Supporting Information

Enantioselective synthesis of 3-amino-hydrobenzofuran-2,5-diones *via* Cu(I)-catalyzed intramolecular conjugate addition of imino esters

Wu-Lin Yang,^a Zhong-Tao Sun,^b Jian Zhang,^b Zhong Li*a,^c and Wei-Ping Deng^b

^aShanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; E-mail: lizhong@ecust.edu.cn.

^bShanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

^cShanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China

Contents

- 1. General information
- 2. Preparation and characterization data of substrate imine esters
- 3. Preparation and characterization data of conjugate adducts
- 4. Gram-scale experiment
- 5. HPLC chromatograms
- 6. ¹H NMR and ¹³C NMR spectra

1. General information

¹H NMR spectrum were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃. Chemical shifts were reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The spectra are interpreted as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, ddd = doublet of doublet of doublets, ddt = doublet of triplets, coupling constant(s) *J* are reported in Hz and relative integrations are reported. ¹³C NMR (100 MHz) spectrum were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃. Chemical shifts were reported in ppm with the internal chloroform signal at 77.16 ppm as a standard. Optical rotations were measured on an AUTOPOL V. Diastereomeric ratios were determined by analysis of ¹H NMR spectroscopy. Enantiomeric excesses were determined by analysis of HPLC traces, obtained by using Chiralpak IA and IB columns with hexane and *i*-propanol or ethanol as solvents. (Chiralpak IA and IB columns were purchased from Daicel Chemical Industries, LTD.) Melting points were obtained in open capillary tubes using SGW X-4 micro melting point apparatus which were uncorrected. Mass spectrum were recorded on TOF mass spectrometer. Commercially available materials purchased from Adamas-beta, TCI or Energy Chemical and were used as received.

2. Preparation and characterization data of substrate imine esters

2.1 General procedure A for the synthesis of ketimine esters 1

(a) DCC (2.1 g, 10 mmol, 2.0 equiv) was added to a solution of the appropriate *p*-quinol (5 mmol, 1.0 equiv), Boc-glycine (1.7 g, 10 mmol, 2.0 equiv), and DMAP (61 mg, 0.5 mmol, 10 mol%) in anhydrous CH_2Cl_2 (15 mL). The mixture was stirred at ambient temperature until consumption of the starting material (usually between 1 and 3 h), then filtered. The filtrate was concentrated and purified by flash column chromatography (petroleum ether/ethyl acetate = 5:1) to afford **S1**.

(b) S1 was treated with 4 M HCl in dioxane (10 mL) at 0 °C. The mixture was stirred at ambient temperature until consumption of the starting material, then was concentrated to provide HCl salt S2. This material was carried forward without purification.

(c) Bis(4-chlorophenyl)methanimine (1.0 equiv) was added to a suspension of HCl salt **S2** (1.5 equiv) and anhydrous MgSO₄ (2.0 equiv) in anhydrous CH_2Cl_2 (1.0 M in substrate). The mixture was stirred at ambient temperature for 12 h, then filtered. The filtrate was washed with water and brine. The organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1), followed by recrystallization from isopropyl ether gave the ketimine esters **1**.

1-Methyl-4-oxocyclohexa-2,5-dien-1-yl 2-((bis(4-chlorophenyl)methylene)amino)acetate (**1a):** Following the general procedure **A**, compound **1a** was obtained as a white solid in 45% overall yield (621 mg); mp = 124–126 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.6 Hz, 2H), 7.11 (d, *J* = 8.3 Hz, 2H), 6.88 (d, *J* = 10.1 Hz, 2H), 6.24 (d, *J* = 10.1 Hz, 2H), 4.18 (s, 2H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.0, 170.2, 168.9, 148.6 (2C), 137.3, 137.2, 135.6, 133.7, 130.1 (2C), 129.4 (2C), 129.2 (2C), 128.6 (2C), 128.5 (2C), 75.0, 55.5, 26.3; HRMS (EI, m/z): calcd for C₂₂H₁₇Cl₂NO₃ [M]⁺: 413.0580, found: 413.0584.

1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl 2-((bis(4-chlorophenyl)methylene)amino)acetate (1b): Following the general procedure **A**, compound **1b** was obtained as a white solid in 50% overall yield (713 mg); mp = 142–144 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.6 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.80 (d, *J* = 10.2 Hz, 2H), 6.31 (d, *J* = 10.2 Hz, 2H), 4.19 (s, 2H), 1.89 (q, *J* = 7.5 Hz, 2H), 0.89 (t, *J* = 7.5 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 185.3, 170.1, 168.9, 147.7 (2C), 137.3, 137.2, 135.5, 133.7, 130.1 (2C), 129.6 (2C), 129.4 (2C), 129.2 (2C), 128.6 (2C), 78.2, 55.5, 32.2, 7.8; **HRMS** (EI, m/z): calcd for C₂₃H₁₉Cl₂NO₃ [M]⁺: 427.0737, found: 427.0735.

