 21.26, 17.05. *m*/*z* (ESI–MS): calc. 287.1100 [M+H]⁺, found 287.1093 [M+H]⁺.

(*E*)-1-methyl-3-(1-tosylprop-1-en-2-yl)benzene (**1g**)

Synthesized with method A.

White solid, yield: 46%, 657 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.15 (m, 4H), 6.59 (d, *J* = 1.2 Hz, 1H), 2.50 (d, *J* = 1.2 Hz, 3H), 2.44 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.27, 144.13, 140.24, 139.34, 138.47, 130.61, 129.87, 128.62, 127.56, 127.31, 127.01, 123.46, 21.66, 21.43, 17.22. *m*/*z* (ESI–MS): calc. 287.1100 [M+H]⁺, found 287.1093 [M+H]⁺.

(*E*)-1-methyl-2-(1-tosylprop-1-en-2-yl)benzene (1h)

Synthesized with method A.

White solid, yield: 40%, 572 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.80 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.23 – 7.11 (m, 3H), 6.99 (d, *J* = 7.7 Hz, 1H), 6.25 (q, *J* = 1.3 Hz, 1H), 2.45 (s, 3H), 2.41 (d, *J* = 1.4 Hz, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.20, 144.24, 141.70, 139.18, 133.81, 130.63, 129.90, 129.74, 128.37, 127.24, 126.82, 125.94, 21.68, 19.82, 19.51. *m/z* (ESI–MS): calc. 287.1100 [M+H]⁺, found 287.1093 [M+H]⁺.

(*E*)-1-methoxy-4-(1-tosylprop-1-en-2-yl)benzene (1i)

Synthesized with method A.

White solid, yield: 68%, 1.03 g.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.41 – 7.30 (m, 4H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.58 (d, *J* = 1.1 Hz, 1H), 3.84 – 3.78 (m, 3H), 2.51 – 2.46 (m, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.07, 152.40, 144.00, 139.58, 132.10, 129.84, 127.82, 127.24, 125.81, 114.05, 55.42, 21.64, 16.91. *m/z* (ESI–MS): calc. 303.1049 [M+H]⁺, found 303.1043 [M+H]⁺.

(*E*)-1-methoxy-3-(1-tosylprop-1-en-2-yl)benzene (1j)

Synthesized with method A.

White solid, yield: 57%, 861 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.31 – 7.23 (m, 1H), 6.99 – 6.86 (m, 3H), 6.60 (d, *J* = 1.2 Hz, 1H), 3.87 – 3.77 (m, 3H), 2.50 (s, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.70, 152.91, 144.22, 141.71, 139.21, 129.90, 129.78, 127.94, 127.33, 118.73, 115.09, 112.17, 55.41, 21.66, 17.27. *m/z* (ESI–MS): calc. 303.1049 [M+H]⁺, found 303.1042 [M+H]⁺.

(*E*)-1-methoxy-2-(1-tosylprop-1-en-2-yl)benzene (1k)

Synthesized with method A.

White solid, yield: 41%, 619 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.82 (m, 2H), 7.39 – 7.27 (m, 3H), 7.07 (dd, *J* = 7.5, 1.7 Hz, 1H), 6.95 – 6.84 (m, 2H), 6.43 (q, *J* = 1.2 Hz, 1H), 3.78 (s, 3H), 2.44 (d, *J* = 1.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.34, 153.60, 143.97, 139.44, 130.65, 130.29, 129.78, 129.33, 128.72, 127.26, 120.58, 111.16, 55.47, 21.66, 18.75. *m*/*z* (ESI–MS): calc. 303.1049 [M+H]⁺, found 303.1043 [M+H]⁺.

methyl (E)-4-phenyl-5-tosylpent-4-enoate (11)

Synthesized with method B.

White solid, yield: 40%, 724 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.83 (m, 2H), 7.36 (dddd, *J* = 8.6, 5.0, 3.2, 1.5 Hz, 7H), 6.51 (s, 1H), 3.62 (s, 3H), 3.41 – 3.27 (m, 2H), 2.45 (s, 3H), 2.41 – 2.35 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.57, 155.44, 144.40, 139.01, 138.32, 129.97, 129.95, 129.07, 128.91, 127.39, 126.84, 51.76, 32.71, 25.67, 21.64. *m/z* (ESI–MS): calc. 362.1421 [M+H]⁺, found 362.1410 [M+H]⁺.

(*E*)-(1-(methylsulfonyl)prop-1-en-2-yl)benzene (1m)

Synthesized with method B.

Origin oil, yield: 31%, 31 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.38 (m, 5H), 6.55 (d, *J* = 1.3 Hz, 1H), 3.06 (s, 3H), 2.58 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.39, 139.88, 130.07, 128.85, 126.55, 126.29, 43.99, 17.29. *m*/*z* (ESI–MS): calc. 197.0631 [M+H]⁺, found 197.0629 [M+H]⁺.

(*E*)-2-(1-tosylprop-1-en-2-yl)thiophene (1n)

Synthesized with method B.

White solid, yield: 20%, 279 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ7.91 – 7.79 (m, 2H), 7.38 – 7.31 (m, 3H), 7.29 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.03 (dd, *J* = 5.1, 3.7 Hz, 1H), 6.71 (q, *J* = 1.2 Hz, 1H), 2.53 (d, *J* = 1.2 Hz, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.17, 144.14, 143.19, 139.48, 129.88, 128.35, 128.13, 127.63, 127.25, 124.58, 21.62, 16.68. *m/z* (ESI–MS): calc. 279.0508 [M+H]⁺, found 279.0501 [M+H]⁺.

(*E*)-1-(tosylmethylene)-1,2,3,4-tetrahydronaphthalene (**10**)

Synthesized with method A.

