# **Supporting Information**

# Oxidant-Directed Chemoselective Sulfonylation and Sulfonyloximation of Alkenes via Cleaving C-S Bond in TosMIC

Xue-Qiang Chu, Danhua Ge, Teck-Peng Loh,\* and Zhi-Liang Shen\*

# **Table of Contents**

| 1. | General informationpage S2                                                                         |
|----|----------------------------------------------------------------------------------------------------|
| 2. | General procedures for the synthesis of vinyl sulfones <b>3</b> or allyl sulfones <b>4</b> page S2 |
| 3. | General procedures for the synthesis of $\alpha$ -sulfonylethanone oximes <b>5</b> page S2         |
| 4. | 10 mmol scale synthesis of ( <i>E</i> )-1-methyl-4-(styrylsulfonyl)benzene ( <b>3a</b> )page S3    |
| 5. | 10 mmol scale synthesis of 1-phenyl-2-tosylethan-1-one oxime (5a)page S3                           |
| 6. | Optimization of the reaction conditionspage S3                                                     |
| 7. | Mechanistic studiespage S4                                                                         |
| 8. | Characterization data for productspage S8                                                          |
| 9. | <sup>1</sup> H, <sup>19</sup> F, <sup>13</sup> C spectra of productspage S19                       |

#### 1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Unless otherwise noted, all reactions were carried out under air using undistilled solvent, without the need of precautions to exclude air and moisture. Melting points were recorded on an Electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. <sup>1</sup>H, <sup>19</sup>F, and <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> or DMSO- $d_6$  on Bruker Avance or Joel 400 MHz spectrometers. The chemical shifts ( $\delta$ ) are reported in ppm and coupling constants (J) in Hz. High resolution mass spectra (HRMS) were obtained using a commercial apparatus (ESI or EI Source). Column chromatography was generally performed on silica gel (300-400 mesh) or alkali alumina (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

#### 2. General procedures for the synthesis of vinyl sulfones 3 or allyl sulfones 4



A solution of alkene 1 (0.6 mmol, 2 equiv), 1-((isocyanomethyl)sulfonyl)-4-methylbenzene (**2a**; 59 mg, 0.3 mmol, 1 equiv), N,N-bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), perfluorobutyl iodide (166 mg, 0.48 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 4 equiv), and *tert*-butyl hydroperoxide (142 mg, 1.1 mmol, 3.67 equiv, TBHP, 70% solution in H<sub>2</sub>O) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. The reaction was then quenched by saturated NaHSO<sub>3</sub> solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was separated and washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (20/1~6/1) as eluent to afford the pure product vinyl sulfone **3** or allyl sulfone **4**.

## 3. General procedures for the synthesis of a-sulfonylethanone oximes 5



A solution of alkene 1 (0.6 mmol, 2 equiv), 1-((isocyanomethyl)sulfonyl)-4-methylbenzene (**2a**; 59 mg, 0.3 mmol, 1 equiv), N,N-bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), perfluorobutyl iodide (166 mg, 0.48 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 4 equiv), and *tert*-butyl nitrite (114 mg, 1.1 mmol, 3.67 equiv, TBN) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. The reaction was then quenched by saturated NaHSO<sub>3</sub> solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was separated and washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum

ether/ethyl acetate ( $20/1 \sim 3/1$ ) as eluent to afford the pure product  $\alpha$ -sulfonylethanone oxime 5.





A solution of styrene (1a; 2.08 g, 20 mmol, 2 equiv), 1-((isocyanomethyl)sulfonyl)-4methylbenzene (2a; 1.95 g, 10 mmol, 1 equiv), N,N-bis(salicylidene)ethylenediamine cobalt(II) (0.33 g, 1 mmol, 0.1 equiv), perfluorobutyl iodide (5.53 g, 16 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (4.23 g, 40 mmol, 4 equiv), and *tert*-butyl hydroperoxide (4.73 g, 36.7 mmol, 3.67 equiv, TBHP, 70% solution in H<sub>2</sub>O) in THF (50 mL) was stirred under air atmosphere at 70 °C (oil bath) for 36 h. The reaction was then quenched by saturated NaHSO<sub>3</sub> solution (200 mL) and diluted with EtOAc (200 mL). The organic layer was separated and washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (20/1~6/1) as eluent to afford the pure product (*E*)-1-methyl-4-(styrylsulfonyl)benzene (3a) in 46% yield (1.19 g).

# 5. 10 mmol scale synthesis of 1-phenyl-2-tosylethan-1-one oxime (5a)



A solution of styrene (**1a**; 2.08 g, 20 mmol, 2 equiv), 1-((isocyanomethyl)sulfonyl)-4methylbenzene (**2a**; 1.95 g, 10 mmol, 1 equiv), N,N-bis(salicylidene)ethylenediamine cobalt(II) (0.33 g, 1 mmol, 0.1 equiv), perfluorobutyl iodide (5.53 g, 16 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (4.23 g, 40 mmol, 4 equiv), and *tert*-butyl nitrite (3.79 g, 36.7 mmol, 3.67 equiv, TBN) in THF (50 mL) was stirred under air atmosphere at 70 °C (oil bath) for 36 h. The reaction was then quenched by saturated NaHSO<sub>3</sub> solution (200 mL) and diluted with EtOAc (200 mL). The organic layer was separated and washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (20/1~3/1) as eluent to afford the pure product 1-phenyl-2-tosylethan-1-one oxime (**5a**) in 51% yield (1.47 g).

