Supporting Information

For

Group 9 [Cp*M^{III}] Complexes-Catalyzed C-H Olefination of Arenes in Water at Room Temperature: A study on the catalytic activity

Hailong Zhang,[‡] ZhongZhen Yang,[‡] JinXing Liu, Xinling Yu, QianTao Wang* and Yong Wu*

Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. of China, E-mail: wyong@scu.edu.cn.

Table of Contents

General Remarks	2
Table SI-1: Optimization studies for the rhodium-catalyzed olefination.[a]	3
General Procedure for the Synthesis of 3a	4
Characterization of products	5
Mechanistic studies	.55
The H/D exchange experiment	.55
The effects of solvents	.56
The competition experiment	.57

General Remarks

All the reactions were carried out in Schlenk tubes (approx. 15 mL volume) under an oxygen atmosphere. If not noted otherwise, all the starting materials were purchased from commercial suppliers and used without further purification. All the reactions were monitored by thin-layer chromatography (TLC) and were visualized using UV light at 254 nm. The product purification was done using silica gel column chromatography. Yields refer to isolated compounds, estimated to be > 95% pure as determined by ¹H-NMR, ¹H-NMR, ¹⁹F-NMR and ¹³C-NMR spectra were recorded with tetramethylsilane (TMS, δ = 0.00 ppm) as the internal standard. ¹H NMR spectra was recorded at 600 MHz (Varian), ¹⁹F NMR was recorded at 376 MHz (Varian) and ¹³C NMR spectra was recorded at 150 MHz (Varian). Chemical shifts (δ) are provided in ppm and are referenced to the residual solvent signal. Melting points were measured with YRT-3 melting point apparatus (Shantou Keyi Instrument & Equipment Co., Ltd., Shantou, China). High resolution mass spectroscopy data was collected on a Waters Micromass GCT or a Bruker Apex IV FTMS instrument.

2

Table SI-1: Optimization studies for the rhodium-

catalyzed olefination.[a]

Entry	2a (equiv)	[Cp*RhCl ₂] ₂ (mol %)	Additive	Oxidant	Time (h)	Yield ^[b] (%)
1	1	10	AgNTf ₂	Cu(OAc) ₂	24	63
2	2	10	AgNTf ₂	Cu(OAc) ₂	24	78
3	3	10	AgNTf ₂	Cu(OAc) ₂	24	76
4	4	10	AgNTf ₂	Cu(OAc) ₂	24	79
5	2	5	AgNTf ₂	Cu(OAc) ₂	24	57
6	2	15	AgNTf ₂	Cu(OAc) ₂	24	79
7	2	10	AgPF ₆	Cu(OAc) ₂	24	12
8	2	10	AgSbF ₆	Cu(OAc) ₂	24	81
9	2	10	AgOTf	Cu(OAc) ₂	24	64
10 ^[c]	2	10	AgSbF ₆	Cu(OAc) ₂	24	83
11	2	10	$AgSbF_6$	Cu(TFA) ₂	24	65
12	2	10	AgSbF ₆	Cr(OAc) ₂	24	48
13	2	10	AgSbF ₆	AgOAc	24	19
14 ^[d]	2	10	AgSbF ₆	Cu(OAc) ₂	24	35
15 ^[e]	2	10	AgSbF ₆	Cu(OAc) ₂	24	81
16	2	10	AgSbF ₆	Cu(OAc) ₂	12	47
17	2	10	$AgSbF_6$	Cu(OAc) ₂	48	84

[a] Reaction conditions: **1a** (0.2 mmol), **2a** catalyst (10 mol %), additive (0.2 eq) and oxidant (1 eq) were stirred in H₂O (0.5 mL) under N₂; [b] Yield of products isolated after column chromatography; [c] O₂; [d] Cu(OAc)₂ (2 eq); [e] Cu(OAc)₂ (4 eq);

General Procedure for the Synthesis of 3a

A 15ml sealed tube was charged with 2-phenylpyridine **1a** (15.2 mg, 0.1 mmol), styrene **2a** (20.8 mg, 0.2 mmol), $[Cp*RhCl_2]_2$ (6.2 mg, 0.01 mmol), AgSbF₆ (6.9 mg, 0.02 mol), Cu(OAc)₂ (20 mg, 0.1 mmol), and H₂O 0.5 mL. The mixture was stirred at room temperature for 24 h and monitored by TLC. The mixture was extracted with diethyl ether (3 × 5 mL) and then the combined organic extracts were washed with brine (2 × 10 mL), dried with sodium sulfate. The solvent was evaporated in vacuo and the residue was further purified by flash chromatography of silica gel (silica gel, acetone / petroleum ether = 1:200), affording the product **3a**.

