Supporting Information

Ir-Catalyzed Ring-Opening of Oxa(aza)benzonorbornadienes with Water or Alcohols

Xin Yang, Wen Yang, Yongqi Yao, Yingying Deng, and Dingqiao Yang*

Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.

Phone: +86 20 31040403; Fax: +86 20 31040403. yangdq@scnu.edu.cn (D.Y.).

Table of Contents

Experimental procedures	S1
General experiment	S1
Materials	S1
nstrumentation	S1
The general procedure (A) for new compounds of 3a-k	S1
The general procedure (B) for the compounds of 5a-q	S1
Cypical procedure (C) for synthesis of 6	S1
Characterization data of 3a-k , 5a-q and 6	S2
Copies of ¹ H and ¹³ C NMR spectra of 3a–k , 5a–q and ¹⁹ F NMR spectra for 3i and 5d	S9
References	S40

1. Experimental Procedures

General Experimental. Unless otherwise noted, reactions were carried out in single-neck or two-neck flask round bottomed flasks, with magnetic stirring. Air- or water-sensitive liquids and solutions were transferred *via* syringe. Organic solutions were concentrated by rotary evaporation at 23–40 °C under 40 Torr (house vacuum). Analytical thin layer chromatography (TLC) was performed with Silicycle normal phase glass plates (0.25 mm, 60-A pore size, 230-400 mesh). Visualization was done under a 254 nm UV light source.

Materials. Unless otherwise stated, all starting materials, catalysts, and solvents were commercially available and were used as purchased. Super anhydrous solvent 1,4-dioxane, THF, CH₃CN, toluene and DMF were used without any pretreatment. Water was used as a solvent by deionization. Flash column chromatography was performed using the indicated solvent system on Qingdao-Haiyang silica gel (200–300 mesh). Oxa(aza)bicyclic alkenes¹ were prepared according to literature procedures.

Instrumentation. Proton nuclear magnetic resonance spectra (¹H NMR) spectra and carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 23 °C with a Varian Mercury NMR spectrometer. Recorded shifts for protons are reported in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvents (CHCl₃: δ 7.26, CD₂HOD: δ 3.30). Chemical shifts for carbon resonances are reported in parts per million (δ scale) downfield from tetramethylsilane and are referenced to the solvent (CDCl₃: δ 77.0, CD₃OD: δ 49.2). Data are represented as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), and coupling constant (*J*, Hz). HRMS (ion trap) were obtained from mass spectrometer (ESI) and MS were recorded using EI at 70 eV. Melting points were recorded on an electrothermal digital melting point apparatus and were uncorrected.

The general procedure (A) for iridium-catalyzed ring-opening of oxa(aza)benzonorbornadienes (1a–1k) with water: All experiments were carried out under air. [Ir(COD)Cl]₂ (1.4–3.4 mg, 1–2.5 mol%), TBAI (74 mg, 1 equiv.), oxa(aza)benzonorbornadienes (1a–k), (0.2 mmol), 1,4-dioxane (2.0 mL) and water (1.0 mL) were simultaneously added to a 10.0 mL round-bottomed flask. After the mixture was stirred at 80 °C in oil bath for 30 min until it was completed as judged by thin-layer chromatography. After cooling to the room temperature, the mixture was extracted three times with ethyl acetate (3×10 mL) and combined organic layer, and saturated brine to wash. The combined organic layer was dried over Na₂SO₄, and volatiles were removed under reduced pressure. The residue was purified by column chromatography (200–300 mesh silica gels) to obtain the desired products **3**.

The general procedure (B) for iridium-catalyzed ring-opening of oxa(aza)benzonorbornadienes (1a–1k) with alcohol nucleophiles: All experiments were carried out under air. [Ir(COD)Cl]₂ (1.4–3.4 mg, 1–2.5 mol%), TBAI (74 mg, 1 equiv.), oxa(aza)benzonorbornadienes (1a–k), (0.2 mmol), alcohol nucleophiles (1.0 mL) were simultaneously added to a 10.0 mL round-bottomed flask. After the mixture was stirred at 80 °C in oil bath for 30 min until it was completed as judged by thin-layer chromatography. After cooling to the room temperature, the reaction mixture was concentrated in vacuo and the solvents were removed, the crude mixture was purified by flash chromatography(Silica Gel: 200-300 mesh) to afford the desired product 5.