White solid, yield: 15%, 224 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.81 (m, 2H), 7.51 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.37 – 7.24 (m, 3H), 7.22 – 7.09 (m, 2H), 6.78 (t, *J* = 1.7 Hz, 1H), 3.05 (ddd, *J* = 7.3, 5.5, 1.8 Hz, 2H), 2.77 (t, *J* = 6.2 Hz, 2H), 2.43 (s, 3H), 1.82 (p, *J* = 6.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.07, 143.99, 140.31, 139.63, 132.39, 130.40, 129.79, 129.47, 127.22, 126.54, 125.08, 123.39, 29.74, 26.85, 22.25, 21.62. *m/z* (ESI–MS): calc. 299.1100 [M+H]⁺, found 299.1092 [M+H]⁺.

(*E*)-1-methoxy-4-(2-methyl-3-tosylallyl)benzene(**1p**)

Synthesized with method B.

White solid, yield: 32%, 270 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 – 7.47 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 8.6 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 6.12 (q, *J* = 1.3 Hz, 1H), 3.79 (s, 3H), 3.33 (d, *J* = 1.3 Hz, 2H), 2.43 (s, 3H), 2.08 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.67, 156.39, 143.92, 139.43, 130.19, 129.76, 128.21, 127.55, 127.12, 114.16, 55.28, 45.71, 21.62, 17.72. *m/z* (ESI–MS): calc. 316.11 , found 317.1204 [M+H]⁺.

(Z)-2-(1-phenyl-2-tosylvinyl)thiophene(1q)

Synthesized with method A.

White solid, yield: 2.9%, 100 mg.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.54 (m, 2H), 7.48 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.43 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.33 (ddd, *J* = 8.4, 6.8, 1.2 Hz, 2H), 7.28 (d, *J* = 1.2 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.07 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.87 (s, 1H), 2.39 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 147.67, 143.91, 139.85, 138.22, 136.09, 133.01, 130.43, 129.93, 129.64, 129.37, 128.50, 128.46, 127.65, 126.84, 21.60. *m/z* (ESI–MS): calc. 340.06, found 341.1661 [M+H]⁺.

3. General procedures for hydrogenation of unsaturated sulfones.

In an argon-filled glovebox, a solution of $[Rh(NBD)Cl]_2$ (6.7 mg, 0.01 mmol) and (*S*,*R*)-Zhaophos (2.1 eq.) in 2.0 ml CH₃CH₂OH was stirred at room temperature for 30 min. Sulfone (0.10 mmol) was dissolved in 0.5 mL CF₃CH₂OH in a 5-ml score-break ampule. A specified volume of the catalyst solution (0.10 ml, 1% Rh catalyst) and 0.4 mL CH₃CH₂OH were transferred by syringes to this ampule successively. This mixture was gently stirred to homogeneity. The ampule was place in a Parr autoclave which was pressurized with hydrogen gas to 60 atm H₂ afterwards. The autoclave was placed on a stir plate (600 rpm) for 48 hours at 40 °C. The hydrogen gas was carefully released in a fume hood and the reaction mixture was concentrated *in vacuo*. The residue was purified by flash chromatography (on silica, petroleum ether/ethyl acetate) to afford chiral sulfone. Enantiomeric excess was determined by HPLC on a stationary phase.

4. Linear dependence of the product ee on the ligand ee.

Hydrogenation reactions were conducted under the optimized condition with 0.10 mmol 1a and 1% catalyst. Ligand with different ee was prepared by mixing two enantiomers in a specific ratio.

ee of ligand	20	40	60	80	100
ee of product	24	38	61	85	98

5. Characterization data for chiral sulfones.

(S)-methyl-4-((2-phenylpropyl)sulfonyl)benzene (2a)

White solid, mp = 76-78 °C, 98% yield, 26.85 mg, 98% ee, $[\alpha]^{25}_{D}$ -16.80 (*c* 1.28, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 – 7.64 (m, 2H), 7.31 – 7.14 (m, 5H), 7.10 – 7.04 (m, 2H), 3.45 – 3.27 (m, 3H), 2.42 (s, 3H), 1.44 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.46, 144.16, 136.92, 129.79, 128.73, 127.90, 126.81, 126.72, 63.44, 35.07, 22.16, 21.63. *m/z* (ESI–MS): calc. 275.1100 [M+H]⁺, found 275.1092 [M+H]⁺. HPLC (Daicel Chiralpak IA, hexanes/i-PrOH = 90/10, flow rate = 0.5 mL/min, UV = 220 nm): t₁ =4.01 min, t₂ = 4.41 min.

(S)-1-fluoro-4-(1-tosylpropan-2-yl)benzene (2b)

White solid, mp = 57-58 °C, 97% yield, 28.32 mg, 96% ee, $[\alpha]^{25}_{D}$ -13.54 (*c* 0.96, MeOH). ¹H NMR (400 MHz, chloroform-*d*) δ 7.66 (d, *J* = 8.3 Hz, 2H), 7.27 (t, *J* = 4.0 Hz, 3H), 7.09 – 6.99 (m, 2H), 6.89 (t, *J* = 8.7 Hz, 2H), 3.45 – 3.25 (m, 3H), 2.42 (s, 3H), 1.40 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.61 (d, *J* = 245.1 Hz), 144.55, 139.68 (d, *J* = 3.2 Hz), 136.86, 129.79, 128.25 (d, *J* = 7.9 Hz), 127.87, 115.47 (d, *J* = 21.3 Hz), 63.46, 34.47, 22.44, 21.62. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -116.00. *m/z* (ESI–MS): calc. 293.1006 [M+H]⁺, found 293.0996 [M+H]⁺. HPLC (Daicel Chiralpak AD, hexanes/i-PrOH = 97/3, flow rate = 1.0 mL/min, UV = 220 nm): t₁ = 41.37 min, t₂ = 46.49 min.