Characterization of products

(E)-2-(2-styrylphenyl)pyridine

Little yellow oil, yield 83 %, ¹HNMR (600MHz, DMSO):δ 8.71 (s, 1H), 7.88 (t, *J*=8.4Hz, 1H), 7.85 (d, *J*=8.4Hz, 1H), 7.49 (t, *J*=8.4Hz, 2H), 7.45 (t, *J*=8.4Hz, 1H), 7.39 (m, 4H), 7.24 (m, 2H), 7.17 (d, *J*=16.2Hz, 1H); ¹³C NMR (150MHz, DMSO):δ158.6, 149.7, 139.8, 137.6, 137.0, 135.4, 130.6, 130.0, 129.2, 129.0, 128.0, 127.3, 126.8, 126.4, 125.1, 122.7; HRMS (ESI) Calcd. For C₁₉H₁₅NNa: 280.1102, Found: m/z 280.1101.

(E)-2-(4-methyl-2-styrylphenyl)pyridine

3b

Yellow liquid, yield 87 %, ¹HNMR (600MHz, DMSO):δ 8.63 (d, *J*=8.4Hz, 1H), 7.82 (t, *J*=8.4Hz, 1H), 7.63 (s, 1H), 7.42 (d, *J*=16.2Hz, 1H), 7.34 (m, 4H), 7.26 (m, 3H), 7.16 (m, 3H), 2.35 (s, 3H); ¹³C NMR (150MHz, DMSO):δ158.7, 149.7, 138.4, 137.7, 137.2, 137.0, 135.3, 130.6, 129.8, 129.2, 128.9, 128.1, 127.4, 126.8, 125.2, 122.5, 21.4; HRMS (ESI) Calcd. For C₂₀H₁₇NNa: 294.1259, Found: m/z 294.1258.

(E)-2-(4-(tert-butyl)-2-styrylphenyl)pyridine

Yellow liquid, yield 88 %, ¹HNMR (600MHz, DMSO):δ 8.68 (s, 1H), 7.86 (t, J=8.4Hz, 1H), 7.80 (d, J=8.4Hz, 1H), 7.48 (d, J=8.4Hz, 2H), 7.41 (m, 4H), 7.37(t, J=8.4Hz, 1H), 7.31 (t, J=8.4Hz, 2H), 7.26 (t, J=8.4Hz, 2H), 7.22 (t, J=8.4Hz, 1H), 7.18 (m, 1H), 1.36 (s, 9H); ¹³C NMR (150MHz, DMSO):δ158.6, 151.4, 149.6, 137.7, 137.2, 137.0, 135.0, 130.4, 129.9, 129.7, 129.1, 128.0, 127.9, 126.8, 126.6, 125.2, 125.0, 123.0, 122.5, 34.9, 31.5; HRMS (ESI) Calcd. For C₂₃H₂₃NNa: 336.1728, Found: m/z 336.1727.

(E)-2-(4-fluoro-2-styrylphenyl)pyridine

Yellow liquid, yield 86 %, ¹HNMR (600MHz, DMSO):δ 8.72 (d, *J*=8.4Hz, 1H), 7.91 (t, *J*=8.4Hz, 1H), 7.73 (d, *J*=8.4Hz, 1H), 7.69 (d, *J*=16.2Hz, 1H), 7.53 (m, 2H), 7.39 (m, 4H), 7.27 (m, 5H), 6.60 (d, *J*=16.2Hz, 1H); ¹³C NMR (150MHz, DMSO):δ164.0, 161.5, 157.7, 149.8, 138.8, 138.0, 137.3, 137.1, 136.3, 132.7, 131.3, 129.5, 128.5, 126.8, 125.8, 125.1, 123.0, 115.3, 112.4; ¹⁹F NMR (376MHz, DMSO): -113.53; HRMS (ESI) Calcd. For C₁₉H₁₄FNNa: 298.1008, Found: m/z 298.1008.

(E)-2-(4-bromo-2-styrylphenyl)pyridine

White solid, Mp = 88-90 °C, yield 82 %, ¹HNMR (600MHz, DMSO): δ 8.66 (d, *J*=8.4Hz, 1H), 8.01 (s, 1H), 7.85 (t, *J*=8.4Hz, 1H), 7.52 (d, *J*=8.4Hz, 1H), 7.46 (d, *J*=16.2Hz, 1H), 7.37 (m, 4H), 7.25 (m, 5H), 7,12 (d, *J*=16.2Hz, 1H); ¹³C NMR (150MHz, DMSO): δ 157.6, 149.9, 138.8, 137.9, 137.3, 132.8, 132.1, 130.7, 129.2, 128.7, 128.5, 127.0, 125.7, 125.1, 123.0, 122.7; HRMS (ESI) Calcd. For C₁₉H₁₄BrNNa: 358.0207, Found: m/z 358.0207.