The procedure (C) for synthesis of 6: The substrate $((1R^*, 2R^*)$ -*tert*-butyl-2-hydroxy-1,2-dihydronaphthalen-1yl)carbamate (0.2 mmol) **3f** was added to a flame-dried 10.0 mL round-bottomed flask. The flask was sealed under nitrogen and CH₂Cl₂ (1.0 mL) was added. BF₃OEt₂ (20 mol%, 5.7 mg) in CH₂Cl₂ (1.0 mL) was dropped to mixture using syringe. The mixture was stirred at room temperature for 10 h. After completion the reaction mixture was concentrated in vacuo and the solvents were removed, the crude mixture was purified by flash chromatography(Silica Gel: 200-300 mesh) to afford the desired product **6**.

2. Characterization data of 3a-k, 5a-q and 6

(*IR**,*2R**)-1,2-Dihydronaphthalene-1,2-diol (3a). Following the general procedure (A), 3a was obtained as a white solid (32.1 mg, 99%). m.p. 118–120 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.56 – 7.40 (m, 1H), 7.30 – 7.13 (m, 2H), 7.13 – 7.02 (m, 1H), 6.37 (dd, *J* = 9.8, 2.2 Hz, 1H), 5.89 (dd, *J* = 9.8, 2.4 Hz, 1H), 5.44 (br. d, *J* = 4.4 Hz 1H), 5.17 (br. 1H), 4.55 (d, *J* = 10.2 Hz, 1H), 4.24 (d, *J* = 10.2 Hz, 1H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 138.6, 133.3, 132.9, 127.7, 127.6, 126.73, 126.2, 125.8, 74.1, 72.6. HRMS *m/z* (EI) [M – H][–] calcd for C₁₀H₉O₂: 161.0603, found: 161.0606.

 $(1R^*, 2R^*)$ -5,8-Dimethoxy-1,2-dihydronaphthalene-1,2-diol (3b). Following the general procedure (A), 3b was obtained as a yellow oil (43.9 mg, 99%). ¹H NMR (600 MHz, CD₃OD) δ 7.00 (d, J = 9.9 Hz, 1H), 6.88 (s, 2H), 6.05 (ddd, J = 9.8, 5.5, 1.1 Hz, 1H), 5.05 – 4.96 (m, 1H), 4.18 (dd, J = 5.5, 2.0 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H). ¹³C NMR (150 MHz, CD₃OD) δ 153.9, 151.39, 126.9, 124.9, 124.2, 123.1, 112.9, 112.6, 68.8, 66.5, 56.8, 56.7. HRMS *m/z* (EI) [M – H]⁻ calcd for C₁₂H₁₃O₄: 221.0814, found: 211.0815.

 $(1R^*, 2R^*)$ -6,7-Dimethoxy-1,2-dihydronaphthalene-1,2-diol (3c). Following the general procedure (A), 3c was obtained as a white solid (35.5 mg, 80%). m.p. 103–105 °C. ¹H NMR (600 MHz, CD₃OD) δ 7.14 (s, 1H), 6.73 (s, 1H), 6.35 (dd, J = 9.8, 2.1 Hz, 1H), 5.81 (dd, J = 9.8, 2.7 Hz, 1H), 4.62 (d, J = 9.8 Hz, 1H), 4.31 (dt, J = 9.8, 2.4 Hz, 1H), 3.84 (s, 3H), 3.79 (s, 3H). ¹³C NMR (150 MHz, CD₃OD) δ 150.0, 149.9, 131.4, 129.9, 128.4, 127.2, 111.9, 111.4, 75.7, 74.2, 56.8, 56.7. HRMS m/z (EI) [M – H]⁻ calcd for C₁₂H₁₃O₄: 221.0814, found: 211.0816.

 $(1R^*, 2R^*)$ -6,7-Dibromo-1,2-dihydronaphthalene-1,2-diol (3d). Following the general procedure (A), 3d was obtained as a white solid (51.4 mg, 81%). m.p. 113–115 °C. ¹H NMR (600 MHz, DMSO-d₆) δ 7.71 (s, 1H), 7.47 (s, 1H), 6.35 (dd, J = 9.8, 2.2 Hz, 1H), 5.97 (dd, J = 9.8, 2.4 Hz, 1H), 4.49 (dd, J = 10.5, 0.8 Hz, 1H), 4.21 (dt, J = 3.9, 2.3 Hz, 1H). ¹³C NMR (150 MHz, DMSO-d₆) δ 140.0, 135.5, 134.2, 130.9, 130.7, 124.7, 122.7, 122.3, 73.1, 71.7. HRMS m/z (EI) [M – H]⁻ calcd for C₁₀H₇Br₂O₂: 316.8813, found: 316.8813.