#### 6. Table S1. Optimization of the reaction conditions<sup>*a*</sup>

|       |                        |                                                                                          |         | <i>n</i> -C <sub>4</sub> F <sub>9</sub> I (1.6 equiv | )        |                      |                              |  |  |
|-------|------------------------|------------------------------------------------------------------------------------------|---------|------------------------------------------------------|----------|----------------------|------------------------------|--|--|
|       |                        | Ph + CN Ts $\frac{\text{Oxidant (2.75 equiv)}}{\text{Solvent, 70 °C, 24 h}}$ Ph Ts + NOH |         |                                                      |          |                      |                              |  |  |
|       |                        | 1a                                                                                       | 2a      |                                                      | 3a       | 5a                   |                              |  |  |
| Entry | Catalyst               | Base                                                                                     | Oxidant | Solvent                                              | Time (h) | Yield of $3a (\%)^b$ | Yield of 5a (%) <sup>b</sup> |  |  |
| 1     | Co(salen) <sub>2</sub> | DABCO                                                                                    | TBHP    | THF                                                  | 12       | 36                   | 0                            |  |  |
| 2     | Co(salen) <sub>2</sub> | DABCO                                                                                    | TBHP    | MeCN                                                 | 12       | trace                | 0                            |  |  |

| 3  | Co(salen) <sub>2</sub> | DABCO                           | TBHP        | DCE         | 12 | trace                             | 0                               |
|----|------------------------|---------------------------------|-------------|-------------|----|-----------------------------------|---------------------------------|
| 4  | Co(salen) <sub>2</sub> | DABCO                           | TBHP        | DMF         | 12 | <5                                | 0                               |
| 5  | Co(salen) <sub>2</sub> | DABCO                           | TBHP        | DMSO        | 12 | <5                                | 0                               |
| 6  | Co(salen) <sub>2</sub> | DABCO                           | TBHP        | DME         | 12 | <10                               | 0                               |
| 7  | Co(salen) <sub>2</sub> | DABCO                           | TBHP        | toluene     | 12 | 0                                 | 0                               |
| 8  | Co(salen) <sub>2</sub> | DABCO                           | TBHP        | 1,4-dioxane | 12 | <5                                | 0                               |
| 9  | Co(salen) <sub>2</sub> | DABCO                           | TBHP        | EtOAc       | 12 | trace                             | 0                               |
| 10 | Co(salen) <sub>2</sub> | K <sub>2</sub> CO <sub>3</sub>  | TBHP        | THF         | 24 | 52                                | 0                               |
| 11 | Co(salen) <sub>2</sub> | Cs <sub>2</sub> CO <sub>3</sub> | TBHP        | THF         | 24 | <5                                | 0                               |
| 12 | Co(salen) <sub>2</sub> | DBU                             | TBHP        | THF         | 24 | 20                                | 0                               |
| 13 | Co(salen) <sub>2</sub> | PMEDA                           | TBHP        | THF         | 24 | 42                                | 0                               |
| 14 | Co(salen) <sub>2</sub> | Et <sub>3</sub> N               | TBHP        | THF         | 24 | 55 (54) <sup>c</sup>              | 0                               |
| 15 | Co(salen) <sub>2</sub> | NaOH                            | TBHP        | THF         | 24 | 47                                | 0                               |
| 16 | Co(salen) <sub>2</sub> | Na <sub>2</sub> CO <sub>3</sub> | TBHP        | THF         | 24 | 60 (59) <sup>c</sup>              | 0                               |
| 17 | Co(salen)2             | Na <sub>2</sub> CO <sub>3</sub> | TBHP        | THF         | 24 | 86 <sup>d</sup> (75) <sup>c</sup> | 0                               |
| 18 | Co(acac) <sub>2</sub>  | Na <sub>2</sub> CO <sub>3</sub> | TBHP        | THF         | 24 | $85^d$                            | 0                               |
| 19 | CoBr <sub>2</sub>      | Na <sub>2</sub> CO <sub>3</sub> | TBHP        | THF         | 24 | $82^d$                            | 0                               |
| 20 | Co(acac) <sub>3</sub>  | Na <sub>2</sub> CO <sub>3</sub> | TBHP        | THF         | 24 | $79^d$                            | 0                               |
| 21 | Co                     | Na <sub>2</sub> CO <sub>3</sub> | TBHP        | THF         | 24 | $80^d$                            | 0                               |
| 22 |                        | Na <sub>2</sub> CO <sub>3</sub> | TBHP        | THF         | 24 | $55^d$                            | 0                               |
| 23 | Co(salen) <sub>2</sub> | Na <sub>2</sub> CO <sub>3</sub> | TBPB        | THF         | 24 | 83 <sup>d</sup>                   | 0                               |
| 24 | Co(salen) <sub>2</sub> | Na <sub>2</sub> CO <sub>3</sub> | AIBN        | THF         | 24 | $< 10^{d}$                        | 0                               |
| 25 | Co(salen) <sub>2</sub> | Na <sub>2</sub> CO <sub>3</sub> | DHP         | THF         | 24 | $78^d$                            | 0                               |
| 26 | Co(salen) <sub>2</sub> | Na <sub>2</sub> CO <sub>3</sub> | DTBP        | THF         | 24 | $< 10^{d}$                        | 0                               |
| 27 | Co(salen) <sub>2</sub> | Na <sub>2</sub> CO <sub>3</sub> | TBHP        | THF         | 24 | 38 <sup><i>d</i>,<i>e</i></sup>   | $0^{d,e}$                       |
| 28 | Co(salen) <sub>2</sub> | Na <sub>2</sub> CO <sub>3</sub> | TBN         | THF         | 24 | trace <sup>d,e</sup>              | $28^{d,e}$                      |
| 29 | Co(salen) <sub>2</sub> | Na <sub>2</sub> CO <sub>3</sub> | $K_2S_2O_8$ | THF         | 24 | $trace^d$                         | 0                               |
| 30 | Co(salen) <sub>2</sub> | K <sub>2</sub> CO <sub>3</sub>  | TBN         | THF         | 24 | $trace^d$                         | $<\!\!20^{d}$                   |
| 31 | Co(salen) <sub>2</sub> | DABCO                           | TBN         | THF         | 24 | 10 <sup><i>d</i>, <i>e</i></sup>  | 30 <sup><i>d</i>,<i>e</i></sup> |
| 32 | Co(salen) <sub>2</sub> | Na <sub>2</sub> CO <sub>3</sub> | TBN         | THF         | 24 | trace <sup>d</sup>                | $(73)^{c,d}$                    |
| 33 | Co(salen) <sub>2</sub> | Na <sub>2</sub> CO <sub>3</sub> |             | THF         | 24 | $< 10^{d}$                        | $0^d$                           |