(S)-1-chloro-4-(1-tosylpropan-2-yl)benzene (2c)

White solid, mp = 89-92 °C, 97% yield, 29.88 mg, 98% ee, $[\alpha]^{25}_{D}$ -13.46 (*c* 1.27, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 2H), 7.19 – 7.12 (m, 2H), 7.02 – 6.96 (m, 2H), 3.42 – 3.25 (m, 3H), 2.43 (s, 3H), 1.39 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.61, 142.29, 136.74, 132.56, 129.78, 128.77, 128.17, 127.86, 63.20, 34.68, 22.37, 21.63. *m/z* (ESI–MS): calc. 309.0711 [M+H]⁺, found 309.0702 [M+H]⁺. HPLC (Daicel Chiralpak IA, hexanes/i-PrOH = 70/30, flow rate = 0.5 mL/min, UV = 210 nm): t₁ = 2.48 min, t₂ = 2.77 min.

(S)-1-bromo-4-(1-tosylpropan-2-yl)benzene (2d)

White solid, mp = 94-96 °C, 65% yield, 22.88 mg, >99% ee, $[\alpha]^{25}{}_{D}$ -6.62 (*c* 1.45, MeOH).¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.31 – 7.13 (m, 4H), 7.07 (dd, *J* = 6.9, 1.9 Hz, 2H), 3.50 – 3.18 (m, 3H), 2.42 (s, 3H), 1.44 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (101 MHz,

Chloroform-*d*) δ 144.41, 144.17, 136.97, 129.76, 128.70, 127.88, 126.78, 126.70, 63.47, 35.07, 22.13, 21.60. *m/z* (ESI–MS): calc. 353.0205 [M+H]⁺, found 353.0199 [M+H]⁺. HPLC (Daicel Chiralpak IA, hexanes/i-PrOH = 90/10, flow rate = 0.5 mL/min, UV = 210 nm): t₁ = 3.84 min, t₂ = 4.16 min.

(*S*)-1-methyl-4-((2-(4-(trifluoromethyl)phenyl)propyl)sulfonyl)benzene (**2e**) White solid, mp = 71-74 °C, 98% yield, 33.52 mg, 98% ee, $[\alpha]^{25}{}_{D}$ -9.60 (*c* 1.24, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.18 (dd, *J* = 17.1, 8.0 Hz, 4H), 3.56 – 3.25 (m, 3H), 2.39 (s, 3H), 1.41 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.60, 144.62, 136.54, 129.74, 129.06 (q, *J* = 32.5 Hz), 127.55 (q, *J* = 57.9 Hz), 125.57 (q, *J* = 3.8 Hz), 124.03 (q, *J* = 271.9 Hz), 62.85, 35.26, 22.52, 21.51. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -62.55. *m/z* (ESI–MS): calc. 343.0974, found 343.0969 [M+H]⁺. HPLC (Daicel Chiralpak IA, hexanes/i-PrOH = 70/30, flow rate = 0.5 mL/min, UV = 220 nm): t₁ = 2.13 min, t₂ = 2.30 min.

(S)-1-methyl-4-((2-(p-tolyl)propyl)sulfonyl)benzene (2f)

White solid, mp = 80-81 °C, 98% yield, 28.22 mg, 98% ee, $[\alpha]^{25}_{D}$ -18.81 (*c* 1.35, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.30 – 7.23 (m, 2H), 7.03 (d, *J* = 7.9 Hz, 2H), 6.96 (d, *J* = 8.1 Hz, 2H), 3.42 – 3.22 (m, 3H), 2.42 (s, 3H), 2.28 (s, 3H), 1.41 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.38, 141.15, 136.98, 136.44, 129.74, 129.35, 127.89, 126.58, 63.54, 34.67, 22.21, 21.63, 21.00. *m/z* (ESI–MS): calc. 289.1257 [M+H]⁺, found 289.1249 [M+H]⁺. HPLC (Daicel Chiralpak AD, hexanes/i-PrOH = 97/3, flow rate = 1.0 mL/min, UV = 220 nm): t₁ = 37.56 min, t₂ = 39.82 min.

(S)-1-methyl-3-(1-tosylpropan-2-yl)benzene (2g)

Colorless oil, 97% yield, 27.93 mg, 97% ee, $[\alpha]^{25}_{D}$ -15.52 (*c* 1.45, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 – 7.64 (m, 2H), 7.29 – 7.23 (m, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.96 (ddt, *J* = 7.6, 1.8, 0.9 Hz, 1H), 6.87 (dt, *J* = 7.7, 1.5 Hz, 1H), 6.83 (d, *J* = 1.8 Hz, 1H), 3.45 – 3.25 (m, 3H), 2.41 (s, 3H), 2.25 (s, 3H), 1.47 – 1.37 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.36, 144.05, 138.28, 136.95, 129.70, 128.63, 127.89, 127.51, 127.46, 123.77, 63.41, 35.03, 22.22, 21.61, 21.37. *m/z* (ESI–MS): calc. 289.1257 [M+H]⁺, found 289.1251 [M+H]⁺. HPLC (Daicel Chiralpak AD, hexanes/i-PrOH = 97/3, flow rate = 1.0 mL/min, UV = 220 nm): t₁ = 22.71 min, t₂ = 25.91 min.

(S)-1-methyl-2-(1-tosylpropan-2-yl)benzene (2h)

White solid, mp = 57-60 °C, 53% yield (87 h), 15.26 mg, >99% ee, $[\alpha]^{25}_{D}$ -1.67 (*c* 0.36, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 – 7.62 (m, 2H), 7.36 – 7.20 (m, 2H), 7.15 – 6.93 (m, 4H), 3.77 – 3.56 (m, 1H), 3.39 – 3.23 (m, 2H), 2.41 (s, 3H), 2.24 (s, 3H), 1.41 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.47, 142.38, 136.91, 134.97, 130.64, 129.78, 127.85, 126.52, 126.46, 125.33, 63.00, 29.97, 21.63, 21.49, 19.33. *m/z* (ESI–MS): calc. 289.1257 [M+H]⁺, found 289.1250 [M+H]⁺. HPLC (Daicel Chiralpak IA, hexanes/i-PrOH = 90/10, flow rate = 0.5 mL/min, UV = 210 nm): t₁ = 3.37 min, t₂ = 4.17 min.