(E)-2-(3-styryl-[1,1'-biphenyl]-4-yl)pyridine

Yellow liquid, yield 56 %, ¹HNMR (600MHz, DMSO):ō 8.66 (d, *J*=8.4Hz, 1H), 8.01 (s, 1H), 7.85 (t, *J*=8.4Hz, 1H), 7.52 (d, *J*=8.4Hz, 1H), 7.46 (d, *J*=16.2Hz, 1H), 7.37 (m, 4H), 7.25 (m, 5H), 7,12 (d, *J*=16.2Hz, 1H); ¹³C NMR (150MHz, DMSO):ō158.3, 149.8, 140.8, 140.1, 138.8, 137.7, 137.2, 136.1, 131.4, 130.6, 129.4, 129.2, 128.3, 127.4, 127.3, 126.9, 126.4, 125.2, 124.7, 122.8; HRMS (ESI) Calcd. For C₂₅H₁₉NNa: 356.1415, Found: m/z 356.1414.

(E)-2-(2-styryInaphthalen-1-yI)pyridine

White solid, Mp = 148-150 °C, yield 81%, ¹HNMR (600MHz, DMSO): δ 8.82 (d, *J*=8.4Hz, 1H), 8.07 (d, *J*=8.4Hz, 1H), 7.99 (m, 3H), 7.54 (t, *J*=8.4Hz, 1H), 7.49 (d, *J*=8.4Hz, 1H), 7.46 (t, *J*=8.4Hz, 1H), 7.40 (d, *J*=16.2Hz, 1H), 7,34 (m, 3H), 7.22 (d, *J*=8.4Hz, 1H), 6.79 (d, *J*=16.2Hz, 1H); ¹³C NMR (150MHz, DMSO): δ 157.5, 150.2, 137.4, 137.2, 137.1, 132.9, 132.6, 132.3, 130.5, 129.2, 128.8, 128.4, 128.3, 127.1, 126.6, 126.5, 126.4, 126.2, 123.2, 123.1; HRMS (ESI) Calcd. For C₂₃H₁₇NNa: 330.1259, Found: m/z 330.1258.

(E)-2-(5-methyl-2-styrylphenyl)pyridine

Colourless liquid, yield 86 %, ¹HNMR (600MHz, DMSO):δ8.72 (d, *J*=8.4Hz, 1H), 7.90 (t, *J*=8.4Hz, 1H), 7.78 (d, *J*=8.4Hz, 1H), 7.51 (d, *J*=8.4Hz, 1H), 7.40 (m, 3H), 7.31 (m, 5H), 7.24 (d, *J*=8.4Hz, 1H), 7,18 (d, *J*=16.2Hz, 1H), 2.38 (s, 1H); ¹³C NMR (150MHz, DMSO):δ158.7, 149.7, 139.8, 137.8, 137.5, 137.0, 132.7, 131.2, 129.8, 129.2, 129.1, 128.0, 127.2, 126.7, 126.3, 125.1, 122.8, 21.2; HRMS (ESI) Calcd. For C₂₀H₁₇NNa: 294.1259, Found: m/z 294.1258.

(E)-2-(5-chloro-2-styrylphenyl)pyridine

Colourless liquid, yield 84 %, ¹HNMR (600MHz, DMSO):δ 8.73 (d, *J*=8.4Hz, 1H), 7.93 (d, *J*=8.4Hz, 1H), 7.89 (d, *J*=8.4Hz, 1H), 7.54 (m, 3H), 7.44 (m, 3H), 7.33 (t, *J*=8.4Hz, 2H), 7.26 (t, *J*=8.4Hz, 1H), 7,20 (d, *J*=8.4Hz, 1H); ¹³C NMR (150MHz, DMSO):δ157.1, 149.9, 141.3, 137.4, 137.3, 134.5, 132.4, 130.9, 130.1, 129.2, 129.0, 128.8, 128.4, 128.3, 126.9, 126.0, 125.2, 123.2; HRMS (ESI) Calcd. For C₁₉H₁₄CINNa: 314.0712, Found: m/z 314.0710.

(E)-2-(2-styryl-5-(trifluoromethyl)phenyl)pyridine

Colourless Liquid, yield 78 %, ¹HNMR (600MHz, DMSO): δ 8.73 (d, *J*=8.4Hz, 1H), 8.07 (d, *J*=8.4Hz, 1H), 7.92 (t, *J*=8.4Hz, 1H), 7.79 (m, 2H), 7.59 (d, *J*=8.4Hz, 1H), 7.43 (d, *J*=8.4Hz, 4H), 7.34 (m, 4H), 7,27 (m, 2H); ¹³C NMR (150MHz, DMSO): δ 156.9, 150.1, 140.2, 139.6, 137.4, 137.1, 132.9, 129.3, 128.8, 127.6, 127.2, 125.8, 125.6, 125.4, 123.4; ¹⁹F NMR (376MHz, DMSO): - 60.96; HRMS (ESI) Calcd. For C₂₀H₁₄F₃NNa: 348.0976, Found: m/z 348.0975.