<sup>*a*</sup> Reaction conditions: **1a** (0.45 mmol), **2a** (0.3 mmol), catalyst (0.03 mmol), base (1.2 mmol), *n*-C<sub>4</sub>F<sub>9</sub>I (0.48 mmol), and oxidant (0.825 mmol) in solvent (2 mL) at 70 °C under air; (TBHP = *tert*-butyl hydroperoxide; TBPB = *tert*butyl peroxybenzoate; AIBN = 2,2'-azobis(2-methylpropionitrile); DHP = cumyl hydroperoxide; TBN = *tert*-butyl nitrite; PMEDA = 1,1,4,7,7-pentamethyl-diethylenetriamine). <sup>*b*</sup> Yields were determined by NMR analysis with 1,4dimethoxybenzene as an internal standard. <sup>*c*</sup> Isolated yields. <sup>*d*</sup> **1a** (0.6 mmol), *n*-C<sub>4</sub>F<sub>9</sub>I (0.48 mmol), Na<sub>2</sub>CO<sub>3</sub> (1.2 mmol), and oxidant (3.67 equiv) were employed. <sup>*e*</sup> Without *n*-C<sub>4</sub>F<sub>9</sub>I.

# 7. Mechanistic studies

# 1) Trapping experiment with 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)



A solution of styrene (**1a**; 63 mg, 0.6 mmol, 2 equiv), 1-((isocyanomethyl)sulfonyl)-4methylbenzene (**2a**; 59 mg, 0.3 mmol, 1 equiv),  $N_r$ -bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), perfluorobutyl iodide (166 mg, 0.48 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 4 equiv), 2,2,6,6-tetramethylpiperidin-1-oxyl (141 mg, 0.9 mmol, 3 equiv, TEMPO), and *tert*-butyl hydroperoxide (142 mg, 1.1 mmol, 3.67 equiv, TBHP, 70% solution in H<sub>2</sub>O) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. No (*E*)-1-methyl-4-(styrylsulfonyl)benzene (**3a**) was detected.



A solution of styrene (**1a**; 63 mg, 0.6 mmol, 2 equiv), 1-((isocyanomethyl)sulfonyl)-4methylbenzene (**2a**; 59 mg, 0.3 mmol, 1 equiv), N,N-bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), perfluorobutyl iodide (166 mg, 0.48 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 4 equiv), 2,2,6,6-tetramethylpiperidin-1-oxyl (141 mg, 0.9 mmol, 3 equiv, TEMPO), and *tert*-butyl nitrite (114 mg, 1.1 mmol, 3.67 equiv, TBN) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. No 1-phenyl-2-tosylethan-1-one oxime (**5a**) was detected.

Page 1

#### **Elemental Composition Report**

| Single Ma<br>Tolerance =<br>Element pre<br>Number of i                    | ss Analysis<br>= 10.0 PPM /<br>ediction: Off<br>sotope peaks u       | DBE: n                          | nin = -1.5<br>i-FIT = 3        |                        | calcd for $C_{10}H_{20}NO_3S^+$ [M+H] <sup>1</sup> : 312.1628 |                   |              |              |                 |
|---------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|--------------------------------|------------------------|---------------------------------------------------------------|-------------------|--------------|--------------|-----------------|
| Monoisotopio<br>93 formula(e<br>Elements Us<br>C: 15-25 I<br>CXQ-27 836 ( | Mass, Even Ele<br>) evaluated with<br>ed:<br>H: 25-28 N: 0<br>3.126) | ectron lo<br>1 results<br>-3 O: | ns<br>s within lim<br>1-3 S: 1 | iits (up to<br>1-1 Fe: | 50 best iso<br>0-3 Se:                                        | otopic mat<br>0-2 | ches for eac | ch mass)     | found: 312.1646 |
| 1: TOF MS ES                                                              | S+                                                                   |                                 |                                |                        |                                                               | 212 1646          |              |              | 7.33e+002       |
| 100                                                                       |                                                                      |                                 |                                |                        |                                                               | 512.1040          |              |              | m/7             |
| 311.900                                                                   |                                                                      |                                 | 312.000                        |                        | 312.100                                                       |                   | 12.200       | 312.300      | 312.400         |
| Minimum:<br>Maximum:                                                      |                                                                      | 5.0                             | 10.0                           | -1.5<br>50.0           |                                                               |                   |              |              |                 |
| Mass                                                                      | Calc. Mass                                                           | mDa                             | PPM                            | DBE                    | i-FIT                                                         | Norm              | Conf(%)      | Formula      |                 |
| 312.1646                                                                  | 312.1633                                                             | 1.3                             | 4.2                            | 4.5                    | 23.2                                                          | n/a               | n/a          | C16 H26 N O3 | S               |

| Elemental                                                                                                                                                                                                                                                | Compositio                                                 | n Repor                 | t                    | Page                  | 1                                                                                                                        |          |         |                         |     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------|----------|---------|-------------------------|-----|--|
| Single Mar<br>Tolerance =<br>Element pre<br>Number of is                                                                                                                                                                                                 | ss Analysis<br>10.0 PPM /<br>ediction: Off<br>sotope peaks | DBE: mir<br>used for i- | n = -1.5,<br>FIT = 3 |                       | calcd for C <sub>11</sub> H <sub>21</sub> N <sub>2</sub> C <sup>6</sup> [M+H] <sup>+</sup> : 197.1648<br>found: 197.1649 |          |         |                         |     |  |
| Monoisotopic Mass, Even Electron Ions<br>51 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)<br>Elements Used:<br>C: 10-15 H: 20-25 N: 0-3 O: 1-3 Fe: 0-3 Se: 0-2<br>CXQ-27 443 (1.664)<br>1: TOF MS ES+ |                                                            |                         |                      |                       |                                                                                                                          |          |         |                         |     |  |
| 100-                                                                                                                                                                                                                                                     |                                                            |                         |                      |                       |                                                                                                                          | 197.1649 |         | 3.656+0                 | 102 |  |
|                                                                                                                                                                                                                                                          | 197.000                                                    | 197.050                 | 19                   | 97. <mark>1</mark> 00 | 197.1                                                                                                                    | 150      | 197.200 | 197.250 197.300 197.350 | n/z |  |
| Minimum:<br>Maximum:                                                                                                                                                                                                                                     |                                                            | 5.0                     | 10.0                 | -1.5<br>50.0          |                                                                                                                          |          |         |                         |     |  |
| Mass                                                                                                                                                                                                                                                     | Calc. Mass                                                 | mDa                     | PPM                  | DBE                   | i-FIT                                                                                                                    | Norm     | Conf(%) | Formula                 |     |  |
| 197.1649                                                                                                                                                                                                                                                 | 197.1654                                                   | -0.5                    | -2.5                 | 2.5                   | 20.1                                                                                                                     | n/a      | n/a     | C11 H21 N2 O            |     |  |