4-Oxo-1-propylcyclohexa-2,5-dien-1-yl 2-((bis(4-chlorophenyl)methylene)amino)acetate (**1c):** Following the general procedure **A**, compound **1c** was obtained as a white solid in 43% overall yield (634 mg); mp = 142–144 °C; **¹H NMR** (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.82 (d, *J* = 9.8 Hz, 2H), 6.28 (d, *J* = 9.9 Hz, 2H), 4.18 (s, 2H), 1.85 – 1.77 (m, 2H), 1.40 – 1.25 (m, 2H), 0.90 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 170.1, 168.9, 148.0 (2C), 137.2(8), 137.2(5), 135.6, 133.7, 130.1 (2C), 129.4 (2C), 129.3 (2C), 129.2 (2C), 128.6 (2C), 77.8, 55.5, 41.3, 16.9, 14.2; HRMS (EI, m/z): calcd for C₂₄H₂₁Cl₂NO₃ [M]⁺: 441.0893, found: 441.0895.

1-Isopropyl-4-oxocyclohexa-2,5-dien-1-yl 2-((bis(4-chlorophenyl)methylene)amino) acetate (1d): Following the general procedure **A**, compound **1d** was obtained as a white solid in 35% overall yield (516 mg); mp = 124–125 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 6.77 (d, J = 10.2 Hz, 2H), 6.34 (d, J = 10.2 Hz, 2H), 4.20 (s, 2H), 2.16 (p, J = 6.9 Hz, 1H), 0.96 (d, J = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 170.0, 168.8, 146.7 (2C), 137.2(8), 137.2(5), 135.6, 133.7, 130.3 (2C), 130.1 (2C), 129.4 (2C), 129.2 (2C), 128.6 (2C), 80.3, 55.6, 36.4, 17.0 (2C); HRMS (EI, m/z): calcd for C₂₄H₂₁Cl₂NO₃ [M]⁺: 441.0893, found: 441.0897.

1-Butyl-4-oxocyclohexa-2,5-dien-1-yl 2-((bis(4-chlorophenyl)methylene)amino)acetate (1e): Following the general procedure **A**, compound **1e** was obtained as a white solid in 46% overall yield (700 mg); mp = 94–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.1 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 8.1 Hz, 2H), 6.82 (d, *J* = 9.8 Hz, 2H), 6.28 (d, *J* = 9.8 Hz, 2H), 4.18 (s, 2H), 1.87 – 1.80 (m, 2H), 1.35 – 1.21 (m, 4H), 0.87 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 170.1, 168.9, 148.0 (2C), 137.3, 137.2, 135.5, 133.7, 130.1 (2C), 129.4 (2C), 129.3 (2C), 129.2 (2C), 128.6 (2C), 77.8, 55.5, 39.0, 25.5, 22.8, 13.9; HRMS (EI, m/z): calcd for C₂₅H₂₃Cl₂NO₃ [M]⁺: 455.1050, found: 455.1057.

Methyl 3-(1-(2-((bis(4-chlorophenyl)methylene)amino)acetoxy)-4-oxocyclohexa-2,5-dien-1-yl)propanoate (1f): Following the general procedure **A**, compound 1f was obtained as a white solid in 53% overall yield (859 mg); mp = 162–164 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.7 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 10.2 Hz, 2H), 6.31 (d, J = 10.2 Hz, 2H), 4.18 (s, 2H), 3.64 (s, 3H), 2.36 – 2.28 (m, 2H), 2.26 – 2.18 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 172.6, 170.2, 168.7, 146.8 (2C), 137.3, 137.2, 135.6, 133.6, 130.1 (2C), 129.9 (2C), 129.4 (2C), 129.2 (2C), 128.6 (2C), 76.8, 55.4, 52.0, 33.8, 28.2; HRMS (EI, m/z): calcd for C₂₅H₂₁Cl₂NO₅ [M]⁺: 485.0791, found: 485.0793.

4-Oxo-1-phenethylcyclohexa-2,5-dien-1-yl 2-((bis(4-chlorophenyl)methylene)amino) acetate (1g): Following the general procedure **A**, compound **1g** was obtained as a white solid in 40% overall yield (673 mg); mp = 139–140 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.34 – 7.23 (m, 4H), 7.22 – 7.16 (m, 1H), 7.14 – 7.06 (m, 4H), 6.88 (d, *J* = 10.2 Hz, 2H), 6.32 (d, *J* = 10.2 Hz, 2H), 4.19 (s, 2H), 2.74 – 2.58 (m, 2H), 2.20 – 2.09 (m, 2H); ¹³**C** NMR (100 MHz, CDCl₃) δ 185.1, 170.2, 168.9, 147.6 (2C), 140.4, 137.3, 137.2, 135.6, 133.7, 130.1 (2C), 129.5 (2C), 129.4 (2C), 129.2 (2C), 128.8 (2C), 128.6 (2C), 128.4 (2C), 126.6, 77.4, 55.5, 41.0, 29.9; **HRMS** (EI, m/z): calcd for C₂₉H₂₃Cl₂NO₃ [M]⁺: 503.1050, found: 503.1048.

1-(But-3-en-1-yl)-4-oxocyclohexa-2,5-dien-1-yl 2-((bis(4-chlorophenyl)methylene)amino) acetate (1h): Following the general procedure **A**, compound **1h** was obtained as a white solid in 50% overall yield (757 mg); mp = 146–147 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.5 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.11 (d, *J* = 8.3 Hz, 2H), 6.84 (d, *J* = 10.2 Hz, 2H), 6.30 (d, *J* = 10.2 Hz, 2H), 5.80 – 5.66 (m, 1H), 5.08 – 4.93 (m, 2H), 4.19 (s, 2H), 2.13 – 2.04 (m, 2H), 1.98 – 1.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 185.1, 170.1, 168.8, 147.6 (2C), 137.3, 137.2, 136.7, 135.6, 133.7, 130.1 (2C), 129.5 (2C), 129.4 (2C), 129.2 (2C), 128.6 (2C), 115.9, 77.4, 55.5, 38.4, 27.7; HRMS (EI, m/z): calcd for C₂₅H₂₁Cl₂NO₃ [M]⁺: 453.0893, found: 453.0890.