(E)-3-(pyridin-2-yl)-4-styrylbenzonitrile

White solid, Mp = 126-128 °C, yield 79 %, ¹HNMR (600MHz, DMSO): δ 8.75 (d, J=8.4Hz, 1H), 8.09 (d, J=8.4Hz, 1H), 7.93 (m, 3H), 7.63 (m, 1H), 7.47 (m, 4H), 7.36 (t, J=8.4Hz, 3H), 7.12 (m, 1H); ¹³C NMR (150MHz, DMSO): δ 156.7, 149.9, 140.3, 137.5, 137.0, 134.4, 133.4, 132.4, 129.3, 128.9, 128.3, 127.5, 127.3, 125.4, 125.3, 123.5, 119.2, 110.3; HRMS (ESI) Calcd. For C₂₀H₁₄N₂Na: 305.1055, Found: m/z 305.1055.

(E)-2-(2-methoxy-6-styrylphenyl)pyridine

Grey solid, Mp = 100-102 °C, yield 51%, ¹HNMR (600MHz, DMSO): δ 8.66 (d, *J*=8.4Hz, 1H), 7.84 (t, *J*=8.4Hz, 1H), 7.47 (d, *J*=8.4Hz, 1H), 7.41 (d, *J*=8.4Hz, 1H), 7.37 (t, *J*=8.4Hz, 1H), 7.34 (d, *J*=8.4Hz, 1H), 7.27 (m, 2H), 7.21 (m, 3H), 7.09 (d, J=16.2Hz, 1H), 7.04 (d, *J*=8.4Hz, 1H), 6.63 (d, J=16.2Hz, 1H), 3.67 (s, 3H); ¹³C NMR (150MHz, DMSO): δ 157.3, 156.1, 149.6, 137.4, 137.0, 136.5, 130.0, 129.7, 129.2, 128.2, 126.6, 122.7, 117.9, 110.9, 56.1; HRMS (ESI) Calcd. For C₂₀H₁₇NONa: 310.1208, Found: m/z 310.1208.

(E)-2-(3-styrylthiophen-2-yl)pyridine

3m

Colourless liquid, yield 85 %, ¹HNMR (600MHz, DMSO): δ 8.61 (d, *J*=8.4Hz, 1H), 7.85 (t, *J*=8.4Hz, 1H), 7.60 (m, 3H), 7.54 (d, *J*=8.4Hz, 1H), 7.50 (m, 2H), 7.30 (m, 3H), 7.21 (m, 2H); ¹³C NMR (150MHz, DMSO): δ 152.6, 150.2, 139.3, 137.8, 137.5, 137.0, 131.3, 129.2, 128.2, 127.7, 126.9, 123.1, 122.7, 122.5; HRMS (ESI) Calcd. For C₁₇H₁₃NSNa: 286.0666, Found: m/z 286.0665.

(E)-1-(pyrimidin-2-yl)-2-styryl-1H-indole

Yellow liquid, yield 62 %, ¹HNMR (600MHz, DMSO): δ 9.02 (d, *J*=8.4Hz, 2H), 8.13 (d, *J*=8.4Hz, 1H), 7.63 (m, 1H), 7.54 (m, 3H), 7.38 (t, *J*=8.4Hz, 3H), 7.29 (d, *J*=8.4Hz, 1H), 7.22 (m, 4H); ¹³C NMR (150MHz, DMSO): δ 164.2, 162.1, 143.5, 142.0, 133.9, 133.8, 131.6, 128.4, 127.3, 125.4, 123.7, 118.8, 109.2; HRMS (ESI) Calcd. For C₂₀H₁₅N₃Na: 320.1164, Found: m/z 320.1164.

(E)-2-(2-styrylphenyl)pyrimidine

Yellow liquid, yield 82 %, ¹HNMR (600MHz, DMSO):δ 8.98 (d, *J*=8.4Hz, 1H), 7.87 (m, 2H), 7.72 (d, *J*=16.2Hz, 1H), 7.51 (m, 4H), 7.44 (t, *J*=8.4Hz, 1H), 7.35 (t, *J*=8.4Hz, 2H), 7.26 (t, *J*=8.4Hz, 1H), 7.18 (d, *J*=16.2Hz, 1H); ¹³C NMR (150MHz, DMSO):δ166.4, 157.8, 137.8, 137.7, 136.5, 131.4, 130.2, 129.9, 129.2, 128.1, 127.9, 126.9, 126.7, 119.8; HRMS (ESI) Calcd. For C₁₈H₁₄N₂Na: 281.1055, Found: m/z 281.1055.