4-Methylnaphthalen-1-ol (3e). Following the general procedure (**A**), **3e** was obtained as a yellow oil (31.0 mg, 98%). ¹H NMR (600 MHz, CD₃OD) δ 8.29 – 8.15 (m, 1H), 7.84 (dd, *J* = 4.7, 3.6 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.06 (dd, J = 7.5, 0.5 Hz, 1H), 6.71 (dd, J = 7.6, 1.8 Hz, 1H), 2.51 (d, J = 4.6 Hz, 3H). ¹³C NMR (150 MHz, CD₃OD) δ 153.0, 135.0, 127.7, 127.0, 126.7, 125.9, 125.4, 125.0, 123.8, 108.6, 19.0. HRMS *m*/*z* (EI) [M – H]⁻ calcd for C₁₁H₉O: 157.0653, found: 157.0658.

Tert-butyl ((1*R**,2*R**)-2-hydroxy-1,2-dihydronaphthalen-1-yl)carbamate (3f). Following the general procedure (A), 3f was obtained as a white solid (49.6 mg, 95%). m.p. 145–147 °C. ¹H NMR (500 MHz, CD₃OD) δ 7.29 – 7.22 (m, 1H), 7.23 – 7.16 (m, 2H), 7.08 (dd, *J* = 5.6, 3.1 Hz, 1H), 6.45 (dd, *J* = 9.8, 2.0 Hz, 1H), 5.95 (dd, *J* = 9.8, 2.7 Hz, 1H), 4.79 (d, *J* = 10.6 Hz, 1H), 4.38 (d, *J* = 10.6 Hz, 1H), 1.47 (d, *J* = 17.3 Hz, 9H). ¹³C NMR (125 MHz, CD₃OD) δ 159.0, 136.6, 134.4, 132.4, 130.0, 129.0, 128.9, 127.8, 127.0, 80.5, 71.7, 58.0, 29.0. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₅H₁₉NNaO₃: 284.1263, found: 284.1258.

Tert-butyl ((1*R**,2*R**)-2-hydroxy-6,7-dimethoxy-1,2-dihydronaphthalen-1-yl)carbamate (3g). Following the general procedure (A), 3g was obtained as a oil liquid (54.6 mg, 85%). ¹H NMR (600 MHz, CD₃OD) δ 6.85 (s, 1H), 6.73 (s, 1H), 6.38 (dd, *J* = 9.8, 1.4 Hz, 1H), 5.85 (dd, *J* = 9.8, 2.9 Hz, 1H), 4.71 (d, *J* = 10.1 Hz, 1H), 4.34 (d, *J* = 10.0 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 1.48 (s, 9H). ¹³C NMR (150 MHz, CD₃OD) δ 158.9, 150.0, 149.9, 130.0, 129.3, 128.8, 127.5, 112.2, 111.8, 80.5, 71.5, 57.7, 56.8, 56.7, 29.0. HRMS *m*/*z* (EI) [M + Na]⁺ calcd for C₁₇H₂₃NNaO₅: 344.1474, found: 344.1467.

Tert-butyl ((1*R**,2*R**)-2-hydroxy-6,7-dimethyl-1,2-dihydronaphthalen-1-yl)carbamate (3h). Following the general procedure (A), 3h was obtained as a white solid (55.0 mg, 95%). m.p. 194–196 °C. ¹H NMR (600 MHz, DMSO-d₆) δ 6.98 (d, *J* = 8.9 Hz, 1H), 6.87 (d, *J* = 12.9 Hz, 2H), 6.30 (dd, *J* = 9.8, 1.7 Hz, 1H), 5.82 (dd, *J* = 9.8, 2.0 Hz, 1H), 5.09 (d, *J* = 6.2 Hz, 1H), 4.58 (t, *J* = 10.1 Hz, 1H), 4.40 – 4.21 (m, 1H), 2.18 (s, 3H), 2.16(s, 3H), 1.46 (s, 9H). ¹³C NMR (150 MHz, DMSO-d₆) δ 156.2, 134.9, 134.7, 133.3, 132.3, 130.4, 127.4 126.8, 126.2, 77.6, 69.3, 56.3, 28.3, 19.5, 18.8. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₇H₂₃NNaO₃: 312.1576, found: 312.1569.