1,2,6-Trimethyl-4-oxocyclohexa-2,5-dien-1-yl 2-((bis(4-chlorophenyl)methylene)amino) acetate (1i): Following the general procedure **A**, compound **1i** was obtained as a white solid in 40% overall yield (295 mg); mp = 140–141 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.5 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.09 (s, 2H), 4.23 (s, 2H), 1.91 (s, 6H), 1.50 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 185.1, 170.3, 168.1, 158.9 (2C), 137.2, 137.0, 135.4, 133.5, 129.9 (2C), 129.3 (2C), 129.0 (2C), 128.5 (2C), 126.9 (2C), 79.3, 55.1, 26.2, 17.7 (2C); **HRMS** (EI, m/z): calcd for C₂₄H₂₁Cl₂NO₃ [M]⁺: 441.0893, found: 441.0896.

2.2 General procedure B for the synthesis of aldimine esters 3

(a-b) Same methods as General procedure A.

(c) A suspension of HCl salt S4 (1.5 equiv), 4-bromobenzaldehyde (1.0 equiv) and anhydrous MgSO₄ (2.0 equiv) in anhydrous CH_2Cl_2 (1.0 M in substrate) was stirred at 0 °C.

Et₃N (1.5 equiv) was added dropwise. The mixture was stirred at ambient temperature for 12 h, then filtered. The filtrate was washed with water and brine. The organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1 + 0.5% Et₃N), followed by recrystallization from isopropyl ether gave the aldimine esters **3**.

1-Methyl-4-oxocyclohexa-2,5-dien-1-yl (*E*)-2-((4-bromobenzylidene)amino)propanoate (3a): Following the general procedure **B**, compound 3a was obtained as a white solid in 30% overall yield (362 mg); mp = 101–103 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H), 6.89 (d, J = 9.6 Hz, 2H), 6.24 (d, J = 9.6 Hz, 2H), 4.14 (q, J = 6.8 Hz, 1H), 1.58 (s, 3H), 1.52 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.0, 171.0, 162.1, 148.7 (2C), 134.6, 132.0 (2C), 130.0 (2C), 128.5 (2C), 125.9, 75.0, 67.8, 26.3, 19.3; HRMS (EI, m/z): calcd for C₁₇H₁₆BrNO₃ [M]⁺: 361.0308, found: 361.0305.

1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl (*E*)-**2-((4-bromobenzylidene)amino)propanoate** (**3b**): Following the general procedure **B**, compound **3b** was obtained as a white solid in 35% overall yield (439 mg); mp = 100–102 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 6.81 (d, J = 9.5 Hz, 2H), 6.30 (d, J = 9.7 Hz, 2H), 4.15 (q, J = 6.8 Hz, 1H), 1.90 (q, J = 7.5 Hz, 2H), 1.53 (d, J = 6.8 Hz, 3H), 0.90 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 170.9, 162.1, 147.8 (2C), 134.7, 132.1 (2C), 130.0 (2C), 129.5 (2C), 125.9, 78.0, 67.9, 32.3, 19.3, 7.8; HRMS (EI, m/z): calcd for C₁₈H₁₈BrNO₃ [M]⁺: 375.0465, found: 375.0468.

4-Oxo-1-propylcyclohexa-2,5-dien-1-yl (*E*)-2-((4-bromobenzylidene)amino)propanoate (3c): Following the general procedure **B**, compound 3c was obtained as a white solid in 36% overall yield (468 mg); mp = 115–117 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 9.4 Hz, 2H), 6.28 (d, J = 9.5 Hz, 2H), 4.14 (q, J = 6.8 Hz, 1H), 1.88 – 1.76 (m, 2H), 1.52 (d, J = 6.8 Hz, 3H), 1.41 – 1.28 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 170.9, 162.1, 148.1 (2C), 134.7, 132.0 (2C), 130.0 (2C), 129.2 (2C), 125.9, 77.7, 67.9, 41.4, 19.3, 16.9, 14.2; HRMS (EI, m/z): calcd for C₁₉H₂₀BrNO₃ [M]⁺: 389.0621, found: 389.0625.

1,2,6-Trimethyl-4-oxocyclohexa-2,5-dien-1-yl (*E*)-2-((4-bromobenzylidene)amino) propanoate (3d): Following the general procedure **B**, compound 3d was obtained as a white solid in 45% overall yield (585 mg); mp = 86–88 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 6.08 (s, 2H), 4.18 (q, *J* = 6.8 Hz, 1H), 1.93 (s, 3H), 1.91 (s, 3H), 1.54 (d, *J* = 6.7 Hz, 3H), 1.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 170.3, 162.2, 159.2, 159.1, 134.6, 132.1 (2C), 130.0 (2C), 127.1, 127.0, 126.0, 79.3, 67.7, 26.3, 19.0, 17.8 (2C); HRMS (EI, m/z): calcd for C₁₉H₂₀BrNO₃ [M]⁺: 389.0621, found: 389.0626.