(E)-2-(4-methyl-2-styrylphenyl)pyrimidine

Yellow liquid, yield 89 %, ¹HNMR (600MHz, DMSO): δ 8.95 (d, *J*=8.4Hz, 1H), 7.75 (m, 3H), 7.48 (m, 3H), 7.36 (t, *J*=8.4Hz, 2H), 7.25 (t, *J*=8.4Hz, 2H), 7.17 (d, *J*=16.2Hz, 1H), 2.42 (s, 3H); ¹³C NMR (150MHz, DMSO): δ 166.4, 157.8, 139.7, 137.9, 136.5, 136.1, 131.4, 129.6, 129.2, 128.7, 128.2, 128.0, 127.1, 126.9, 119.6, 115.5, 21.4; HRMS (ESI) Calcd. For C₁₉H₁₆N₂Na: 295.1211, Found: m/z 295.1210.

(E)-2-(5-methyl-2-styrylphenyl)pyrimidine

3q

Brown liquid, yield 87 %, ¹HNMR (600MHz, DMSO): δ 8.96 (d, *J*=8.4Hz, 2H), 7.79 (d, *J*=8.4Hz, 1H), 7.76 (d, *J*=8.4Hz, 2H), 7.48 (m, 3H), 7.34 (t, *J*=8.4Hz, 3H), 7.24 (t, *J*=8.4Hz, 1H), 7.13 (d, *J*=16.2Hz, 1H), 2.38 (s, 3H); ¹³C NMR (150MHz, DMSO): δ 166.5, 157.8, 138.0, 137.6, 137.3, 133.8, 131.8, 130.9, 129.2, 129.0, 127.9, 126.8, 126.6, 119.8, 21.2; HRMS (ESI) Calcd. For C₁₉H₁₆N₂Na: 295.1211, Found: m/z 295.1211.

(E) -2-(5-methoxy-2-styrylphenyl)pyrimidine

Light yellow liquid, yield 67%, ¹HNMR (600MHz, DMSO): δ 8.91 (d, *J*=8.4Hz, 2H), 7.77 (d, *J*=8.4Hz, 1H), 7.55 (d, *J*=16.2Hz, 1H), 7.45 (t, *J*=8.4Hz, 1H), 7.38 (d, *J*=8.4Hz, 2H), 7.28 (m, 3H), 7.16 (t, *J*=16.2Hz, 1H), 7.05 (d, *J*=8.4Hz, 1H), 6.98 (t, *J*=16.2Hz, 1H), 3.77 (s, 3H); ¹³C NMR (150MHz, DMSO): δ 166.2, 160.0, 157.9, 138.9, 138.1, 134.1, 129.2, 128.4, 128.2, 128.0, 127.7, 127.5, 126.7, 120.0, 116.6, 115.6, 55.8; HRMS (ESI) Calcd. For C₁₈H₁₅N₂ONa: 298.1082, Found: m/z 298.1081.

(E)-2-(2-methyl-6-styrylphenyl)pyrimidine

3s

Light yellow liquid, yield 47%, ¹HNMR (600MHz, DMSO): δ 8.99 (d, *J*=8.4Hz, 2H), 7.72 (d, *J*=8.4Hz, 1H), 7.57 (d, *J*=8.4Hz, 1H), 7.40 (d, *J*=8.4Hz, 1H), 7.28 (m, 7H), 7.08 (d, *J*=8.4Hz, 1H), 6.60 (d, *J*=16.2Hz, 1H), 2.01 (s, 3H); ¹³C NMR (150MHz, DMSO): δ 167.1, 157.9, 139.1, 137.3, 136.0, 135.3, 130.3, 129.7, 129.2, 126.7, 126.4, 123.3, 120.3, 20.0; HRMS (ESI) Calcd. For C₁₉H₁₆N₂Na: 295.1211, Found: m/z 295.1211.

(E)-1-(2-styrylphenyl)-1H-pyrazole

Yellow liquid, yield 83 %, ¹HNMR (600MHz, DMSO): δ 8.03 (s, 1H), 7.94 (d, *J*=8.4Hz, 1H), 7.80 (s, 1H), 7.51 (m, 1H), 7.39 (m, 6H), 7.28 (d, *J*=8.4Hz, 1H), 7.22 (d, *J*=16.2Hz, 1H), 6.90 (d, *J*=16.2Hz, 1H), 6.56 (s, 1H); ¹³C NMR (150MHz, DMSO): δ 141.0, 138.9, 137.2, 132.9, 132.6, 131.2, 129.2, 129.0, 128.8, 128.5, 126.9, 126.8, 123.7; HRMS (ESI) Calcd. For C₁₇H₁₄N₂Na: 269.1055, Found: m/z 269.1054.