Tert-butyl ((1*R**,2*R**)-6,7-difluoro-2-hydroxy-1,2-dihydronaphthalen-1-yl)carbamate (3i). Following the general procedure (A), 3i was obtained as a white solid (38.6 mg, 65%). m.p. 179–181 °C. ¹H NMR (600 MHz, CD₃OD) δ 7.08 (dd, *J* = 10.9, 8.1 Hz, 1H), 7.03 (dd, *J* = 10.7, 7.9 Hz, 1H), 6.39 (dd, *J* = 9.9, 2.0 Hz, 1H), 6.00 (dd, *J* = 9.9, 2.6 Hz, 1H), 4.71 (d, *J* = 10.7 Hz, 1H), 4.38 (d, *J* = 10.7 Hz, 1H), 1.49 (s, 9H). ¹³C NMR (150 MHz, CD₃OD) δ 158.8, 151.9,

151.8, 151.6, 151.5, 150.2, 150.1, 149.9, 149.8, 134.3, 133.7, 131.7, 127.0, 116.6, 116.6, 116.5, 116.4, 80.8, 71.0, 57.4, 29.0. ¹⁹F NMR (565 MHz, CD₃OD) δ -141.5, -141.6, -143.2, -143.2. HRMS m/z (EI) [M + Na]⁺ calcd for C₁₅H₁₇F₂NNaO₃: 320.1074, found: 320.1069.

4-Bromo-*N***-((1***R****,2***R****)-2-hydroxy-1,2-dihydronaphthalen-1-yl)benzenesulfonamide (3j).** Following the general procedure (**A**), **3j** was obtained as a white solid (72.7 mg, 96%). m.p. 172–174 °C. ¹H NMR (600 MHz, CD₃OD) δ 7.79 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.07 (dd, *J* = 14.1, 7.4 Hz, 2H), 6.94 (d, *J* = 7.6 Hz, 1H), 6.52 (d, *J* = 9.7 Hz, 1H), 5.95 (dd, *J* = 9.7, 4.0 Hz, 1H), 4.43 (d, *J* = 6.8 Hz, 1H), 4.33 – 4.19 (m, 1H). ¹³C NMR (150 MHz, CD₃OD) δ 142.8, 134.7, 134.1, 133.4, 130.2, 130.1, 130.0, 129.6, 129.1, 129.0, 128.1, 70.5, 59.7. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₆H₁₄BrNNaO₃S: 401.9775, found: 401.9770.

N-((1*R**,2*R**)-2-hydroxy-1,2-dihydronaphthalen-1-yl)acetamide (3k). Following the general procedure (A), 3k was obtained as a oil liquid (36.5 mg, 90%). ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.05 (d, *J* = 8.6 Hz, 1H), 7.26 – 7.14 (m, 2H), 7.15 – 7.06 (m, 2H), 6.44 (dd, *J* = 9.8, 1.8 Hz, 1H), 5.94 (dd, *J* = 9.8, 2.7 Hz, 1H), 5.19 (br. 1H), 4.93 (t, *J* = 9.5 Hz, 1H), 4.29 (d, *J* = 10.2 Hz, 1H), 1.94 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 170.1, 135.7, 133.2, 133.1, 127.9, 127.8, 127.1, 126.7, 126.5, 69.2, 54.9, 23.3. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₂H₁₃NNaO₂: 226.0844, found: 226.0839.

(1*R**,2*R**)-2-Ethoxy-1,2-dihydronaphthalen-1-ol (5a). Following the general procedure (**B**), 5a was obtained as a oil liquid (37.6 mg, 99%). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, *J* = 7.3 Hz, 1H), 7.33 – 7.14 (m, 2H), 7.14 – 6.98 (m, 1H), 6.42 (dd, *J* = 9.9, 2.1 Hz, 1H), 6.00 (dd, *J* = 9.9, 2.3 Hz, 1H), 4.90 (d, *J* = 10.5 Hz, 1H), 4.18 (dt, *J* = 10.5, 2.2 Hz, 1H), 3.77 (dq, *J* = 9.4, 7.0 Hz, 1H), 3.58 (dq, *J* = 9.4, 7.0 Hz, 1H), 3.03 (br., 1H), 1.26 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 136.0, 131.9, 127.9, 127.8, 127.7, 127.6, 126.1, 124.9, 80.7, 72.4, 64.6, 15.4. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₂H₁₄NaO₂: 213.0891, found: 213.0886.

(1*R**,2*R**)-2-Methoxy-1,2-dihydronaphthalen-1-ol (5b). Following the general procedure (**B**), 5b was obtained as a oil liquid (34.5 mg, 98%). ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 7.1 Hz, 1H), 7.29 – 7.16 (m, 2H), 7.10 – 6.98 (m, 1H), 6.43 (dd, *J* = 9.9, 1.9 Hz, 1H), 6.01 (dd, *J* = 9.9, 2.3 Hz, 1H), 4.89 (d, *J* = 10.2 Hz, 1H), 4.09 (dt, *J* = 10.2, 2.2 Hz, 1H), 3.46 (s, 3H), 3.31 (br., 1H). ¹³C NMR (150 MHz, CDCl₃) δ 135.9, 131.8, 128.2, 127.8, 127.6, 126.7, 126.1, 125.1, 82.1, 72.1, 56.6. HRMS *m/z* (EI) [M – H]⁻ calcd for C₁₁H₁₁O₂: 175.0759, found: 175.0760.