3. Preparation and characterization data of conjugate adducts

General procedure C: Under a nitrogen atmosphere, $Cu(CH_3CN)_4BF_4$ (3.1 mg, 0.01 mmol) and ligand L4 (5.4 mg, 0.011 mmol) were dissolved in anhydrous $CH_2Cl_2(2.0 \text{ mL})$, and stirred at room temperature for approximately 1 h. Then, the mixture was cooled to 0 °C, ketimine esters 1 (0.2 mmol) and Et₃N (5.6 µL, 0.04 mmol) were added sequentially, the reaction mixture was stirred at 0 °C. Once starting material was consumed (monitored by TLC), the mixture was concentrated and purified by column chromatography (petroleum ether/ethyl acetate = 20:1) to give the corresponding conjugate adducts.

(3S,3aS,7aS)-3-((Bis(4-chlorophenyl)methylene)amino)-7a-methyl-3a,7a-

dihydrobenzofuran-2,5(3*H***,4***H***)-dione (2a):** Following the general procedure **C**, compound **2a** was obtained as a white solid in 85% yield (70.4 mg); mp = 75–77 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.62 (dd, *J* = 10.3, 2.0 Hz, 1H), 5.91 (d, *J* = 10.3 Hz, 1H), 4.08 (d, *J* = 10.9 Hz, 1H), 3.42 – 3.29 (m, 1H), 2.71 (dd, *J* = 17.6, 5.6 Hz, 1H), 2.48 (dd, *J* = 17.7, 2.2 Hz, 1H), 1.75 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 194.2, 173.1, 171.6, 147.0, 137.6, 136.8, 135.7, 133.0, 130.2 (2C), 129.4, 129.4 (2C), 129.2 (2C), 128.6 (2C), 79.9, 65.5, 49.2, 35.5, 24.4; **HPLC** (Chiralpak IA, hexane/*i*-PrOH = 80/20, 0.8 mL/min, 220 nm) t_R = 15.04 min (minor), 16.50 min (major); [α]_D²⁵ = -41.6 (*c* 1.00, CH₂Cl₂); **HRMS** (EI, m/z): calcd for C₂₂H₁₇Cl₂NO₃ [M]⁺: 413.0580, found: 413.0581.

(3S,3aS,7aS)-3-((Bis(4-chlorophenyl)methylene)amino)-7a-ethyl-3a,7a-

dihydrobenzofuran-2,5(3*H***,4***H***)-dione (2b):** Following the general procedure **C**, compound **2b** was obtained as a white solid in 87% yield (74.5 mg); mp = 175–177 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.7 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 6.65 (dd, *J* = 10.4, 2.0 Hz, 1H), 5.97 (d, *J* = 10.4 Hz, 1H), 4.08 (d, *J* = 10.8 Hz, 1H), 3.51 – 3.27 (m, 1H), 2.66 (dd, *J* = 17.8, 5.7 Hz, 1H), 2.46 (d, *J* = 17.8 Hz, 1H), 2.16 – 1.92 (m, 3H), 1.15 (t, *J* = 7.5 Hz, 2H); ¹³**C** NMR (100 MHz, CDCl₃) δ 194.5, 173.2, 171.7, 146.4, 137.6, 136.8, 135.8, 133.1, 130.3 (3C), 129.5 (2C), 129.3 (2C), 128.6 (2C), 82.3, 65.8, 46.8, 35.9, 31.0, 8.0; **HPLC** (Chiralpak IA, hexane/*i*-PrOH = 80/20, 0.8 mL/min, 220 nm) t_R = 11.37 min (minor), 13.21 min (major); [α]_D²⁵ = -53.5 (*c* 1.00, CH₂Cl₂); **HRMS** (EI, m/z): calcd for C₂₃H₁₉Cl₂NO₃ [M]⁺: 427.0737, found: 427.0739.

(3S,3aS,7aS)-3-((Bis(4-chlorophenyl)methylene)amino)-7a-propyl-3a,7a-

dihydrobenzofuran-2,5(3*H***,4***H***)-dione (2c):** Following the general procedure **C**, compound **2c** was obtained as a colorless oil in 87% yield (79.6 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.65 (dd, *J* = 10.4, 2.0 Hz, 1H), 5.95 (d, *J* = 10.4 Hz, 1H), 4.07 (d, *J* = 10.9 Hz, 1H), 3.52 – 3.27 (m, 1H), 2.67 (dd, *J* = 17.8, 5.7 Hz, 1H), 2.46 (d, *J* = 16.8 Hz, 1H), 2.03 (ddd, *J* = 14.3, 10.5, 6.4 Hz, 1H), 1.91 (ddd, *J* = 14.3, 10.8, 5.8 Hz, 1H), 1.68 – 1.50 (m, 2H), 1.03 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 194.6, 173.2, 171.8, 146.6, 137.7, 136.9, 135.8, 133.1, 130.3 (2C), 130.1, 129.5 (2C), 129.3 (2C), 128.7 (2C), 82.2, 65.7, 47.4, 40.3, 35.9, 17.1, 14.4; **HPLC** (Chiralpak IA, hexane/*i*-PrOH = 90/10, 1.0 mL/min, 220 nm) t_R = 12.98 min (minor), 15.99 min (major); [α]_D²⁵ = -51.2 (*c* 1.00, CH₂Cl₂); **HRMS** (EI, m/z): calcd for C₂₄H₂₁Cl₂NO₃ [**M**]⁺: 441.0893, found: 441.0899.