#### 2) Control experiment without 1-((isocyanomethyl)sulfonyl)-4-methylbenzene (2a)



A solution of styrene (**1a**; 63 mg, 0.6 mmol, 2 equiv), N,N-bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), perfluorobutyl iodide (166 mg, 0.48 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 4 equiv), and *tert*-butyl hydroperoxide (142 mg, 1.1 mmol, 3.67 equiv, TBHP, 70% solution in H<sub>2</sub>O) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. No products **I-IV** were obtained under the optimized conditions.

#### 3) Control experiment without styrene (1a)



A solution of 1-((isocyanomethyl)sulfonyl)-4-methylbenzene (**2a**; 59 mg, 0.3 mmol, 1 equiv), *N*,*N*-bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), perfluorobutyl iodide (166 mg, 0.48 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 4 equiv), and *tert*-butyl hydroperoxide (142 mg, 1.1 mmol, 3.67 equiv, TBHP, 70% solution in H<sub>2</sub>O) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. No 1-((isocyanomethyl)sulfonyl)-4-methylbenzene **2a** was recovered under the optimized conditions. The reaction is efficient for the cleavage of C-S bond in TosMIC.

#### 4) Control experiment without perfluorobutyl iodide



A solution of styrene (**1a**; 63 mg, 0.6 mmol, 2 equiv), 1-((isocyanomethyl)sulfonyl)-4methylbenzene (**2a**; 59 mg, 0.3 mmol, 1 equiv), N,N-bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 4 equiv), and *tert*-butyl hydroperoxide (142 mg, 1.1 mmol, 3.67 equiv, TBHP, 70% solution in H<sub>2</sub>O) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. Yields were determined by NMR analysis with 1,4dimethoxybenzene as an internal standard.

## 5) Control experiment using iodine instead of perfluorobutyl iodide



A solution of styrene (**1a**; 63 mg, 0.6 mmol, 2 equiv), 1-((isocyanomethyl)sulfonyl)-4methylbenzene (**2a**; 59 mg, 0.3 mmol, 1 equiv), N,N-bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), iodine (122 mg, 0.48 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 4 equiv), and *tert*-butyl hydroperoxide (142 mg, 1.1 mmol, 3.67 equiv, TBHP, 70% solution in H<sub>2</sub>O) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. The reaction was then quenched by saturated NaHSO<sub>3</sub> solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was separated and washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (20/1~6/1) as eluent to afford the pure product (*E*)-1-methyl-4-(styrylsulfonyl)benzene (**3a**) in 51% yield (40 mg).

#### 6) Control experiments using other perfluoroalkyl halides instead of perfluorobutyl iodide



A solution of styrene (1a; 63 mg, 0.6 mmol, 2 equiv), 1-((isocyanomethyl)sulfonyl)-4methylbenzene (2a; 59 mg, 0.3 mmol, 1 equiv), N,N-bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), n-C<sub>n</sub>F<sub>2n+1</sub>I (0.48 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 4 equiv), and *tert*-butyl hydroperoxide (TBHP; 142 mg, 1.1 mmol, 3.67 equiv, 70% solution in H<sub>2</sub>O) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. The reaction was then quenched by saturated NaHSO<sub>3</sub> solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was separated and washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.



7) Control experiment by using (*E*)-1-methyl-4-(styrylsulfonyl)benzene (3a)

A solution of (*E*)-1-methyl-4-(styrylsulfonyl)benzene (**3a**; 78 mg, 0.3 mmol, 1 equiv), *N*,*N*-bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), perfluorobutyl iodide (166 mg, 0.48 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 4 equiv), and *tert*-butyl nitrite (114 mg, 1.1 mmol, 3.67 equiv, TBN) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. No 1-phenyl-2-tosylethan-1-one oxime (**5a**) was detected.

#### 8) Control experiment by using cinnamic acid (6)



A solution of cinnamic acid (6; 89 mg, 0.3 mmol, 1 equiv), 1-((isocyanomethyl)sulfonyl)-4methylbenzene (**2a**; 59 mg, 0.3 mmol, 1 equiv), N,N-bis(salicylidene)ethylenediamine cobalt(II) (10 mg, 0.03 mmol, 0.1 equiv), perfluorobutyl iodide (166 mg, 0.48 mmol, 1.6 equiv), Na<sub>2</sub>CO<sub>3</sub>(127 mg, 1.2 mmol, 4 equiv), and *tert*-butyl hydroperoxide (TBHP; 142 mg, 1.1 mmol, 3.67 equiv, 70% solution in H<sub>2</sub>O) in THF (1.5 mL) was stirred under air atmosphere at 70 °C (oil bath) for 24 h. However, no desired product of (*E*)-1-methyl-4-(styrylsulfonyl)benzene (**3a**) was detected.

#### 8. Characterization data for products



#### (E)-1-Methyl-4-(styrylsulfonyl)benzene (3a):

Yield = 75% (58 mg). White solid. M.p. = 173.4–173.8 °C.

**IR** (KBr): *v* = 3045, 2923, 1595, 1449, 1304, 1143, 973, 810 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.86 – 7.81 (m, 2H), 7.66 (d, *J* = 15.4 Hz, 1H), 7.49 (s, 2H), 7.42

- 7.36 (m, 3H), 7.34 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 15.4 Hz, 1H), 2.43 (s, 3H) ppm.

<sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 144.4, 141.9, 137.6, 132.4, 131.1, 129.9, 129.0, 128.5, 127.7,

127.5, 21.6 ppm.

HRMS (m/z): calcd for C<sub>15</sub>H<sub>15</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 259.0787, found: 259.0793.