(1*R**,2*R**)-2-Isopropoxy-1,2-dihydronaphthalen-1-ol (5c). Following the general procedure (**B**), 5c was obtained as a oil liquid (37.1 mg, 91%). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, *J* = 7.3 Hz, 1H), 7.30 – 7.17 (m, 2H), 7.08 – 6.99 (m, 1H), 6.39 (dd, *J* = 9.9, 2.2 Hz, 1H), 5.95 (dd, *J* = 9.9, 2.2 Hz, 1H), 4.86 (d, *J* = 10.8 Hz, 1H), 4.24 (dt, *J* = 10.8, 2.2 Hz, 1H), 3.91 – 3.73 (m, 1H), 2.78 (s, 1H), 1.24 (d, *J* = 6.2 Hz, 3H), 1.21 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 136.0, 132.1, 129.3, 127.7, 127.7, 127.6, 126.1, 124.8, 78.7, 72.8, 70.9, 23.3, 22.1. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₃H₁₆NaO₂: 227.1048, found: 227.1044.

(1*R**,2*R**)-2-(2,2,2-Trifluoroethoxy)-1,2-dihydronaphthalen-1-ol (5d). Following the general procedure (**B**), 5d was obtained as a oil liquid (43.4 mg, 89%). ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 7.3 Hz, 1H), 7.32 – 7.19 (m, 2H), 7.16 – 7.03 (m, 1H), 6.48 (dd, *J* = 9.9, 2.0 Hz, 1H), 5.94 (dd, *J* = 9.9, 2.4 Hz, 1H), 4.96 (dd, *J* = 9.8, 2.6 Hz, 1H), 4.38 (dt, *J* = 9.9, 2.2 Hz, 1H), 4.03 (q, *J* = 8.6 Hz, 2H), 2.60 (d, *J* = 3.9 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 135.4, 131.7, 129.2, 128.3, 128.1, 126.5, 125.9, 125.2, 123.8 (q, *J* = 277.3 Hz), 83.0, 72.8, 67.0 (q, *J* = 34.0 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -74.41. HRMS *m/z* (EI) [M – H]⁻ calcd for C₁₂H₁₀F₃O₂: 243.0633, found: 243.0632.

 $(1R^*, 2R^*)$ -2-(Benzyloxy)-1,2-dihydronaphthalen-1-ol (5e). Following the general procedure (B), 5e was obtained as a oil liquid (44.3 mg, 88%). ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, J = 7.1 Hz, 1H), 7.36 (dt, J = 13.0, 7.3 Hz, 4H), 7.29 (t, J = 7.1 Hz, 1H), 7.26 – 7.18 (m, 2H), 7.09 – 7.03 (m, 1H), 6.44 (dd, J = 9.9, 2.0 Hz, 1H), 6.03 (dd, J = 9.9, 2.3 Hz, 1H), 4.96 (d, J = 10.2 Hz, 1H), 4.76 (d, J = 11.8 Hz, 1H), 4.61 (d, J = 11.8 Hz, 1H), 4.32 (dt, J = 10.2, 2.2 Hz, 1H), 2.68 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 138.0, 135.9, 131.9, 128.5, 128.3, 127.9, 127.9, 127.9, 127.8, 127.4, 126.2, 125.1, 80.4, 72.6, 71.3. HRMS m/z (EI) [M + Na]⁺ calcd for C₁₇H₁₆NaO₂: 275.1048, found: 275.1043.

 $(1R^*, 2R^*)$ -2-((2-Methylallyl)oxy)-1,2-dihydronaphthalen-1-ol (5f). Following the general procedure (B), 5f was obtained as a oil liquid (37.2 mg, 86%). ¹H NMR (600 MHz, CDCl₃) δ 7.67 – 7.49 (m, 1H), 7.27 – 7.20 (m, 2H), 7.07 (dd, J = 7.2, 1.4 Hz, 1H), 6.44 (dd, J = 9.9, 2.1 Hz, 1H), 6.02 (dd, J = 9.9, 2.4 Hz, 1H), 5.03 (dd, J = 1.9, 0.9 Hz, 1H), 4.98 – 4.89 (m, 2H), 4.24 (dt, J = 10.3, 2.2 Hz, 1H), 4.13 (d, J = 12.5 Hz, 1H), 4.02 (d, J = 12.5 Hz, 1H), 1.81 – 1.78 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 142.1, 135.9, 131.9, 128.2, 127.9, 127.7, 127.5, 126.2, 125.1, 112.8, 80.2, 73.2, 72.6, 19.6. HRMS m/z (EI) $[M - 3H]^-$ calcd for C₁₄H₁₃O₂: 213.0916, found: 213.0917.