(S)-1-methoxy-4-(1-tosylpropan-2-yl)benzene (2i)

White solid, mp = 63-65 °C, 98% yield, 29.79 mg, 99% ee, $[\alpha]^{25}_{D}$ -15.31 (*c* 1.47, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.38 – 7.19 (m, 2H), 6.99 (d, *J* = 8.7 Hz, 2H), 6.75 (d, *J* = 8.7 Hz, 2H), 3.76 (s, 3H), 3.43 – 3.22 (m, 3H), 2.42 (s, 3H), 1.40 (d, *J* = 6.7

Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.36, 144.36, 137.01, 136.19, 129.75, 127.88, 127.70, 114.02, 63.68, 55.27, 34.31, 22.30, 21.62. *m/z* (ESI–MS): calc. 305.1206 [M+H]⁺, found 305.1199 [M+H]⁺. HPLC (Daicel Chiralpak AD, hexanes/i-PrOH = 96/4, flow rate = 1.0 mL/min, UV = 220 nm): t₁ = 45.34 min, t₂ = 52.65 min.

(S)-1-methoxy-3-(1-tosylpropan-2-yl)benzene (2j)

Colorless oil, 97% yield, 29.48 mg, 98% ee, $[\alpha]^{25}_{D}$ -23.60 (*c* 1.36, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 – 7.60 (m, 2H), 7.37 – 7.19 (m, 2H), 7.14 (t, *J* = 7.9 Hz, 1H), 6.76 – 6.62 (m, 2H), 6.61 – 6.53 (m, 1H), 3.74 (s, 3H), 3.44 – 3.24 (m, 3H), 2.42 (s, 3H), 1.42 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.72, 145.76, 144.45, 136.89, 129.76, 127.90, 119.04, 112.68, 111.83, 63.36, 55.16, 35.14, 22.09, 21.62. *m/z* (ESI–MS): calc. 305.1206 [M+H]⁺, found 305.1199 [M+H]⁺. HPLC (Daicel Chiralpak AD, hexanes/i-PrOH = 96/4, flow rate = 1.0 mL/min, UV = 220 nm): t₁ = 32.41 min, t₂ = 40.54 min.

(S)-1-methoxy-2-(1-tosylpropan-2-yl)benzene (2k)

Colorless oil, 98% yield, 29.79 mg, >99% ee, $[\alpha]^{25}_{D}$ -15.62 (*c* 1.46, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.62 (m, 2H), 7.28 – 7.21 (m, 2H), 7.17 – 7.02 (m, 2H), 6.83 (td, *J* = 7.5, 1.0 Hz, 1H), 6.75 – 6.62 (m, 1H), 3.65 (s, 3H), 3.63 – 3.51 (m, 2H), 3.38 – 3.21 (m, 1H), 2.41 (s, 3H), 1.42 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.57, 144.08, 136.89, 131.48, 129.48, 128.01, 127.95, 127.87, 120.63, 110.47, 61.65, 54.96, 30.60, 21.62, 19.80. *m/z* (ESI–MS): calc. 305.1206 [M+H]⁺, found 305.1199 [M+H]⁺. HPLC (Daicel Chiralpak AD, hexanes/i-PrOH = 96/4, flow rate = 1.0 mL/min, UV = 220 nm): t₁ = 29.66 min, t₂ = 38.68 min.

(S)-methyl-4-phenyl-5-tosylpentanoate (2l)

Colorless oil, 90% yield, 32.67 mg, >99% ee, $[\alpha]^{25}_{D}$ +10.98 (*c* 0.82, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.58 (m, 2H), 7.19 (ddd, *J* = 10.1, 8.6, 6.4 Hz, 5H), 7.04 – 6.96 (m, 2H), 3.59 (s, 3H), 3.49 – 3.34 (m, 2H), 3.23 (dtd, *J* = 10.9, 6.6, 4.3 Hz, 1H), 2.40 (s, 3H), 2.30 (dddd, *J* = 13.6, 9.5, 6.5, 4.4 Hz, 1H), 2.25 – 1.85 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.18, 144.39, 140.80, 136.76, 129.70, 128.77, 127.88, 127.52, 127.17, 62.25, 51.59, 40.07, 31.66, 31.23, 21.57. *m/z* (ESI–MS): calc. 364.1577 [M+H]⁺, found 364.1567 [M+H]⁺. HPLC (Daicel Chiralpak IB, hexanes/i-PrOH = 70/30, flow rate = 0.5 mL/min, UV = 210 nm): t₁ = 3.56 min, t₂ = 4.20 min.

(S)- (1-(methylsulfonyl)propan-2-yl)benzene (2m)

White solid, mp = 65-69 °C, 88% yield (87 h), 17.42 mg, 97% ee, $[\alpha]^{25}_{D}$ -25.13 (*c* 1.15, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.32 (m, 2H), 7.30 – 7.24 (m, 3H), 3.48 (h, *J* = 7.0 Hz, 1H), 3.37 (dd, *J* = 14.3, 7.8 Hz, 1H), 3.23 (ddd, *J* = 14.4, 6.0, 1.0 Hz, 1H), 2.47 (s, 3H), 1.47 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.52, 129.11, 127.41, 127.00, 62.46, 41.87, 35.41, 22.46. *m/z* (ESI–MS): calc. 199.0787 [M+H]⁺, found 199.0788 [M+H]⁺. HPLC (Daicel Chiralpak IC, hexanes/i-PrOH = 70/30, flow rate = 0.5 mL/min, UV = 210 nm): t₁ = 4.61 min, t₂ = 4.91 min.