(E)-2-(2-(4-methylstyryl)phenyl)pyridine

4b

Yellow liquid, yield 84%, ¹HNMR (600MHz, DMSO): δ 8.72 (d, *J*=8.4Hz, 1H), 7.88 (m, 2H), 7.45 (m, 6H), 7.30 (d, *J*=8.4Hz, 2H), 7.15 (m, 4H), 2.28 (s, 3H); ¹³C NMR (150MHz, DMSO): δ 158.7, 149.7, 139.7, 137.6, 137.1, 135.6, 134.9, 130.7, 130.0, 129.0, 127.9, 126.8, 126.3, 125.2, 122.7, 21.3; HRMS (ESI) Calcd. For C₂₀H₁₇NNa: 294.1259, Found: m/z 294.1259.

(E)-2-(2-(4-(tert-butyl)styryl)phenyl)pyridine

4c

Colourless liquid, yield 81%, ¹HNMR (600MHz, DMSO): δ 8.69 (d, *J*=8.4Hz, 1H), 7.85 (m, 2H), 7.44 (m, 5H), 7.31 (m, 4H), 7.15 (d, *J*=8.4Hz, 2H), 1.23 (s, 9H); ¹³C NMR (150MHz, DMSO): δ 158.6, 150.7, 149.7, 139.7, 137.0, 135.6, 134.9, 130.6, 129.8, 129.0, 127.9, 126.5, 126.0, 125.1, 122.7, 34.8, 31.5; HRMS (ESI) Calcd. For C₂₃H₂₃NNa: 336.1728, Found: m/z 336.1728.

(E)-2-(2-(4-fluorostyryl)phenyl)pyridine

4d

Yellow liquid, yield 85 %, ¹HNMR (600MHz, DMSO):δ 8.76 (d, *J*=8.4Hz, 1H), 7.83 (m, 2H), 7.43 (m, 7H), 7.14 (m, 4H); ¹³C NMR (150MHz, DMSO):δ163.0, 160.6, 158.3, 149.4, 139.5, 136.8, 135.2, 133.9, 130.4, 128.9, 128.8, 128.6, 128.4, 127.8, 127.0, 126.1, 124.9, 122.4; ¹⁹F NMR (376MHz, DMSO): -114.15; HRMS (ESI) Calcd. For C₁₉H₁₄FNNa: 298.1008, Found: m/z 298.1007.

(E)-2-(2-(4-(trifluoromethyl)styryl)phenyl)pyridine

4e

Light yellow liquid, yield 72 %, ¹HNMR (600MHz, DMSO): δ 8.71 (d, *J*=8.4Hz, 1H), 7.90 (d, *J*=8.4Hz, 2H), 7.68 (d, *J*=8.4Hz, 2H), 7.61 (d, *J*=8.4Hz, 2H), 7.53 (d, *J*=8.4Hz, 2H), 7.48 (t, *J*=8.4Hz, 1H), 7.42 (m, 2H), 7.28 (m, 1H); ¹³C NMR (150MHz, DMSO): δ 158.1, 149.4, 141.5, 139.8, 136.9, 134.8, 130.5, 130.1, 128.9, 128.4, 128.2, 127.1, 126.5, 125.8, 124.9, 123.1, 122.5; ¹⁹F NMR (376MHz, DMSO): -60.91; HRMS (ESI) Calcd. For C₂₀H₁₄F₃NNa: 348.0976, Found: m/z 348.0976.

(E)-2-(2-(4-nitrostyryl)phenyl)pyridine

Yellow solid, yield 83 %, ¹HNMR (600MHz, DMSO): δ 8.73 (d, *J*=8.4Hz, 1H), 8.20 (d, *J*=8.4Hz, 2H), 7.94 (d, *J*=8.4Hz, 2H), 7.68 (d, *J*=8.4Hz, 2H), 7.56 (m, 3H), 7.49 (m, 1H), 7.44 (t, *J*=8.4Hz, 1H),7.36 (d, *J*=16.2Hz, 1H), 6.88 (s, 1H); ¹³C NMR (150MHz, DMSO): δ 164.7, 157.6, 148.2, 138.9, 135.5, 135.3, 133.5, 132.4, 130.9, 130.0, 129.4, 127.4, 126.3, 123.5, 123.1, 122.0; HRMS (ESI) Calcd. For C₁₉H₁₄N₂O₂Na: 325.0953, Found: m/z 325.0953.

(E)-2-(2-(3-methylstyryl)phenyl)pyridine

Light green liquid, yield 82 %, ¹HNMR (600MHz, DMSO): δ 8.65 (d, *J*=8.4Hz, 1H), 7.81 (m, 2H), 7.43 (m, 2H), 7.34 (m, 2H), 7.13 (m, 6H), 6.58 (d, *J*=16.2Hz, 1H); ¹³C NMR (150MHz, DMSO): δ 158.6, 149.7, 139.8, 138.3, 137.6, 137.1, 136.6, 130.7, 130.4, 130.2, 129.1, 128.9, 128.0, 127.6, 127.2, 126.5, 125.2, 123.9, 122.7, 21.4; HRMS (ESI) Calcd. For C₂₀H₁₇NNa: 294.1259, Found: m/z 294.1259.