(1*R**,2*R**)-2-(Cyclohexyloxy)-1,2-dihydronaphthalen-1-ol (5g). Following the general procedure (B), 5g was obtained as a oil liquid (39.5 mg, 81%). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, *J* = 7.3 Hz, 1H), 7.23 (tdd, *J* = 15.0, 10.6, 4.2 Hz, 2H), 7.08 – 7.03 (m, 1H), 6.39 (dd, *J* = 9.9, 2.2 Hz, 1H), 5.97 (dd, *J* = 9.9, 2.1 Hz, 1H), 4.87 (d, *J* = 10.9 Hz, 1H), 4.29 (dt, *J* = 10.9, 2.1 Hz, 1H), 3.55 – 3.42 (m, 1H), 2.75 (s, 1H), 2.00 – 1.92 (m, 2H), 1.80 – 1.73 (m, 2H), 1.63 – 1.50 (m, 1H), 1.46 – 1.36 (m, 1H), 1.34 – 1.17 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 136.0, 132.1, 129.6, 127.7, 127.6, 127.5, 126.0, 124.7, 78.7, 72.9, 33.6, 32.4, 25.6, 24.3, 24.2. HRMS *m/z* (EI) [M – H][–] calcd for C₁₆H₁₉O₂: 243.1385, found: 243.1390.

 $(1R^*, 2R^*)$ -2,5,8-Trimethoxy-1,2-dihydronaphthalen-1-ol (5h). Following the general procedure (B), 5h was obtained as a oil liquid (46.7 mg, 99%). ¹H NMR (600 MHz, CDCl₃) δ 7.03 (d, J = 10.0 Hz, 1H), 6.77 (s, 2H), 6.09 (dd, J = 10.0, 4.8 Hz, 1H), 5.16 (t, J = 3.3 Hz, 1H), 4.04 (dd, J = 4.5, 3.3 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.43 (s, 3H), 2.60 (d, J = 4.3 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 151.5, 149.9, 124.1, 123.9, 123.5, 121.33, 111.5, 111.1, 76.9, 64.9, 56.3, 56.1, 55.9. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₃H₁₆NaO₄: 259.0946, found: 259.0942.

 $(1R^*, 2R^*)$ -2-Ethoxy-5,8-dimethoxy-1,2-dihydronaphthalen-1-ol (5i). Following the general procedure (B), 5i was obtained as a oil liquid (50.0 mg, 99%). ¹H NMR (600 MHz, CDCl₃) δ 7.01 (d, J = 10.0 Hz, 1H), 6.77 (s, 2H), 6.07 (dd, J = 10.0, 4.8 Hz, 1H), 5.16 (d, J = 2.9 Hz, 1H), 4.20 – 4.06 (m, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 3.71 (tt, J = 14.1, 7.1 Hz, 1H), 3.66 – 3.57 (m, 1H), 2.58 (br., 1H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 151.5, 149.9, 124.8, 124.1, 122.9, 121.5, 111.4, 110.9, 75.7, 65.6, 64.1, 56.1, 55.9, 15.6. HRMS m/z (EI) [M + Na]⁺ calcd for C₁₄H₁₈NaO₄: 273.1103, found: 273.1097.

(1*R**,2*R**)-2-Isopropoxy-5,8-dimethoxy-1,2-dihydronaphthalen-1-ol (5j). Following the general procedure (**B**), 5j was obtained as a oil liquid (47.5 mg, 90%). ¹H NMR (600 MHz, CDCl₃) δ 6.97 (dd, *J* = 9.9, 0.6 Hz, 1H), 6.76 (s, 2H), 6.02 (dd, *J* = 9.9, 4.8 Hz, 1H), 5.11 (s, 1H), 4.18 (dd, *J* = 5.7, 2.2 Hz, 1H), 3.95 – 3.89 (m, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 2.58 (br., 1H), 1.19 (d, *J* = 2.3 Hz, 3H), 1.18 (d, *J* = 2.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 151.6, 149.9, 125.6, 124.1, 122.4, 121.6, 111.4, 110.9, 73.7, 70.2, 66.5, 56.1, 56.0, 22.9, 22.6. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₅H₂₀NaO₄: 287.1259, found: 287.1256.