#### (E)-1-Fluoro-4-(2-tosylvinyl)benzene (3b):

Yield = 49% (41 mg). White solid. M.p. = 177.1–178.5 °C.

**IR** (KBr):  $v = 3269, 2927, 1582, 1392, 1151, 945, 816 \text{ cm}^{-1}$ .

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): *δ* = 7.82 (dd, *J* = 8.4, 1.9 Hz, 2H), 7.62 (d, *J* = 15.4 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.12 – 7.04 (m, 2H), 6.79 (d, *J* = 15.4 Hz, 1H), 2.43 (s, 3H) ppm.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -107.8 (s) ppm.

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 164.2 (d,  $J_{C-F}$  = 251.0 Hz), 144.4, 140.6, 137.6, 130.5 (d,  $J_{C-F}$  = 8.7 Hz), 130.0, 128.7 (d,  $J_{C-F}$  = 3.4 Hz), 127.6, 127.4 (d,  $J_{C-F}$  = 2.6 Hz), 116.2 (d,  $J_{C-F}$  = 21.9 Hz), 21.6 ppm.

HRMS (m/z): calcd for C<sub>15</sub>H<sub>14</sub>FO<sub>2</sub>S [M+H]<sup>+</sup> 277.0693, found: 277.0699.



#### (E)-1-Chloro-4-(2-tosylvinyl)benzene (3c):

Yield = 57% (50 mg). Light yellow solid. M.p. = 127.1–129.2 °C.

**IR** (KBr): v = 3053, 2922, 1613, 1489, 1304, 1011, 787 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.82 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 15.4 Hz, 1H), 7.43 – 7.32 (m, 6H), 6.84 (d, *J* = 15.4 Hz, 1H), 2.43 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 144.5, 140.3, 137.4, 137.0, 130.8, 130.0, 129.6, 129.3, 128.1, 127.7, 21.6 ppm.

HRMS (m/z): calcd for C<sub>15</sub>H<sub>14</sub>ClO<sub>2</sub>S [M+H]<sup>+</sup> 293.0398, found: 293.0403.



#### (E)-1-Chloro-3-(2-tosylvinyl)benzene (3d):

Yield = 47% (41 mg). Brown oil.

**IR** (KBr):  $v = 3051, 2926, 1594, 1301, 1085, 810, 778 \text{ cm}^{-1}$ .

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.85 – 7.80 (m, 2H), 7.59 (d, *J* = 15.4 Hz, 1H), 7.45 (t, *J* = 1.7

Hz, 1H), 7.39 – 7.30 (m, 5H), 6.87 (d, *J* = 15.4 Hz, 1H), 2.44 (s, 3H) ppm.

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): *δ* = 144.6, 140.1, 137.2, 135.0, 134.2, 130.9, 130.3, 130.0, 129.1, 128.1, 127.8, 126.7, 21.6 ppm.

HRMS (m/z): calcd for C<sub>15</sub>H<sub>14</sub>ClO<sub>2</sub>S [M+H]<sup>+</sup> 293.0398, found: 293.0406.



#### (E)-1-Chloro-2-(2-tosylvinyl)benzene (3e):

Yield = 42% (37 mg). Yellow solid. M.p. = 159.8–160.4 °C.

**IR** (KBr): *v* = 3055, 2922, 1706, 1439, 1320, 1145, 964, 808 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.05$  (d, J = 15.5 Hz, 1H), 7.87 – 7.81 (m, 2H), 7.50 (dd, J = 7.8,

1.7 Hz, 1H), 7.41 (dd, J = 8.0, 1.3 Hz, 1H), 7.38 – 7.33 (m, 2H), 7.32 (dd, J = 8.0, 1.7 Hz, 1H), 7.28

-7.25 (m, 1H), 6.90 (d, J = 15.4 Hz, 1H), 2.44 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 144.6, 137.7, 137.2, 135.1, 131.8, 130.6, 130.3, 130.2, 130.0, 128.1, 127.8, 127.1, 21.6 ppm.

HRMS (m/z): calcd for C<sub>15</sub>H<sub>14</sub>ClO<sub>2</sub>S [M+H]<sup>+</sup> 293.0398, found: 293.0403.



#### (E)-1-Bromo-4-(2-tosylvinyl)benzene (3f):

Yield = 53% (54 mg). Yellow solid. M.p. = 145.5–146.9 °C.

**IR** (KBr): v = 3043, 2925, 1619, 1487, 1303, 1142, 813 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.86 – 7.79 (m, 2H), 7.58 (d, *J* = 15.4 Hz, 1H), 7.54 – 7.48 (m,

2H), 7.34 (td, *J* = 6.7, 1.2 Hz, 4H), 6.86 (d, *J* = 15.4 Hz, 1H), 2.43 (s, 3H) ppm.

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): *δ* = 144.5, 140.4, 137.3, 132.3, 131.3, 130.0, 129.8, 128.2, 127.7, 125.4, 21.6 ppm.

HRMS (m/z): calcd for C<sub>15</sub>H<sub>14</sub><sup>79</sup>BrO<sub>2</sub>S [M+H]<sup>+</sup> 336.9892, found: 336.9898.



(*E*)-1-Iodo-4-(2-tosylvinyl)benzene (3g): Yield = 55% (64 mg). White solid. M.p. = 165.2–167.2 °C. IR (KBr):  $\nu$  = 3041, 1617, 1580, 1481, 1303, 1142, 972, 857 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.82 (d, *J* = 8.2 Hz, 2H), 7.75 – 7.70 (m, 2H), 7.56 (d, *J* = 15.4 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.21 – 7.17 (m, 2H), 6.86 (d, *J* = 15.4 Hz, 1H), 2.43 (s, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 144.5, 140.6, 138.2, 137.3, 131.8, 130.0, 129.8, 128.3, 127.7, 97.6, 21.6 ppm. HRMS (m/z): calcd for C<sub>15</sub>H<sub>14</sub>IO<sub>2</sub>S [M+H]<sup>+</sup> 384.9754, found: 384.9759.



(*E*)-1-Methyl-4-((4-methylstyryl)sulfonyl)benzene (3h):

Yield = 56% (46 mg). White solid. M.p. = 133.4–135.0 °C.