(E)-methyl 3-(2-(pyridin-2-yl)phenyl)acrylate

Light yellow liquid, yield 53 %, ¹HNMR (600MHz, DMSO): δ 8.55 (s, 1H), 7.88 (m, 4H), 7.57 (m, 4H), 7.29 (m, 1H), 3.54 (s, 3H); ¹³C NMR (600MHz, DMSO): δ 157.8, 156.9, 149.3, 140.7, 138.0, 130.9, 130.1, 129.3, 128.9, 127.9, 123.2, 122.4; HRMS (ESI) Calcd. For C₁₅H₁₃NO₂Na: 262.0844, Found: m/z 262.0843.

(E)-ethyl 3-(2-(pyridin-2-yl)phenyl)acrylate

Yellow liquid, yield 59 %, ¹HNMR (600MHz, DMSO):δ8.55 (m, 1H), 7.87 (m, 4H), 7.59 (m, 1H), 7.29 (m, 1H), 3.51 (m, 2H), 7.36 (m, 1H), 6.84 (s, 1H), 3.97 (q, *J*=7.2Hz, 2H,), 1.08 (t, *J*=7.2Hz, 3H); ¹³C NMR (150MHz, DMSO):δ171.3, 167.3, 149.3, 138.4, 134.1, 132.9, 130.9, 128.4, 127.9, 123.3, 122.4, 60.8, 14.4; HRMS (ESI) Calcd. For C₁₆H₁₅NO₂Na: 276.1000, Found: m/z 276.0999.

(E)-2-(2-(3-phenylprop-1-en-1-yl)phenyl)pyridine

4j

Light yellow liquid, yield 67 %, ¹HNMR (600MHz, DMSO):δ 8.69 (m, 1H), 7.88 (t, *J*=8.4Hz, 1H), 7.51 (d, *J*=8.4Hz, 1H), 7.38 (m, 5H), 7.27 (m, 4H), 7.18 (m, 1H), 6.24 (m, 2H), 3.64 (d, *J*=8Hz, 2H); ¹³C NMR (150MHz, DMSO):δ159.6, 149.4, 140.6, 138.2, 137.5, 130.7, 130.4, 130.3, 129.8, 129.0, 128.9, 127.5, 126.8, 126.3, 124.5, 122.6, 36.5; HRMS (ESI) Calcd. For C₂₀H₁₇NNa: 294.1259, Found: m/z 294.1258.

(E)-2-(2-cyclohexylvinyl)-1,1'-biphenyl

Light yellow liquid, yield 43 %, ¹HNMR (600MHz, DMSO): δ 8.64 (d, *J*=8.4Hz, 1H), 7.84 (t, *J*=8.4Hz, 1H), 7.59 (d, *J*=8.4Hz, 1H), 7.29 (m, 5H), 6.40 (d, *J*=16.2Hz, 1H), 6.11 (m, 1H), 1.93 (t, *J*=7.2Hz, 1H), 1.65 (d, *J*=7.2Hz, 3H), 1.40 (d, *J*=7.2Hz, 3H), 1.31 (m, 1H), 1.21 (m, 2H), 1.06 (m, 1H); ¹³C NMR (150MHz, DMSO): δ 158.7, 149.6, 139.1, 138.0, 136.7, 136.9, 130.4, 128.8, 127.2, 126.1, 125.7, 125.0, 122.5, 36.8, 32.7, 26.0, 25.8; HRMS (ESI) Calcd. For C₁₉H₂₁NNa: 286.1572, Found: m/z 286.1571.

(E)-2-(hex-1-en-1-yl)-1,1'-biphenyl

Yellow liquid, yield 38 %, ¹HNMR (600MHz, DMSO): δ 8.67 (d, *J*=8.4Hz, 1H), 7.87 (t, *J*=8.4Hz, 1H), 7.63 (d, *J*=8.4Hz, 1H), 7.39 (m, 5H), 6.43 (d, *J*=16.2Hz, 1H), 6.19 (m, 1H), 1.31 (m, 6H), 0.85 (t, *J*=7.2Hz, 3H); ¹³C NMR (150MHz, DMSO): δ 1586, 149.4, 138.8, 136.5, 135.6, 132.3, 130.1, 128.6, 128.0, 127.0, 126.0, 124.7, 122.2, 32.4, 30.9, 21.7, 13.9; HRMS (ESI) Calcd. For C₁₇H₁₉NNa: 260.1415, Found: m/z 260.1414.