(1*R**,2*R**)-6,7-Dibromo-2-methoxy-1,2-dihydronaphthalen-1-ol (5k). Following the general procedure (B), 5k was obtained as a white solid (59.1 mg, 89%). m.p. 114–116 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.72 (s, 1H), 7.54 (s, 1H), 6.47 (dd, *J* = 9.9, 1.6 Hz, 1H), 6.13 (dd, *J* = 9.9, 2.6 Hz, 1H), 5.81 (d, *J* = 6.0 Hz, 1H), 4.73 – 4.55 (m, 1H), 3.98 (dt, *J* = 9.6, 2.2 Hz, 1H), 3.40 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 139.4, 133.4, 130.9, 130.9, 130.6, 125.6, 122.5, 122.1, 80.5, 70.2, 56.6. HRMS *m/z* (EI) [M – H]⁻ calcd for C₁₁H₉Br₂O₂: 330.8969, found: 330.8970.

 $(1R^*, 2R^*)$ -6,7-Dibromo-2-ethoxy-1,2-dihydronaphthalen-1-ol (5l). Following the general procedure (B), 5l was obtained as a white solid (62.3 mg, 90%). m.p. 112–114 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.82 (s, 1H), 7.29 (s, 1H), 6.32 (dd, J = 9.9, 2.1 Hz, 1H), 6.09 (dd, J = 9.9, 1.9 Hz, 1H), 4.81 (d, J = 11.1 Hz, 1H), 4.14 (dt, J = 11.1, 2.1 Hz, 1H), 3.79 (dq, J = 9.2, 7.0 Hz, 1H), 3.58 (tt, J = 14.0, 4.8 Hz, 1H), 2.87 (s, 1H), 1.28 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 136.7, 132.7, 130.7, 130.3, 130.1, 126.0, 123.7, 123.6, 80.4, 71.9, 64.9, 15.5. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₂H₁₂Br₂NaO₂: 368.9102, found: 368.9100.

(1*R**,2*R**)-6,7-Dibromo-2-isopropoxy-1,2-dihydronaphthalen-1-ol (5m). Following the general procedure (B), 5m was obtained as a white solid (63.3 mg, 88%). m.p. 86–88 °C ¹H NMR (600 MHz, CDCl₃) δ 7.82 (d, *J* = 0.7 Hz, 1H), 7.29 (s, 1H), 6.29 (dd, *J* = 9.9, 2.3 Hz, 1H), 6.03 (dd, *J* = 9.9, 2.0 Hz, 1H), 4.76 (d, *J* = 11.2 Hz, 1H), 4.20 (dt, *J* = 11.2, 2.2 Hz, 1H), 3.92 – 3.75 (m, 1H), 2.75 (s, 1H), 1.25 (d, *J* = 6.2 Hz, 3H), 1.22 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 136.8, 132.9, 131.7, 130.6, 130.1, 125.7, 123.6, 123.5, 78.2, 72.1, 71.1, 23.3, 22.0. HRMS *m/z* (EI) [M – H]⁻ calcd for C₁₂H₁₂Br₂O₂: 345.9204, found: 345.8538.

Tert-butyl ((1*R**,2*R**)-2-ethoxy-1,2-dihydronaphthalen-1-yl)carbamate (5n). Following the general procedure (**B**), 5n was obtained as a oil liquid (52.6 mg, 91%). ¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.32 (m, 1H), 7.26 – 7.20 (m, 2H), 7.09 (dd, *J* = 6.9, 1.7 Hz, 1H), 6.56 (d, *J* = 9.7 Hz, 1H), 6.06 (dd, *J* = 9.6, 4.2 Hz, 1H), 5.09 – 4.88 (m, 1H), 4.62 (d, *J* = 7.8 Hz, 1H), 4.10 (t, *J* = 4.7 Hz, 1H), 3.84 – 3.57 (m, 2H), 1.46 (s, 9H), 1.19 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 155.4, 134.1, 132.0, 129.6, 128.2, 128.1, 127.0, 126.6, 79.6, 75.6, 64.2, 51.7, 28.4, 15.6. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₇H₂₃NNaO₃: 312.1576, found: 312.1573.