(S)-2-(1-tosylpropan-2-yl)thiophene (2n)

Colorless oil, 98% yield, 29.10 mg, 97% ee, $[\alpha]^{25}_{D}$ -21.44 (*c* 1.25, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.62 (m, 2H), 7.35 – 7.27 (m, 2H), 7.09 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.84 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.75 (dt, *J* = 3.5, 1.0 Hz, 1H), 3.84 – 3.64 (m, 1H), 3.44 (dd, *J* = 14.2, 4.9 Hz, 1H), 3.31 (dd, *J* = 14.2, 8.3 Hz, 1H), 2.43 (s, 3H), 1.52 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz,

Chloroform-d) & 147.92, 144.61, 136.89, 129.86, 127.89, 126.71, 123.65, 123.64, 64.17, 30.71, 22.99, 21.63. *m/z* (ESI–MS): calc. 298.0930 [M+H]⁺, found 298.0923 [M+H]⁺. HPLC (Daicel Chiralpak IA, hexanes/i-PrOH = 90/10, flow rate = 0.5 mL/min, UV = 220 nm): $t_1 = 3.75$ min, $t_2 = 3.98$ min.

(S)-1-(tosylmethyl)-1,2,3,4-tetrahydronaphthalene (20)

White solid, mp = 102-103 °C, 91% yield, 28.85 mg, >99% ee, $[\alpha]^{25}$ -25.29 (*c* 0.34, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.12 – 6.99 (m, 3H), 6.98 – 6.92 (m, 1H), 3.55 – 3.43 (m, 1H), 3.44 – 3.19 (m, 2H), 2.82 – 2.66 (m, 2H), 2.46 (s, 3H), 2.16 - 2.05 (m, 1H), 2.00 - 1.87 (m, 1H), 1.77 (dddd, J = 13.9, 9.0, 6.8, 3.6 Hz, 2H).¹³C NMR (101 MHz, Chloroform-*d*) δ 144.68, 137.69, 137.29, 136.98, 130.00, 129.44, 128.64, 127.98, 126.49, 126.21, 62.92, 32.85, 29.11, 27.52, 21.67, 18.89. m/z (ESI-MS): calc. 318.1522 [M+H]+, found 318.1514 $[M+H]^+$. HPLC (Daicel Chiralpak IB, hexanes/i-PrOH = 90/10, flow rate = 0.5 mL/min, UV = 220 nm): t₁ = 3.27 min, t₂ = 3.93 min.

Area

Height

Area

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak RetTime Type Width

3.265 MM

3.931 MM

- | - - - - | -

[min]

---|-

1

2

Area	Height	Area	Peak	RetTime	Туре	Width
[mAU*s]	[mAU]	%	#	[min]		[min]

[min]	[mAU*s]	[mAU]	%	#	[min]		[min]	[mAU*s]	[mAU]	%
0.1010	1520.87585	250.92654	51.0237		3.261	MM	0.1003	177.26637	29.44426	100.0000
0.1215	1459.84607	200.24019	48.9763							

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

(S)-1-methoxy-4-(2-methyl-3-tosylpropyl)benzene(2p)

White solid, 84% yield, 26.72 mg, 97% ee, $[\alpha]^{25}_{D}$ 9.44 (*c* 1.25, MeOH). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.77 (d, *J* = 8.6 Hz, 1H), 3.78 (s, 3H), 3.09 (dd, *J* = 14.2, 4.5 Hz, 1H), 2.87 (dd, *J* = 14.2, 7.8 Hz, 1H), 2.68 – 2.48 (m, 2H), 2.45 (s, 3H), 2.28 (pd, *J* = 7.0, 4.5 Hz, 1H), 1.07 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.12, 144.40, 137.01, 130.83, 130.08, 129.83, 127.83, 113.79, 61.34, 55.24, 41.85, 30.62, 21.62, 19.86. *m/z* (ESI–MS): calc. 318.13, found 319.1362 [M+H]⁺. HPLC (Daicel Chiralpak IA, hexanes/i-PrOH = 95/5, flow rate = 0.5 mL/min, UV = 210 nm): t₁ = 8.82 min, t₂ = 9.56 min.

(+)-2-(1-phenyl-2-tosylethyl)thiophene(2q)

Yellow solid, 98% yield, 33.52 mg, >99% ee, $[\alpha]^{25}_{D}$ 19.28 (c 1.15, CH₃Cl). 1H NMR (600 MHz, Chloroform-d) δ 7.67 – 7.40 (m, 2H), 7.22 – 7.11 (m, 7H), 7.09 (dd, J = 5.1, 1.2 Hz, 1H), 4.85 (t, J = 7.0 Hz, 1H), 3.88 (h, J = 7.8 Hz, 2H), 2.37 (s, 3H). 13C NMR (151 MHz, Chloroform-d) δ 145.53, 144.28, 141.04, 136.56, 129.56, 128.76, 127.96, 127.58, 127.27, 126.74, 124.76, 124.63, 62.71, 41.95, 21.57. m/z (ESI–MS): calc. 342.07, found 365.0639 [M+Na]⁺. HPLC (Daicel Chiralpak IC, hexanes/i-PrOH = 70/30, flow rate = 0.5 mL/min, UV = 230 nm): t₁ = 7.00 min, t₂ = 7.41 min.