(E)-2-(2-(oct-1-en-1-yl)phenyl)pyridine

Light yellow liquid, yield 47 %, ¹HNMR (600MHz, DMSO):δ 8.60 (d, *J*=8.4Hz, 1H), 7.80 (t, *J*=8.4Hz, 1H), 7.57 (d, *J*=8.4Hz, 1H), 7.31 (m, 5H), 6.37 (d, *J*=16.2Hz, 1H), 6.12 (d, *J*=8.4Hz, 1H), 2.02 (m, 2H), 1.30 (m, 2H), 1.18 (m, 6H), 0.77 (m, 3H); ¹³C NMR (150MHz, DMSO):δ158.8, 149.6, 139.0, 136.8, 135.9, 132.6, 130.2, 128.9, 128.3, 127.3, 126.3, 125.0, 122.6, 40.6, 40.2, 39.5, 33.0, 31.6, 29.0, 28.6, 22.6, 14.4; HRMS (ESI) Calcd. For C₁₉H₂₃NNa: 288.1728, Found: m/z 288.1727.

Mechanistic studies

The H/D exchange experiment

1a (0.1 mmol)

A 15ml sealed tube was charged with 2-phenylpyridine **1a** (15.2 mg, 0.1 mmol), [Cp*RhCl₂]₂ (6.2 mg, 0.01 mmol), AgSbF₆ (7.2 mg, 0.02 mmol), Cu(OAc)₂ (20 mg, 0.1 mmol), H₂O (0.9 ml) and D₂O (0.1 ml). The mixture was stirred at room temperature for 2 hours. The mixture was extracted with diethyl ether (3 × 5 mL) and then the combined organic extracts was washed with brine (2 × 10 mL), dried with sodium sulfate. Then the solvent was evaporated in vacuo and the residue was further purified by flash chromatography of silica gel (silica gel, acetone / petroleum ether = 1:150), affording the deuterated product. ¹H-NMR analyzed 10 % of the *ortho*-C-H within **1a** was deuterated. ¹H-NMR (600 MHz, DMSO) δ 8.68 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1.74H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.89 (t, *J* = 8.4Hz, 1H).

The effects of solvents

A 15ml sealed tube was charged with 2-phenylpyridine **1a** (15.2 mg, 0.1 mmol), $[Cp*RhCl_2]_2$ (6.2 mg, 0.01 mmol), AgSbF₆ (7.2 mg, 0.02 mmol), Cu(OAc)₂ (20 mg, 0.1 mmol), and solvent (1 mL). The mixture was stirred at room temperature for 24 hours and monitored by TLC. Then the mixture was extracted with diethyl ether (3 × 5 mL) and the combined organic extracts was washed with brine (2 × 10 mL), dried with sodium sulfate. Then the solvent was evaporated in vacuo and the residue was further purified by flash chromatography of silica gel (silica gel, acetone / petroleum ether = 1:150), affording the desired product (**3a**).

Entry	Solvents	Yield (%)	Conversion (%)
1	H ₂ O	83	87
2	EtOH	84	89
3	<i>t</i> -AmOH	86	92
4	THF	76	81
5	n-heptane	0	0
6	cyclohexane	0	0

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), catalyst (10 mol %), AgSbF₆ (0.04 mmol), Cu(OAC)₂ (0.2 mmol), H₂O 0.5 ml at room temperature for 24 h.

The competition experiment

A 15ml sealed tube was charged with 2-(m-tolyl)pyridine **1h** (22 mg, 0.1 mmol), 2-(3-(trifluoromethyl)phenyl)pyridine **1j** (17 mg, 0.1 mmol), styrene **2a** (42 mg, 0.4 mmol) [Cp*RhCl₂]₂ (1.2 mg, 0.02 mmol), AgSbF₆ (14 mg, 0.04 mmol), Cu(OAc)₂ (40 mg, 0.2 mmol) and H₂O (1 ml). The mixture was stirred at room temperature for 2 hours. The mixture was extracted with diethyl ether (3 × 5 mL) and then the combined organic extracts was washed with brine (2 × 10 mL), dried with sodium sulfate. Then the solvent was evaporated in vacuo and the residue was further purified by flash chromatography of silica gel (silica gel, acetone / petroleum ether = 1:200), affording the products at the rate of 0.99 : 1.00. ¹H-NMR (600 MHz, DMSO) δ 8.72 (m, 1H), 8.71 (m, 0.99H), 7.90 (m, 2H), 7.79 (s, 0.96H), 7.77 (s, 1.05H), 7.52 (t, *J* = 8.4Hz, 1.09H), 7.50 (t, *J* = 8.4Hz, 0.98H), 7.41 (m, 7H), 7.31 (m, 9H), 7.24 (m, 2H),

7.18 (m, 4H), 7.09 (d, *J* = 16.2Hz, 1H), 2.38 (s, 3H).