Tert-butyl ((1*R**,2*R**)-2-(3-hydroxypropoxy)-1,2-dihydronaphthalen-1-yl)carbamate (50). Following the general procedure (**B**), 50 was obtained as a white solid (51.1 mg, 80%). m.p. 100–102 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.30 (m, 1H), 7.25 – 7.17 (m, 2H), 7.10 – 7.05 (m, 1H), 6.53 (d, *J* = 9.7 Hz, 1H), 6.04 (dd, *J* = 9.7, 3.8 Hz, 1H), 5.01

(t, J = 7.5 Hz, 1H), 4.75 (s, 1H), 4.22 – 4.06 (m, 1H), 3.79 (dt, J = 10.8, 7.1 Hz, 2H), 3.68 (t, J = 5.3 Hz, 2H), 2.44 (s, 1H), 1.88 – 1.73 (m, 2H), 1.45 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 155.6, 133.9, 132.0, 129.6, 128.2, 127.7, 126.9, 126.4, 79.8, 76.5, 66.7, 60.9, 51.8, 32.4, 28.3. HRMS m/z (EI) [M + Na]⁺ calcd for C₁₈H₂₅NNaO₄: 342.1681, found: 342.1679.

4-Bromo-*N***-((1***R****,2***R****)-2-ethoxy-1,2-dihydronaphthalen-1-yl)benzenesulfonamide (5p).** Following the general procedure (**B**), **5p** was obtained as a oil liquid (74.9 mg, 92%). ¹H NMR (600 MHz, CDCl₃) δ 7.82 – 7.70 (m, 2H), 7.69 – 7.52 (m, 2H), 7.22 (td, *J* = 7.5, 1.2 Hz, 1H), 7.12 (td, *J* = 7.5, 1.3 Hz, 1H), 7.07 (d, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 7.5 Hz, 1H), 6.55 (d, *J* = 9.7 Hz, 1H), 6.01 (dd, *J* = 9.7, 4.2 Hz, 1H), 4.81 (d, *J* = 7.7 Hz, 1H), 4.55 (dd, *J* = 8.1, 5.7 Hz, 1H), 4.12 – 3.96 (m, 1H), 3.57 – 3.42 (m, 2H), 1.04 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 140.0, 132.7, 132.2, 131.9, 129.7, 128.8, 128.3, 128.0, 127.5, 127.2, 125.9, 75.6, 64.5, 55.3, 15.3. HRMS *m/z* (EI) [M + Na]⁺ calcd for C₁₈H₁₈BrNNaO₃S: 430.0088, found: 430.0085.

N-((1*R**,2*R**)-2-Ethoxy-1,2-dihydronaphthalen-1-yl)acetamide (5q). Following the general procedure (B), 5q was obtained as a oil liquid (43.5 mg, 94%). ¹H NMR (600 MHz, CDCl₃) δ 7.26 – 7.16 (m, 3H), 7.08 (d, *J* = 7.2 Hz, 1H), 6.56 (d, *J* = 9.7 Hz, 1H), 6.01 (dd, *J* = 9.7, 4.5 Hz, 1H), 5.84 (s, 1H), 5.27 (dd, *J* = 8.1, 5.1 Hz, 1H), 4.04 (t, *J* = 4.7 Hz, 1H), 3.71 – 3.58 (m, 2H), 1.91 (s, 3H), 1.14 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.6, 133.4, 131.9, 129.7, 128.5, 128.3, 128.2, 127.0, 126.2, 74.5, 64.0, 50.1, 23.1, 15.5. HRMS *m*/*z* (EI) [M + Na]⁺ calcd for C₁₄H₁₇NNaO₂: 254.1157, found: 254.1150.

Naphthalen-1-amine1 (6). Following the general procedure (C), **6** was obtained as a red solid (16.6 mg, 58%). m.p. 48–50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (td, J = 6.6, 2.2 Hz, 2H), 7.51 – 7.41 (m, 2H), 7.34 – 7.24 (m, 2H), 6.78 (dd, J = 6.9, 1.2 Hz, 1H). HRMS m/z (EI) [M + H]⁺ calcd for C₁₀H₁₀N: 144.0813, found: 144.0808.

3. Copies of ¹H, ¹³C and ¹⁹F NMR spectra of 3a-k, 5a-q and ¹⁹F NMR spectra for 3i and 5d

4. References

- (a) E. Wolthuis, J. Org. Chem., 1961, 26, 2215; (b) H. Hart, C. Lai, G. C. Nwokogu, S. Shamouilian, Tetrahedron 1987, 43, 5203; (c) G. Stork, E. E. van Tamelen, L. J. Friedman, A. W. Burgstahler, J. Am. Chem. Soc., 1953, 75, 384; (d) D. B. Millward, G. Sammis, R. M. Waymouth, J. Org. Chem., 2000, 65, 3902; (e) M. Lautens, K. Fagnou,; V. Zunic, Org. Lett., 2002, 4, 3465.
- 2. A. L. Silberstein, S. D. Ramgren, N. K. Garg, Org. Lett., 2012, 14, 3796.