Signal 1. DADI D, Sig=250,4 Ref=500,100				Signal 1: DAD1 D, Sig=230,4 Ref=360,100										
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	7.001	BV	0.1547	237.85483	23.77395	48.6873	1	6.990	BV E	0.1483	17.45443	1.84640	0.6314	
2	7.406	VV	0.1674	250.68117	23.31941	51.3127	2	7.394	VB R	0.1661	2746.91382	254.17796	99.3686	

6. Kinetic studies

6.1 Reaction in optimized condition (CF₃CH₂OH/EtOH):

Hydrogenation reactions under pressurized condition were carried out on a Mettler-Toledo EasyMax 102 station with a 100-mL pressure vessel. Experiment procedure: The vessel was dried by a heat gun and sealed afterwards. After 3 vacuum-argon-back-fill cycles, a mixture of **1a** (3.75 mmol), zhaophos (35.9 mg) and $[Rh(NBD)Cl]_2$ (8.6 mg) in anhydrous trifluoroethanol/ethanol (1:1, v/v) was transferred into the vessel via a syringe. The vessel was pressurized with 20 atm hydrogen gas and stirred at 300 rpm. The temperature was maintained at 40°C and the IR spectra were collected with such time intervals: every 15 seconds for the first hour; every 30 seconds for the next 2h, every 2 minutes for the rest of time. The reaction was monitored by tracing the consumption of **1a** at 828 cm⁻¹ and formation of **2a** at 767 cm⁻¹. A baseline correction was applied for analysing the peak intensities. Reaction parameters were summarized as follow:

temp	total vol.	conc. 1a	conc. cat.	S/C
40 °C	15.0 mL	0.25 M	2.5*10 ⁻³ M	100

The data were manipulated guided by Blackmond's tutorial review. The raw absorption intensity data obtained from ReactIR 15 were converted to concentration (M) vs time (s).

The date were fitted to a 9th order polynomial equation using unweighted least-square fit:

$$[\mathbf{1a}] = f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5 + a_6 t^6 + a_7 t^7 + a_8 t^8 + a_9 t^6$$

The rate of consumption of 1a was obtained from the deviation of f(t):

$$v = -\frac{d[\mathbf{1a}]}{dt} = -(a_1 + 2a_2t^1 + 3a_3t^2 + 4a_4t^3 + 5a_5t^4 + 6a_6t^5 + 7a_7t^6 + 8a_8t^7 + 9a_9t^8)$$

For the formation of 2a, similar operation was performed:

$$[\mathbf{2a}] = f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5 + a_6 t^6 + a_7 t^7 + a_8 t^8 + a_9 t^9$$
$$v = \frac{d[\mathbf{2a}]}{dt} = a_1 + 2a_2 t^1 + 3a_3 t^2 + 4a_4 t^3 + 5a_5 t^4 + 6a_6 t^5 + 7a_7 t^6 + 8a_8 t^7 + 9a_9 t^8$$

Data fitting was carried out with Origin 2017TM. Plotting **1a** consumption rate $-\frac{d[\mathbf{1a}]}{dt}$ vs substrate concentration [**1a**] and **2a** formation reaction rate $\frac{d[\mathbf{2a}]}{dt}$ vs [**1a**] gave graphical reaction equations.

Fitting parameters of the two sets of data:

consumption of 1	a	formation of 2a		
a ₀	0.24038	a ₀	0.01222	
a ₁	-2.49264*10 ⁻⁵	a ₁	2.83522*10 ⁻⁵	
a ₂	1.46183*10 ⁻⁹	a ₂	-1.80638*10 ⁻⁹	
a3	-5.16157*10 ⁻¹⁴	a3	6.70572*10 ⁻¹⁴	
a4	1.12643*10 ⁻¹⁸	a4	-1.5086*10 ⁻¹⁸	
a ₅	-1.54258*10 ⁻²³	a ₅	2.1078*10-23	
a ₆	1.32326*10 ⁻²⁸	a ₆	-1.83505*10 ⁻²⁸	
a ₇	-6.89041*10 ⁻³⁴	a ₇	9.66982*10 ⁻³⁴	
a ₈	1.98908*10 ⁻³⁹	a ₈	-2.8199*10 ⁻³⁹	
a9	-2.44045*10 ⁻⁴⁵	a9	3.49084*10 ⁻⁴⁵	
R-Square(COD)	0.9997	R-Square(COD)	0.9992	

Raw data:

METTLER TOLEDO

6.2 Reaction in DCM:

The reaction was monitored by tracing the consumption of **1a** at 828 cm⁻¹ and formation of **2a** at 846 cm⁻¹. Complex was prepared by mixing ligand and metal precursor in methanol, which made the reaction solvent a mixture of MeOH/DCM = 1:14 (v/v). Data manipulation was the same with the scenario in the optimized condition.

consumption of 1	a	formation of 2a	
a ₀	0.24519	a ₀	0.0064
a1	-7.27472*10 ⁻⁶	a1	7.29611*10 ⁻⁶
a ₂	2.53566*10-10	a ₂	-2.49106*10-10
a ₃	-5.751*10 ⁻¹⁵	a ₃	5.54163*10 ⁻¹⁵
a4	7.93646*10 ⁻²⁰	a4	-7.56917*10 ⁻²⁰
a5	-6.7845*10 ⁻²⁵	a5	6.4511*10 ⁻²⁵
a ₆	3.61227*10 ⁻³⁰	a ₆	-3.44008*10 ⁻³⁰
a7	-1.16517*10 ⁻³⁵	a ₇	1.11399*10 ⁻³⁵
a ₈	2.08258*10-41	a ₈	-2.00081*10 ⁻⁴¹

a 9	-1.58197*10 ⁻⁴⁷	a 9	1.52743*10 ⁻⁴⁷
R-Square(COD)	0.9997	R-Square(COD)	0.9997

Raw data:

METTLER TOLEDO

7. Crystal data for 2a

	-
Identification code	cxy0541_0m
Empirical formula	$C_{16}H_{18}O_2S$
Formula weight	274.36
Temperature/K	100
Crystal system	monoclinic
Space group	P21
a/Å	5.712(4)
b/Å	15.280(13)
c/Å	8.280(5)
$\alpha/^{\circ}$	90
β/°	104.192(15)
γ/°	90
Volume/Å ³	700.6(9)
Z	2
$\rho_{calc}g/cm^3$	1.301
μ/mm^{-1}	0.226
F(000)	292.0
Crystal size/mm ³	$0.45 \times 0.42 \times 0.32$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	5.074 to 55.088
Index ranges	$-7 \le h \le 7, -19 \le k \le 19, -10 \le l \le 10$
Reflections collected	14818
Independent reflections	3221 [$R_{int} = 0.0392$, $R_{sigma} = 0.0289$]
Data/restraints/parameters	3221/1/175
Goodness-of-fit on F ²	1.043
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0246, wR_2 = 0.0619$
Final R indexes [all data]	$R_1 = 0.0256, wR_2 = 0.0623$
Largest diff. peak/hole / e Å ⁻³	0.27/-0.18
Flack parameter	-0.01(2)

Crystal data and structure refinement for cxy0541_0m.