**IR** (KBr):  $v = 3045, 2921, 1607, 1314, 1141, 795, 659 \text{ cm}^{-1}$ .

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.82 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 15.4 Hz, 1H), 7.35 (dd, *J* = 12.4,

8.1 Hz, 4H), 7.18 (d, *J* = 7.9 Hz, 2H), 6.80 (d, *J* = 15.4 Hz, 1H), 2.43 (s, 3H), 2.36 (s, 3H) ppm.

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 144.2, 141.9, 141.7, 137.8, 129.9, 129.7, 129.6, 128.5, 127.6, 126.3,

21.6, 21.5 ppm. 144.2, 141.9, 141.7, 137.8, 129.9, 129.8, 129.7, 129.6, 128.5, 127.6, 126.3,

**HRMS** (m/z): calcd for  $C_{16}H_{17}O_2S$  [M+H]<sup>+</sup> 273.0944, found: 273.0939.

#### (E)-1-Methyl-3-(2-tosylvinyl)benzene (3i):

Yield = 50% (41 mg). Light yellow oil.

**IR** (KBr): *v* = 3047, 2922, 1614, 1452, 1301, 1144, 1085, 844, 663 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.84 – 7.80 (m, 2H), 7.62 (d, *J* = 15.4 Hz, 1H), 7.36 – 7.31 (m,

2H), 7.30 – 7.25 (m, 3H), 7.23 – 7.19 (m, 1H), 6.83 (d, *J* = 15.4 Hz, 1H), 2.43 (s, 3H), 2.34 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 144.3, 142.1, 138.7, 137.7, 132.3, 131.9, 129.9, 129.0, 128.9, 127.6, 127.2, 125.7, 21.6, 21.2 ppm.

HRMS (m/z): calcd for C<sub>16</sub>H<sub>17</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 273.0944, found: 273.0949.



(E)-1-Methyl-2-(2-tosylvinyl)benzene (3j):

Yield = 50% (41 mg). Brown solid. M.p. = 174.4–176.0 °C.

**IR** (KBr):  $v = 3058, 2966, 1614, 1596, 1302, 1143, 1086, 961, 760 \text{ cm}^{-1}$ .

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.94 (d, *J* = 15.3 Hz, 1H), 7.83 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.31 – 7.25 (m, 1H), 7.21 – 7.15 (m, 2H), 6.78 (d, *J* = 15.3 Hz, 1H), 2.44 (s, 3H), 2.43 (s, 3H) ppm.

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): *δ* = 144.3, 139.5, 138.0, 137.6, 131.2, 130.9, 130.7, 129.9, 128.4, 127.6, 126.7, 126.4, 21.5, 19.7 ppm.

HRMS (m/z): calcd for C<sub>16</sub>H<sub>17</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 273.0944, found: 273.0949.



# (E)-1-(Tert-butyl)-4-(2-tosylvinyl)benzene (3k):

Yield = 53% (50 mg). White solid. M.p. = 149.4–150.3 °C.

**IR** (KBr):  $v = 3051, 2964, 1615, 1316, 1084, 975, 800 \text{ cm}^{-1}$ .

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.82 (d, *J* = 8.3 Hz, 2H), 7.64 (d, *J* = 15.4 Hz, 1H), 7.44 – 7.38 (m, 4H), 7.33 (d, *J* = 8.1 Hz, 2H), 6.81 (d, *J* = 15.4 Hz, 1H), 2.42 (s, 3H), 1.30 (s, 9H) ppm.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 154.8, 144.2, 141.9, 137.9, 129.9, 129.6, 128.3, 127.6, 126.5, 126.0, 34.9, 31.0, 21.5 ppm.

HRMS (m/z): calcd for C<sub>19</sub>H<sub>23</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 315.1413, found: 315.1415.



# (E)- 1-Methoxy-4-(2-tosylvinyl)benzene (3l):

Yield = 34% (29 mg). Yellow solid. M.p. = 79.8–80.3 °C.

**IR** (KBr): v = 2923, 1603, 1513, 1316, 1141, 1024, 974, 757 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): *δ* = 7.82 (d, *J* = 8.3 Hz, 2H), 7.61 (d, *J* = 15.3 Hz, 1H), 7.42 (d, *J* = 8.7 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 6.70 (d, *J* = 15.3 Hz, 1H), 3.83 (s, 3H), 2.43 (s, 3H) ppm.

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): *δ* = 161.9, 144.1, 141.7, 138.1, 130.3, 129.8, 127.5, 125.0, 124.7, 114.4, 55.4, 21.6 ppm.

**HRMS** (m/z): calcd for  $C_{16}H_{17}O_3S [M+H]^+ 289.0893$ , found: 289.0898.



# (E)-1-(2-Tosylvinyl)naphthalene (3m):

Yield = 58% (54 mg). Yellow oil.

**IR** (KBr): v = 3045, 2929, 1595, 1301, 1144, 1084, 792 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): *δ* = 8.49 (d, *J* = 15.2 Hz, 1H), 8.15 (d, *J* = 8.3 Hz, 1H), 7.92 – 7.84 (m, 4H), 7.65 – 7.52 (m, 3H), 7.43 (t, *J* = 7.7 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 15.2 Hz, 1H), 2.43 (s, 3H) ppm.

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 144.4, 138.9, 137.5, 133.6, 131.3, 131.2, 130.0, 129.8, 129.5, 128.8,

127.7, 127.2, 126.4, 125.6, 125.2, 123.0, 21.6 ppm.

HRMS (m/z): calcd for C<sub>19</sub>H<sub>17</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 309.0944, found: 309.0949.



#### (*E*)-1-Methyl-4-(styrylsulfonyl)ferrocene (3n):

Yield = 50% (55 mg). Brown solid. M.p. = 131.0–132.3 °C.

**IR** (KBr):  $v = 3047, 2918, 1609, 1311, 1084, 963, 722 \text{ cm}^{-1}$ .

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.86 – 7.72 (m, 2H), 7.57 (d, *J* = 15.2 Hz, 1H), 7.32 (d, *J* = 8.7 Hz, 2H), 6.40 (d, *J* = 15.1 Hz, 1H), 4.47 – 4.44 (m, 2H), 4.44 – 4.42 (m, 2H), 4.14 (s, 5H), 2.42 (s, 3H) ppm. <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 143.9, 143.6, 138.4, 129.8, 127.3, 123.0, 76.3, 71.4, 69.7, 68.9, 21.6 ppm.