(3S,3aS,7aS)-3-((Bis(4-chlorophenyl)methylene)amino)-7a-isopropyl-3a,7a-

dihydrobenzofuran-2,5(3*H*,4*H*)-dione (2d): Following the general procedure C, compound 2d was obtained as a white solid in 75% yield (66.4 mg); mp = 160-162 °C; ¹H NMR (400

MHz, CDCl₃) δ 7.56 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 6.65 (dd, J = 10.5, 2.0 Hz, 1H), 6.05 (d, J = 10.5 Hz, 1H), 4.05 (d, J = 10.7 Hz, 1H), 3.48 – 3.38 (m, 1H), 2.68 (dd, J = 18.1, 6.0 Hz, 1H), 2.42 (d, J = 18.1 Hz, 1H), 2.34 – 2.23 (m, 1H), 1.14 (dd, J = 6.9, 4.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 173.2, 171.6, 145.6, 137.7, 136.8, 135.8, 133.1, 131.3, 130.3 (2C), 129.5 (2C), 129.3 (2C), 128.6 (2C), 84.4, 66.6, 44.9, 36.8, 36.4, 17.7, 16.9; HPLC (Chiralpak IA, hexane/*i*-PrOH = 90/10, 1.0 mL/min, 220 nm) t_R = 12.11 min (minor), 14.26 min (major); $[\alpha]_D^{25} = -59.0$ (*c* 1.00, CH₂Cl₂); HRMS (EI, m/z): calcd for C₂₄H₂₁Cl₂NO₃ [M]⁺: 441.0893, found: 441.0890.

(3S,3aS,7aS)-3-((Bis(4-chlorophenyl)methylene)amino)-7a-butyl-3a,7a-

dihydrobenzofuran-2,5(3*H***,4***H***)-dione (2e):** Following the general procedure **C**, compound **2e** was obtained as a white solid in 82% yield (74.8 mg); mp = 60–63 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 6.65 (dd, *J* = 10.4, 2.0 Hz, 1H), 5.95 (d, *J* = 10.4 Hz, 1H), 4.07 (d, *J* = 10.9 Hz, 1H), 3.49 – 3.31 (m, 1H), 2.67 (dd, *J* = 17.7, 5.7 Hz, 1H), 2.46 (d, *J* = 17.4 Hz, 1H), 2.11 – 1.99 (m, 1H), 1.99 – 1.87 (m, 1H), 1.58 – 1.47 (m, 2H), 1.48 – 1.35 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 173.2, 171.8, 146.7, 137.7, 136.9, 135.8, 133.1, 130.3 (2C), 130.1, 129.5 (2C), 129.3 (2C), 128.7 (2C), 82.2, 65.8, 47.4, 37.9, 35.9, 25.7, 23.0, 14.0; HPLC (Chiralpak IA, hexane/*i*-PrOH = 90/10, 1.0 mL/min, 220 nm) t_R = 10.75 min (minor), 12.69 min (major); [α]_D²⁵ = -58.6 (*c* 1.00, CH₂Cl₂); HRMS (EI, m/z): calcd for C₂₅H₂₃Cl₂NO₃ [M]⁺: 455.1050, found: 455.1055.

Methyl 3-((3*S*,3a*S*,7a*S*)-3-((bis(4-chlorophenyl)methylene)amino)-2,5-dioxo-3,3a,4,5tetrahydrobenzofuran-7a(2*H*)-yl)propanoate (2f): Following the general procedure C, compound 2f was obtained as a white solid in 88% yield (85.6 mg); mp = 57–59 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.62 (dd, J = 10.4, 2.1 Hz, 1H), 5.96 (d, J = 10.4 Hz, 1H), 4.08 (d, J = 10.9 Hz, 1H), 3.72 (s, 3H), 3.43 – 3.30 (m, 1H), 2.72 (dd, J = 17.8, 5.6 Hz, 1H), 2.68 – 2.55 (m, 2H), 2.47 (d, J = 18.4 Hz, 1H), 2.42 – 2.26 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 173.3, 172.7, 171.3, 145.4, 137.7, 136.7, 135.7, 132.9, 130.5, 130.3 (2C), 129.4 (2C), 129.2 (2C), 128.6 (2C), 80.9, 65.4, 52.2, 47.1, 35.5, 32.2, 28.1; HPLC (Chiralpak IA, hexane/*i*-PrOH = 80/20, 0.8 mL/min, 220 nm) t_R = 16.32 min (minor), 20.63 min (major); [α]_D²⁵ = -61.7 (c 1.00, CH₂Cl₂); HRMS (EI, m/z): calcd for C₂₅H₂₁Cl₂NO₅ [M]⁺: 485.0791, found: 485.0797.