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for cxy0541_0m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
S1	5765.6(7)	5436.3(3)	5645.1(5)	13.58(12)
01	5664(3)	6051.7(11)	6947.9(17)	21.5(3)
O2	8086(2)	5082.4(10)	5572.5(17)	20.8(3)
C1	1014(4)	6988.4(14)	-1062(2)	19.5(4)
C2	2271(3)	6649.6(12)	629(2)	14.8(4)
C3	4412(4)	6180.9(12)	859(2)	15.1(4)
C4	5503(3)	5820.6(13)	2398(2)	14.2(4)
C5	4453(3)	5935.9(12)	3719(2)	12.6(3)
C6	3849(3)	4550.6(13)	5876(2)	13.5(4)
C7	3911(3)	3732.6(12)	4821(2)	14.6(4)
C8	3018(3)	3879.1(12)	2965(2)	12.1(3)
C9	4337(4)	3560.4(13)	1887(2)	16.1(4)
C10	3504(4)	3663.5(13)	184(2)	18.5(4)
C11	1348(4)	4096.1(13)	-479(2)	17.4(4)
C12	832(3)	4298.2(12)	2287(2)	14.4(4)
C13	8(4)	4416.3(13)	583(2)	16.9(4)
C14	1286(4)	6782.4(13)	1997(3)	17.1(4)
C15	2357(3)	6429.3(13)	3537(2)	15.6(4)
C16	2408(4)	3014.7(13)	5386(3)	21.1(4)

Anisotropic Displacement Parameters (Å²×10³) for cxy0541_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S 1	10.60(19)	19.6(2)	10.34(19)	-0.20(17)	2.21(14)	-1.46(19)
01	23.3(7)	26.2(8)	14.8(6)	-6.2(6)	4.4(6)	-7.1(6)
O2	10.6(6)	33.6(8)	17.7(7)	6.4(6)	2.4(5)	2.8(6)
C1	18.5(10)	19.8(10)	17.9(10)	5.0(8)	0.5(8)	0.0(8)
C2	16.3(9)	10.1(8)	17.1(9)	1.1(7)	2.3(7)	-3.2(7)
C3	17.0(9)	15.1(9)	14.6(9)	0.1(7)	6.3(7)	-0.3(7)
C4	11.0(8)	15.9(8)	16.4(8)	0.6(7)	4.8(7)	2.0(7)
C5	11.7(8)	14.0(9)	11.7(8)	0.9(7)	1.9(6)	-0.8(7)
C6	12.7(8)	18.7(9)	9.7(8)	0.9(7)	3.7(7)	-1.3(7)
C7	14.9(9)	16.1(9)	12.9(8)	1.6(7)	3.5(7)	3.9(7)
C8	12.8(8)	12.3(8)	11.2(8)	-0.8(6)	2.8(7)	-1.2(7)
C9	14.9(9)	15.8(9)	18.5(9)	-0.1(7)	6.1(7)	1.9(7)

C10	21.8(10)	19.1(10)	17.1(9)	-3.1(7)	9.9(8)	-0.6(8)
C11	23.0(10)	19.1(9)	10.1(9)	-0.8(7)	4.0(8)	-3.6(8)
C12	14.0(8)	15.2(9)	15.1(9)	-1.9(7)	5.5(7)	0.9(7)
C13	14.9(8)	17.6(9)	16.8(9)	1.4(7)	0.9(7)	0.2(7)
C14	13.8(9)	14.4(9)	24.2(10)	-0.1(8)	6.5(8)	2.6(7)
C15	14.0(9)	16.1(9)	18.4(9)	-2.7(7)	7.3(7)	0.5(7)
C16	30.3(11)	15.7(9)	18.0(9)	3.5(7)	7.3(8)	-1.1(8)

Bond Lengths for cxy0541_0m.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S 1	01	1.4429(17)	C6	C7	1.530(3)
S 1	O2	1.4463(17)	C7	C8	1.513(3)
S 1	C5	1.761(2)	C7	C16	1.535(3)
S 1	C6	1.780(2)	C8	C9	1.389(3)
C1	C2	1.501(3)	C8	C12	1.393(3)
C2	C3	1.389(3)	C9	C10	1.383(3)
C2	C14	1.397(3)	C10	C11	1.387(3)
C3	C4	1.387(3)	C11	C13	1.389(3)
C4	C5	1.382(3)	C12	C13	1.386(3)
C5	C15	1.391(3)	C14	C15	1.382(3)

Bond Angles for cxy0541_0m.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	S 1	02	118.69(9)	C7	C6	S 1	117.29(13)
01	S 1	C5	107.95(11)	C6	C7	C16	108.47(16)
01	S 1	C6	106.04(10)	C8	C7	C6	114.20(16)
O2	S 1	C5	108.39(9)	C8	C7	C16	109.91(16)
O2	S 1	C6	108.32(11)	C9	C8	C7	119.97(17)
C5	S 1	C6	106.88(9)	C9	C8	C12	118.45(18)
C3	C2	C1	120.62(18)	C12	C8	C7	121.53(16)
C3	C2	C14	118.65(18)	C10	C9	C8	120.65(19)
C14	C2	C1	120.72(18)	C9	C10	C11	120.54(18)
C4	C3	C2	120.84(18)	C10	C11	C13	119.42(18)
C5	C4	C3	119.46(18)	C13	C12	C8	121.15(17)

C4	C5	S 1	119.38(15)	C12	C13	C11	119.77(19)
C4	C5	C15	120.80(17)	C15	C14	C2	121.07(18)
C15	C5	S 1	119.81(14)	C14	C15	C5	119.10(17)

Torsion Angles for cxy0541_0m.