HRMS (m/z): calcd for C<sub>19</sub>H<sub>19</sub>FeO<sub>2</sub>S [M+H]<sup>+</sup> 367.0450, found: 367.0457.



#### 1-Methyl-4-((2-phenylallyl)sulfonyl)benzene (4a):

Yield = 25% (20 mg). White solid. M.p. = 93.1–94.7 °C.

**IR** (KBr):  $v = 3058, 2976, 1624, 1446, 1313, 709 \text{ cm}^{-1}$ .

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.66 (d, J = 8.3 Hz, 2H), 7.29 – 7.18 (m, 7H), 5.59 (s, 1H), 5.21 (s,

1H), 4.25 (s, 2H), 2.39 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 144.6, 138.8, 136.5, 135.3, 129.5, 128.6, 128.3, 127.9, 126.2, 121.7,
62.1, 21.6 ppm.

HRMS (m/z): calcd for C<sub>16</sub>H<sub>17</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 273.0944, found: 273.0949.



1-(Cinnamylsulfonyl)-4-methylbenzene (4b):

Yield = 22% (18 mg). White solid. M.p. = 113.4–114.8 °C.

**IR** (KBr): *v* = 3022, 2920, 1592, 1489, 1318, 1151, 964, 816 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.78 - 7.74$  (m, 2H), 7.35 - 7.27 (m, 7H), 6.39 (d, J = 15.9 Hz, 1H),

6.16 – 6.05 (m, 1H), 3.94 (d, *J* = 8.6 Hz, 2H), 2.44 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 144.7, 139.0, 135.8, 135.4, 129.7, 128.6, 128.5, 128.4, 126.6, 115.3, 60.5, 21.6 ppm.

**HRMS** (m/z): calcd for C<sub>16</sub>H<sub>17</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 273.0944, found: 273.0949.



#### 1-Phenyl-2-tosylethan-1-one oxime (5a):

Yield = 73% (63 mg). Light yellow solid. M.p. = 170.8–171.9 °C.

**IR** (KBr):  $v = 3061, 2920, 1593, 1464, 1318, 1151, 739 \text{ cm}^{-1}$ .

<sup>1</sup>**H NMR** (400 MHz, DMSO- $D_6$ ):  $\delta = 11.75$  (s, 1H), 7.62 – 7.57 (m, 4H), 7.34 – 7.30 (m, 5H), 4.87 (s, 1H), 7.62 – 7.57 (m, 2H), 7.34 – 7.30 (m, 5H), 4.87 (s, 1H), 7.62 – 7.57 (m, 2H), 7.54 – 7.54 (m, 2H), 7.54 (m, 2H), 7.54 (m, 2H), 7.54 (m, 2H), 7.54 (m,

2H), 2.34 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, DMSO-D<sub>6</sub>): δ = 145.7, 144.4, 136.9, 134.6, 129.5, 129.0, 128.2, 127.9, 126.4, 51.4, 21.1 ppm.

**HRMS** (m/z): calcd for C<sub>15</sub>H<sub>16</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> 290.0845, found: 290.0851.



# 1-(4-Fluorophenyl)-2-tosylethan-1-one oxime (5b):

Yield = 61% (56 mg). White solid. M.p. = 194.0–195.6 °C.

**IR** (KBr): *v* = 3241, 3082, 2960, 2383, 1594, 1317, 1150, 843, 671 cm<sup>-1</sup>.

<sup>1</sup>**H** NMR (400 MHz, MeOH- $D_4$ ):  $\delta = 7.68 - 7.61$  (m, 4H), 7.31 (d, J = 8.5 Hz, 2H), 7.07 - 7.01 (m,

2H), 4.84 (s, 2H), 2.41 (s, 3H) ppm.

<sup>19</sup>**F NMR** (376 MHz, MeOH- $D_4$ ):  $\delta$  = -114.5 (s) ppm.

<sup>13</sup>C NMR (100 MHz, MeOH- $D_4$ ):  $\delta = 164.7$  (d,  $J_{C-F} = 245.8$  Hz), 146.4 (d,  $J_{C-F} = 10.7$  Hz), 138.0,

132.4 (d,  $J_{C-F} = 3.3$  Hz), 130.5, 129.8, 129.8, 129.5, 116.1 (d,  $J_{C-F} = 21.9$  Hz), 52.9, 21.6 ppm.

HRMS (m/z): calcd for C<sub>15</sub>H<sub>15</sub>FNO<sub>3</sub>S [M+H]<sup>+</sup> 308.0751, found: 308.0757.



#### 1-(4-Chlorophenyl)-2-tosylethan-1-one oxime (5c):

Yield = 49% (48 mg). White solid. M.p. = 167.4–169.0 °C.

**IR** (KBr):  $v = 3289, 2928, 2405, 1593, 1317, 953, 767 \text{ cm}^{-1}$ .

<sup>1</sup>**H NMR** (400 MHz, MeOH-*D*<sub>4</sub>): δ = 7.64 (d, *J* = 8.3 Hz, 2H), 7.61 – 7.57 (m, 2H), 7.32 – 7.27 (m, 4H), 4.83 (s, 2H), 2.40 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, MeOH- $D_4$ ):  $\delta = 157.0, 146.4, 137.9, 136.0, 134.7, 130.6, 129.5, 129.4, 129.2, 129.2, 129.4, 129.2, 129.4, 129.2, 129.4, 129.2, 129.4, 129.2, 129.4, 129.2, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4$ 

52.7, 21.6 ppm.

HRMS (m/z): calcd for  $C_{15}H_{15}CINO_3S [M+H]^+ 324.0456$ , found: 324.0461.