(3S,3aS,7aS)-3-((Bis(4-chlorophenyl)methylene)amino)-7a-phenethyl-3a,7a-

dihydrobenzofuran-2,5(3*H***,4***H***)-dione (2g):** Following the general procedure **C**, compound **2g** was obtained as a white solid in 85% yield (85.7 mg); mp = 84–86 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.7 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.37 – 7.29 (m, 4H), 7.26 – 7.18 (m, 3H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.70 (dd, *J* = 10.4, 2.0 Hz, 1H), 5.98 (d, *J* = 10.4 Hz, 1H), 4.10 (d, *J* = 10.9 Hz, 1H), 3.52 – 3.36 (m, 1H), 3.04 – 2.80 (m, 2H), 2.68 (dd, *J* = 17.8, 5.7 Hz, 1H), 2.48 (d, *J* = 17.9 Hz, 1H), 2.36 (ddd, *J* = 14.4, 11.7, 5.6 Hz, 1H), 2.24 (ddd, *J* = 14.4, 11.7, 5.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 173.3, 171.7, 146.1, 140.3, 137.7, 136.8, 135.8, 133.0, 130.3 (2C), 130.3, 129.5 (2C), 129.3 (2C), 128.9 (2C), 128.6 (2C), 128.4 (2C), 126.7, 81.7, 65.6, 47.5, 39.9, 35.7, 29.9. HPLC (Chiralpak IA, hexane/*i*-PrOH = 90/10, 1.0 mL/min, 220 nm) t_R = 15.85 min (minor), 36.05 min (major). [α]_D²⁵ = -87.8 (*c* 1.00, CH₂Cl₂); HRMS (EI, m/z): calcd for C₂₉H₂₃Cl₂NO₃ [M]⁺: 503.1050, found: 503.1053.

(3*S*,3*aS*,7*aS*)-3-((bis(4-chlorophenyl)methylene)amino)-7*a*-(but-3-en-1-yl)-3*a*,7*a*dihydrobenzofuran-2,5(3*H*,4*H*)-dione (2h): Following the general procedure C, compound 2h was obtained as a white solid in 85% yield (78.1 mg); mp = 63–65 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 7.15 (d, J= 8.4 Hz, 2H), 6.66 (dd, J = 10.4, 2.0 Hz, 1H), 5.97 (d, J = 10.4 Hz, 1H), 5.84 (ddt, J = 16.7, 10.2, 6.4 Hz, 1H), 5.12 (dd, J = 17.1, 1.6 Hz, 1H), 5.06 (dd, J = 10.2, 1.5 Hz, 1H), 4.08 (d, J = 10.9 Hz, 1H), 3.47 – 3.35 (m, 1H), 2.69 (dd, J = 17.8, 5.7 Hz, 1H), 2.47 (d, J = 18.4 Hz, 1H), 2.40 – 2.26 (m, 2H), 2.15 (ddd, J = 14.3, 10.6, 5.8 Hz, 1H), 2.04 (ddd, J = 14.3, 10.4, 6.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 173.3, 171.7, 146.2, 137.7, 136.8, 136.6, 135.8, 133.0, 130.3 (2C), 130.2, 129.5 (2C), 129.3 (2C), 128.6 (2C), 116.2, 81.8, 65.6, 47.4, 37.1, 35.8, 27.8; HPLC (Chiralpak IA, hexane/*i*-PrOH = 90/10, 1.0 mL/min, 220 nm) t_R = 12.16 min (minor), 16.73 min (major); [α]_D²⁵ = -77.0 (*c* 1.00, CH₂Cl₂); HRMS (EI, m/z): calcd for C₂₅H₂₁Cl₂NO₃ [M]⁺: 453.0893, found: 453.0898.

(3*S*,3a*S*,7a*S*)-3-((bis(4-chlorophenyl)methylene)amino)-3a,7,7a-trimethyl-3a,7adihydrobenzofuran-2,5(3*H*,4*H*)-dione (2i): Following the general procedure C, compound 2i

was obtained as a colorless oil in 80% yield (70.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.7 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 5.76 (s, 1H), 4.25 (s, 1H), 2.38 (s, 2H), 1.98 (s, 3H), 1.61 (s, 3H), 1.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 172.9, 171.9, 158.5, 137.6, 137.0, 135.6, 133.1, 130.3 (2C), 129.4 (2C), 129.2 (2C), 128.6 (2C), 127.8, 84.9, 66.9, 49.7, 43.0, 19.5, 19.0, 18.7; HPLC (Chiralpak IB, hexane/*i*-PrOH = 100/5, 1.0 mL/min, 220 nm) t_R = 11.62 min (minor), 12.39 min (major); [α]_D²⁵ = -29.3 (*c* 1.00, CH₂Cl₂); HRMS (EI, m/z): calcd for C₂₄H₂₁Cl₂NO₃ [M]⁺: 441.0893, found: 441.0895.

General procedure D: Under a nitrogen atmosphere, Cu(CH₃CN)₄BF₄ (3.1 mg, 0.01 mmol) and ligand L4 (5.4 mg, 0.011 mmol) were dissolved in anhydrous THF (2.0 mL), and stirred at room temperature for approximately 1 h. Then, aldimine esters **3** (0.2 mmol) and Et₃N (5.6 μ L, 0.04 mmol) were added sequentially, the reaction mixture was stirred at room temperature. Once starting material was consumed (monitored by TLC), the mixture was concentrated and purified by column chromatography (petroleum ether/ethyl acetate = 20:1 + 0.5% Et₃N) to give the corresponding conjugate adducts, which was dissolved in THF (2.0 mL) at room temperature. *p*-Toluenesulfonic acid (41.3 mg, 0.2 mmol) and water (3 drops) was then added and the mixture was stirred for 2 h at room temperature. The mixture was rendered alkaline by addition of saturated aq. NaHCO₃ and then extracted with EtOAc. The organic layer was dried over Na₂SO₄, concentrated and purified by column chromatography (petroleum chromatography (petroleum ether/ethyl acetate = 1:1) to give the desired compound **4**.