Α	B	С	D	Angle/°	A	B	С	D	Angle/°
S 1	C5	C15	C14	-176.94(15)	C5	S 1	C6	C7	74.20(16)
S 1	C6	C7	C8	-64.7(2)	C6	S 1	C5	C4	-106.97(17)
S 1	C6	C7	C16	172.36(14)	C6	S 1	C5	C15	72.02(17)
01	S 1	C5	C4	139.33(15)	C6	C7	C8	C9	133.12(18)
01	S 1	C5	C15	-41.68(17)	C6	C7	C8	C12	-49.6(2)
01	S 1	C6	C7	-170.82(13)	C7	C8	C9	C10	177.83(18)
02	S 1	C5	C4	9.57(19)	C7	C8	C12	C13	-178.88(18)
02	S 1	C5	C15	-171.44(15)	C8	C9	C10	C11	0.7(3)
02	S 1	C6	C7	-42.40(16)	C8	C12	C13	C11	1.4(3)
C1	C2	C3	C4	-176.04(18)	C9	C8	C12	C13	-1.5(3)
C1	C2	C14	C15	176.21(18)	C9	C10	C11	C13	-0.9(3)
C2	C3	C4	C5	-0.5(3)	C10	C11	C13	C12	-0.2(3)
C2	C14	C15	C5	0.1(3)	C12	C8	C9	C10	0.5(3)
C3	C2	C14	C15	-2.4(3)	C14	C2	C3	C4	2.6(3)
C3	C4	C5	S 1	177.12(14)	C16	C7	C8	C9	-104.7(2)
C3	C4	C5	C15	-1.9(3)	C16	C7	C8	C12	72.6(2)
C4	C5	C15	C14	2.0(3)					

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for cxy0541_0m.

Atom	x	у	Z	U(eq)
H1A	-535.08	6711.57	-1425.01	29
H1B	1971.27	6860.49	-1837.51	29
H1C	801.36	7609.97	-1005.99	29
H3	5122.18	6107.66	-29.04	18
H4	6929.47	5504.03	2538.75	17
H6A	4260.86	4376.81	7038.61	16
H6B	2200.51	4765.44	5620.04	16

H7	5587.11	3529.33	5045.26	18
H9	5795.41	3274.98	2316.53	19
H10	4397.25	3440.95	-523.41	22
H11	804.57	4170.98	-1624.9	21
H12	-89.67	4502.44	2991.06	17
H13	-1437.84	4709	151.21	20
H14	-113.56	7113.77	1868.19	21
H15	1686.13	6520.24	4439.27	19
H16A	787.3	3220.79	5271.49	32
H16B	3112.72	2871.15	6530.67	32
H16C	2382.34	2503.24	4708.55	32

Experimental

Single crystals of $C_{16}H_{18}O_2S$ [cxy0541_0m] were []. A suitable crystal was selected and [] on a BrukerD8 venture microsource diffractometer. The crystal was kept at 100 K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the XL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal structure determination

Crystal Data for C₁₆H₁₈O₂S (*M* =274.36 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 5.712(4) Å, *b* = 15.280(13) Å, *c* = 8.280(5) Å, β = 104.192(15)°, *V* = 700.6(9) Å³, *Z* = 2, *T* = 100 K, μ (MoK α) = 0.226 mm⁻¹, *Dcalc* = 1.301 g/cm³, 14818 reflections measured (5.074° ≤ 2 Θ ≤ 55.088°), 3221 unique (R_{int} = 0.0392, R_{sigma} = 0.0289) which were used in all calculations. The final R_1 was 0.0246 (I > 2 σ (I)) and *w* R_2 was 0.0623 (all data).

8. NMR spectra

(E)-1-methyl-4-((2-phenylprop-1-en-1-yl)sulfonyl)benzene (1a)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 F1 (ppm)

(E)-1-bromo-4-(1-tosylprop-1-en-2-yl)benzene (1d)

₹ 2.50 ₹ 2.50 2.45

(E)-1-methyl-3-(1-tosylprop-1-en-2-yl)benzene (1g)

zhangxumu-003081	559 7 1 0 3 4 8 8 8 9 7 1 0 3 4 7 0 3 4 8 8 9 1 0 3 4 7 0 3 4	51 44 35
PROTON CDC13 {D:\Data} data 3		5555

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) $(E) \mbox{-}1\mbox{-}methyl \mbox{-}2\mbox{-}(1\mbox{-}tosylprop\mbox{-}1\mbox{-}n\mbox{-}2\mbox{-}yl) \mbox{benzene} (1h)$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

$(E) \hbox{-} 1 \hbox{-} methoxy \hbox{-} 4 \hbox{-} (2 \hbox{-} methyl \hbox{-} 3 \hbox{-} tosylallyl) benzene(1p)$

(Z)-2-(1-phenyl-2-tosylvinyl)thiophene(1q)

zhangxumu-003314	66 65 28 28 00 00 00 00 00 00 00 00 00 00 00 00 00	45 29 33 33 33 33 33 33 33 33 33 33 33 33 33	41 39
PROTON CDC13 {D:\Data}			₹.÷

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

110 100 90 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 Aboun Cocl3
 Dispersion State
 Dispersion State

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 fl (ppm)

1-(tosylmethyl)-1,2,3,4-tetrahydronaphthalene (20)

(S)-1-methoxy-4-(2-methyl-3-tosylpropyl)benzene(2p)

(+)-2-(1-phenyl-2-tosylethyl)thiophene(2q)

Reference:

- [1] Juan C. Carretero, et al. Angew. Chem. Int. Ed. 2007, 46, 3329-3332.
- [2] Takashi Takahashi, et al. *Eur. J. Org. Chem.* 2015, 4756-4764;
 Houda Fillion, et al. *Tetrahedron Letters*, 1992, *33*, (34), 4909-4910.