**1-(3-Chlorophenyl)-2-tosylethan-1-one oxime (5d):** Yield = 38% (37 mg). Light yellow solid. M.p. = 161.1–162.6 °C. **IR** (KBr): ν = 3045, 2923, 2409, 1595, 1449, 1304, 1143, 973, 810, 747 cm<sup>-1</sup>. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ = 8.56 (s, 1H, NOH), 7.74 – 7.68 (m, 2H), 7.55 – 7.50 (m, 2H), 7.35 – 7.33 (m, 1H), 7.30 – 7.28 (m, 1H), 7.26 – 7.23 (m, 2H), 4.70 (s, 2H), 2.40 (s, 3H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): δ = 146.7, 145.1, 136.2, 135.4, 134.6, 129.8, 129.7, 129.6, 128.4, 126.5, 124.9, 52.5, 21.6 ppm.

HRMS (m/z): calcd for C<sub>15</sub>H<sub>15</sub>ClNO<sub>3</sub>S [M+H]<sup>+</sup> 324.0456, found: 324.0461.

#### 1-(4-Bromophenyl)-2-tosylethan-1-one oxime (5f):

Yield = 61% (67 mg). Light yellow solid. M.p. = 172.3–174.1 °C.

**IR** (KBr): v = 3292, 2929, 2413, 1587, 1409, 1317, 954, 831 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, MeOH- $D_4$ ):  $\delta = 7.67 - 7.62$  (m, 2H), 7.55 - 7.50 (m, 2H), 7.48 - 7.43 (m, 2H),

7.31 (d, *J* = 8.4 Hz, 2H), 4.84 (s, 2H), 2.42 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, MeOH-D<sub>4</sub>): δ = 146.5, 146.5, 137.9, 135.1, 132.4, 130.6, 129.5, 129.4, 124.2, 52.6, 21.6 ppm.

HRMS (m/z): calcd for  $C_{15}H_{15}^{79}BrNO_3S$  [M+H]<sup>+</sup> 367.9951, found: 367.9956.

# 1-(4-Iodophenyl)-2-tosylethan-1-one oxime (5g):

Yield = 59% (74 mg). Light yellow solid. M.p. = 186.4–187.1 °C.

**IR** (KBr): v = 3045, 2921, 1917, 1607, 1314, 1141, 975, 795 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, MeOH-*D*<sub>4</sub>): δ = 7.66 – 7.61 (m, 4H), 7.38 – 7.34 (m, 2H), 7.31 – 7.27 (m, 2H), 4.82 (s, 2H), 2.42 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, MeOH-D<sub>4</sub>): δ = 146.7, 146.5, 138.5, 137.8, 135.6, 130.6, 129.5, 129.4, 95.8, 52.5, 21.6 ppm.

HRMS (m/z): calcd for C<sub>15</sub>H<sub>15</sub>INO<sub>3</sub>S [M+H]<sup>+</sup> 415.9812, found: 415.9817.



#### 1-(*p*-Tolyl)-2-tosylethan-1-one oxime (5h):

Yield = 64% (58 mg). Light yellow solid. M.p. = 151.3–152.0 °C.

**IR** (KBr): *v* = 3265, 3005, 2919, 2404, 1595, 1405, 1320, 1163, 1053, 947, 772 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.92 (s, 1H, NOH), 7.72 – 7.67 (m, 2H), 7.51 – 7.45 (m, 2H), 7.24 –

7.19 (m, 2H), 7.17 – 7.12 (m, 2H), 4.71 (s, 2H), 2.36 (s, 6H) ppm.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 147.6, 144.8, 140.0, 136.4, 130.7, 129.3, 129.2, 128.4, 126.4, 52.7, 21.5, 21.2 ppm.

HRMS (m/z): calcd for C<sub>16</sub>H<sub>18</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> 304.1002, found: 304.1007.



1-(*m*-Tolyl)-2-tosylethan-1-one oxime (5i):

Yield = 66% (60 mg). Light yellow solid. M.p. = 131.8–132.6 °C.

**IR** (KBr):  $v = 3045, 2389, 1599, 1407, 1068, 955 \text{ cm}^{-1}$ .

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.85 (s, 1H, NOH), 7.69 (d, *J* = 8.2 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 1H),

7.33 (s, 1H), 7.24 – 7.18 (m, 4H), 4.72 (s, 2H), 2.36 (s, 3H), 2.32 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): *δ* = 144.8, 138.1, 136.4, 133.5, 130.5, 130.0, 129.4, 128.4, 128.4, 127.1,

123.7, 52.8, 21.5, 21.3 ppm.

HRMS (m/z): calcd for C<sub>16</sub>H<sub>18</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> 304.1002, found: 304.1007.



# 1-(4-(*Tert*-butyl)phenyl)-2-tosylethan-1-one oxime (5j):

Yield = 48% (50 mg). Light yellow solid. M.p. = 181.7–183.6 °C.

**IR** (KBr): v = 3056, 2962, 2389, 1681, 1568, 1506, 1093, 798 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.67 (s, 1H, NOH), 7.72 – 7.67 (m, 2H), 7.55 – 7.49 (m, 2H), 7.37 –

7.33 (m, 2H), 7.23 - 7.18 (m, 2H), 4.72 (s, 2H), 2.36 (s, 3H), 1.32 (s, 9H) ppm.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): *δ* = 153.1, 147.6, 144.7, 136.5, 130.7, 129.4, 128.4, 126.3, 125.5, 52.6,

34.7, 31.1, 21.6 ppm.

HRMS (m/z): calcd for C<sub>19</sub>H<sub>24</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> 346.1471, found: 346.1477.



## 1-(4-Methoxyphenyl)-2-tosylethan-1-one oxime (5k):

Yield = 32% (31 mg). Yellow solid. M.p. = 155.9–157.9 °C.

**IR** (KBr): *v* = 3319, 2989, 2845, 1605, 1514, 1316, 1250, 945, 813 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.62$  (s, 1H, NOH), 7.70 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 8.7 Hz, 2H),

7.23 (d, *J* = 8.0 Hz, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 4.70 (s, 2H), 3.83 (s, 3H), 2.38 (s, 3H) ppm.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 160.9, 147.3, 144.8, 136.4, 129.4, 128.4, 128.0, 126.1, 113.9, 55.3, 52.6, 21.6 ppm.

HRMS (m/z): calcd for C<sub>16</sub>H<sub>18</sub>NO<sub>4</sub>S [M+H]<sup>+</sup> 320.0951, found: 320.0955.

9. The <sup>1</sup>H , <sup>19</sup>F, <sup>13</sup>C spectra of products























