(3*S*,3*aS*,7*aS*)-3-amino-3,7*a*-dimethyl-3*a*,7*a*-dihydrobenzofuran-2,5(3*H*,4*H*)-dione (4a): Following the general procedure **D**, compound 4*a* was obtained as a white solid in 80% yield (30.5 mg); mp = 129–131 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.74 (dd, *J* = 10.4, 1.6 Hz, 1H), 6.08 (d, *J* = 10.4 Hz, 1H), 2.81 (d, *J* = 18.0 Hz, 1H), 2.76 – 2.62 (m, 2H), 1.70 (s, 3H), 1.66 (br, 2H), 1.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 180.0, 147.3, 129.6, 78.3, 59.2, 51.0, 33.7, 27.0, 21.2. HPLC (Chiralpak IA, hexane/EtOH = 2/1, 1.0 mL/min, 220 nm) t_R = 17.47 min (minor), 33.74 min (major). [α]_D²⁵ = +67.8 (*c* 1.00, CH₂Cl₂); HRMS (EI, m/z): calcd for C₁₀H₁₃NO₃ [M]⁺: 195.0890, found: 195.0896.

(CCDC 1883504 (**4a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.)

Identification code	cu_d8v18549_0m				
Empirical formula	C10 H13 N O3				
Formula weight	195.21				
Temperature	293(2) K				
Wavelength	1.54178 Å				
Crystal system	Triclinic				
Space group	P 1				
Unit cell dimensions	a = 6.9308(8) Å	α= 84.194(6)°.			
	b = 6.9507(8) Å	β= 79.023(6)°.			
	c = 11.8464(14) Å	$\gamma = 64.094(6)^{\circ}$.			
Volume	503.84(10) Å ³				
Ζ	2				
Density (calculated)	1.287 Mg/m ³				
Absorption coefficient	0.791 mm ⁻¹				
F(000)	208				
Crystal size	0.160 x 0.130 x 0.080 mm ³				
Theta range for data collection	3.802 to 70.153°.				
Index ranges	-8<=h<=8, -8<=k<=8, -14<=l<=14				
Reflections collected	12059				
Independent reflections	3664 [R(int) = 0.0668]				
Completeness to theta = 67.679°	99.0 %				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.7456 and 0.5832				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	3664 / 3 / 274				
Goodness-of-fit on F^2	1.068				

Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole R1 = 0.0514, wR2 = 0.1367 R1 = 0.0598, wR2 = 0.1453 0.24(17)0.207 and -0.189 e.Å⁻³

(3*S*,3a*S*,7a*S*)-3-Amino-7a-ethyl-3-methyl-3a,7a-dihydrobenzofuran-2,5(3*H*,4*H*)-dione (4b): Following the general procedure **D**, compound 4a was obtained as a white solid in 73% yield (30.6 mg); mp = 58–60 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.74 (dd, *J* = 10.5, 1.4 Hz, 1H), 6.15 (d, *J* = 10.5 Hz, 1H), 2.84 – 2.75 (m, 1H), 2.71 – 2.61 (m, 2H), 2.09 – 1.86 (m, 2H), 1.65 (br, 2H), 1.19 (s, 3H), 1.09 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 180.1, 146.5, 130.6, 80.6, 59.3, 48.6, 34.2, 33.3, 21.4, 7.9. HPLC (Chiralpak IA, hexane/EtOH = 2/1, 1.0 mL/min, 220 nm) t_R = 20.87 min (minor), 44.09 min (major). [α]_D²⁵ = +65.0 (*c* 1.00, CH₂Cl₂);

HRMS (EI, m/z): calcd for C₁₁H₁₅NO₃ [M]⁺: 209.1046, found: 209.1050.

(3*S*,3a*S*,7a*S*)-3-Amino-3-methyl-7a-propyl-3a,7a-dihydrobenzofuran-2,5(3*H*,4*H*)-dione (4c): Following the general procedure **D**, compound 4a was obtained as a white solid in 73% yield (33.5 mg); mp = 96–98 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.75 (dd, *J* = 10.5, 1.1 Hz, 1H), 6.13 (d, *J* = 10.5 Hz, 1H), 2.83 – 2.74 (m, 1H), 2.72 – 2.62 (m, 2H), 2.02 – 1.90 (m, 1H), 1.89 – 1.80 (m, 1H), 1.69 (br, 2H), 1.59 – 1.46 (m, 2H), 1.18 (s, 3H), 1.00 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 180.1, 146.7, 130.4, 80.4, 59.2, 49.2, 42.6, 34.1, 21.4, 17.0, 14.3; HPLC (Chiralpak IA, hexane/EtOH = 2/1, 1.0 mL/min, 220 nm) t_R = 14.88 min (minor), 37.24 min (major); [α]_D²⁵ = +27.2 (*c* 1.00, CH₂Cl₂); HRMS (EI, m/z): calcd for C₁₂H₁₇NO₃ [M]⁺: 223.1203, found: 223.1206.

(3*S*,3a*S*,7a*S*)-3-Amino-3,3a,7,7a-tetramethyl-3a,7a-dihydrobenzofuran-2,5(3*H*,4*H*)-dione (4d): Following the general procedure **D**, compound 4d was obtained as a white solid in 73% yield (34.4 mg); mp = 134–136 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.96 (s, 1H), 2.74 (d, *J* = 18.5 Hz, 1H), 2.26 (d, *J* = 18.6 Hz, 1H), 2.10 (d, *J* = 1.3 Hz, 3H), 1.59 (s, 3H), 1.24 (s, 3H), 1.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 180.2, 160.2, 128.2, 83.8, 61.3, 47.6, 41.7, 23.5, 22.2, 21.1, 18.9; **HPLC** (Chiralpak IA, hexane/EtOH = 2/1, 1.0 mL/min, 220 nm) t_R = 11.04 min (minor), 12.75 min (major); $[\alpha]_D^{25}$ = +103.5 (*c* 1.00, CH₂Cl₂); **HRMS** (EI, m/z): calcd for C₁₂H₁₇NO₃ [M]⁺: 223.1203, found: 223.1205.

4. Gram-scale experiment

Under a nitrogen atmosphere, Cu(CH₃CN)₄BF₄ (55.0 mg, 0.175 mmol) and ligand L4 (95.6 mg, 0.193 mmol) were dissolved in anhydrous THF (20 mL), and stirred at room temperature for approximately 1 h. Then, aldimine esters **3a** (1.27 g, 3.5 mmol) and Et₃N (167.3 μ L, 0.7 mmol) were added sequentially, the reaction mixture was stirred at room temperature for 20 h. Then, the mixture was concentrated and purified by column chromatography (petroleum ether/ethyl acetate = 20:1 + 0.5% Et₃N) to give the corresponding conjugate adducts, which was dissolved in THF (20 mL) at room temperature. *p*-Toluenesulfonic acid (602.7 mg, 3.5 mmol) and water (1.0 mL) was then added and the mixture was stirred for 2 h at room temperature. The mixture was rendered alkaline by addition of saturated aq. NaHCO₃ and then extracted with EtOAc. The organic layer was dried over Na₂SO₄, concentrated and purified by column chromatography (petroleum ether/ethyl acetate = 1:1) to give the desired compound **4a**.

5. HPLC chromatograms

HPLC chromatogram of compound 2a (96% ee).

HPLC chromatogram of compound 2b (93% ee).

HPLC chromatogram of compound 2c (95% ee).

HPLC chromatogram of compound 2d (90% ee).

HPLC chromatogram of compound 2e (94% ee).

HPLC chromatogram of compound 2f (94% ee).

HPLC chromatogram of compound 2g (94% ee).

HPLC chromatogram of compound 2h (94% ee).

HPLC chromatogram of compound 2i (97% ee).

HPLC chromatogram of compound 4a (96% ee).

HPLC chromatogram of compound 4b (91% ee).

44.09333

194.56

26900.02

HPLC chromatogram of compound 4c (92% ee).

HPLC chromatogram of compound 4d (93% ee).

6. ¹H NMR and ¹³C NMR spectra

29 / 54

¹³C NMR of **1b** in CDCl₃

¹H NMR of **1c** in CDCl₃

¹H NMR of **1e** in CDCl₃

¹H NMR of **1f** in CDCl₃

¹H NMR of **1g** in CDCl₃

¹H NMR of **1h** in CDCl₃

¹H NMR of **3a** in CDCl₃

¹H NMR of **3b** in CDCl₃

¹H NMR of **3c** in CDCl₃

¹H NMR of **3d** in CDCl₃

¹H NMR of **2b** in CDCl₃

¹³C NMR of **2b** in CDCl₃

¹H NMR of **2c** in CDCl₃

7,559 7,740 7,740 7,740 7,740 7,740 7,740 7,740 7,740 7,740 7,740 7,740 7,740 7,740 7,740 7,407 7,405 7,505

¹H NMR of **2d** in CDCl₃

¹³C NMR of **2d** in CDCl₃

¹H NMR of **2e** in CDCl₃

 7
 7
 7
 7
 7
 7
 7
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5

¹H NMR of **2f** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of **2h** in CDCl₃

7.5.61 7.5.61 7.5.62 7.5.64 7.5.64 7.5.64 7.5.64 7.5.64 7.5.64 7.5.64 7.5.64 7.5.64 7.5.65 7.5.75 7.5.55 7.

^{13}C NMR of 2h in CDCl_3

194.400	173.259 171.653	146.221 137.681 136.775 136.785 136.777 135.777 135.777 135.299 130.229 130.229 130.229 130.229 130.229 130.229 130.229 130.229 130.229 130.229 130.229 130.229 130.225 128.628 116.184	81.768 77.478 77.160 76.843	65.628	47.354	37.128 35.747	27.748
1	57		\searrow	1	1	57	1

¹H NMR of **2i** in CDCl₃

¹H NMR of **4a** in CDCl₃

 $^{^{1}}$ H NMR of **4b** in CDCl₃

¹H NMR of **4c** in CDCl₃

¹H NMR of 4d in CDCl₃

