Supporting Information

B₂pin₂-catalyzed oxidative cleavage of a C=C double bond with

molecular oxygen

Zhen Cheng, Weiwei Jin,* and Chenjiang Liu*

The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R. China. *E-mail:* wwjin0722@163.com; pxylcj@126.com

Table of Contents

1. Materials and methods	S2
2. Experimental procedures	S3
2.1 Optimization of reaction conditions	S3
2.2 General procedure for synthesis of substrates	S3
2.3 General procedure for synthesis of products	S4
3. Mechanistic studies	S5
3.1 Radical trapping experiments	S5
3.2 Radical clock experiment	S5
3.3 Isotope labeling experiments	S 7
3.4 Intermediate probe experiment	S 8
3.5 Kinetic experiment	S 8
4. Analytical data	S9
5. References	S18
6. Copies of NMR spectra (the new starting materials and all products)	S20

1. Materials and methods

General. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Varian Inova-400 (400 MHz, 100 MHz and 376 MHz, respectively) spectrometer. ¹H and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 or CDCl₃ (δ (¹H), 7.26 ppm; δ (¹³C), 77.16 ppm) and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as internal standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. The HRMS analysis was obtained on a Agilent 6540 UHD Q-TOF mass spectrometer. The melting point was recorded on BÜCHI (M-560) and uncorrected. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel 60 F254 plates and viewed by UV light (254 nm). Column chromatographic purification was performed using 200-300 mesh silica gel.

Materials. All the chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. Starting materials 1b-e,^[1] 1g-t,^[1] 3,^[1] $5^{[2]}$ are known compounds and synthesized according to the reported method. Their spectroscopic features are in good agreement with those reported in the literatures. Starting materials 1f,^[1] 1u-x,^[1] $1y^{[3]}$ are new compounds and prepared by the reported procedure.

2. Experimental procedures

2.1 Optimization of reaction conditions^a

Entry	[B]/(mol%)	T (°C)	Solvent	Yield $(\%)^b$
1	C1 (10)	100	DMSO/H ₂ O	66
2	C2 (10)	100	DMSO/H ₂ O	15
3	C3 (10)	100	DMSO/H ₂ O	32
4	C4 (10)	100	DMSO/H ₂ O	28
5	C1 (10)	100	DMSO	56
6	C1 (10)	100	H ₂ O	0
7	C1 (10)	100	1,4-dioxane	11
8	C1 (10)	100	DMF	16
9	C1 (10)	100	Glycerol	36
10	C1 (10)	100	NMP	77
11	C1 (20)	100	NMP	74
12	C1 (5)	100	NMP	74
13	C1 (10)	120	NMP	80
14	C1 (10)	80	NMP	60
15 ^c	C1 (10)	100	NMP	90
16	C1 (0)	100	NMP	37
17	C1 (0)	100	DMSO/H ₂ O	32
18^{d}	C1 (10)	100	NMP	3
19 ^e	C1 (10)	100	NMP	17
20^d	C1 (0)	100	NMP	0

Table S1:

^{*a*} Reaction conditions: **1a** (0.5 mmol), [B] catalyst, solvent (1.0 mL), O₂ (1 atm), 100 °C, 22 h. ^{*b*} Isolated yields. ^{*c*} 30 h. ^{*d*} Under Ar. ^{*e*} Under air.

2.2 General procedure for synthesis of substrates

2.2.1 A typical procedure for the synthesis of 1 (except 1y):

$$R^{O} + R^{H}MgBr \xrightarrow{(EtO)_{2}P(O)H} R^{H}K^{H}$$

Under a nitrogen atmosphere, a solution of Grignard reagents (8.8 mL, 1.0 M in

THF, 8.8 mmol) was added dropwise to a solution of carbonyl compounds (4.0 mmol) in dry THF (12 mL) at room temperature. After 0.5 h stirring, diethylphosphite (0.62 mL, 4.8 mmol) was added. The reaction mixture was stirred and monitored by TLC analysis. The reaction was then quenched with water and extracted with EtOAc (3×20 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)).

2.2.2 A typical procedure for the synthesis of 1y:

Under a nitrogen atmosphere, the schlenk tube was loaded with K_3PO_4 (2 equiv) and estrone (2 equiv). Then, CuI (10 mol%) in DMSO and the aryl bromide (2 equiv) were added. The tube was sealed. After the reaction was stirred at 130 °C for 24 h, the mixture was extracted with EtOAc for 3 times. The combined organic phase was dried over anhydrous MgSO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc).

2.3 General procedure for synthesis of products (taking 2a as an example)

A mixture of 1,1-diphenylethylene **1a** (90 mg, 0.50 mmol), B_2pin_2 (13 mg, 0.05 mmol) and NMP (1.0 mL) were added to a 10 mL Schlenk tube. The reaction tube was flushed with O_2 for 1.0 minute and then equipped with a O_2 balloon. The reaction was stirred at 100 °C for 30 h. After cooling to ambient temperature, the resulting mixture was extracted with EtOAc (3×10 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column

chromatography (eluent: petroleum ether (35-60 °C)/EtOAc = 80:1, v/v) to afford the desired product **2a** in 90% yield.

3. Mechanistic studies

3.1 Radical trapping experiments

A mixture of 1,1-diphenylethylene **1a** (90 mg, 0.50 mmol), B_2pin_2 (13 mg, 0.05 mmol), radical scavenger TEMPO, BHT or PhSeSePh (1.0 mmol or 2.0 mmol) and NMP (1.0 mL) were added to a 10 mL Schlenk tube. The reaction tube was flushed with O_2 for 1.0 minute and then equipped with a O_2 balloon. The reaction was stirred at 100 °C for 30 h. After cooling to ambient temperature, the resulting mixture was extracted with EtOAc (3×10 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)/EtOAc = 80:1, v/v).

3.2 Radical clock experiment

A mixture of (1-cyclopropylvinyl)benzene (36 mg, 0.25 mmol), B_2pin_2 (6.5 mg, 0.025 mmol) and NMP (0.5 mL) were added to a 10 mL Schlenk tube. The reaction tube was flushed with O_2 for 1.0 minute and then equipped with a O_2 balloon. The reaction was stirred at 100 °C for 30 h. After cooling to ambient temperature, the resulting mixture was extracted with EtOAc (3×10 mL). The combined organic phase

was dried over anhydrous MgSO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)/EtOAc) to afford cyclopropyl(phenyl)methanone in 16% yield.

3.3 Isotope labeling experiments

A mixture of 1,1-diphenylethylene **1a** (90 mg, 0.50 mmol), B₂pin₂ (13 mg, 0.05 mmol) and NMP (1.0 mL) were added to a 10 mL Schlenk tube. The reaction tube was then equipped with a ¹⁸O₂ balloon. The reaction was stirred at 100 °C for 30 h. After cooling to ambient temperature, the resulting mixture was extracted with EtOAc (3×10 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)/EtOAc = 80:1, v/v) to afford the desired product in 74% yield. Then the product was analyzed by HRMS. **HRMS** (ESI) m/z Calcd for C₁₃H₁₁¹⁸O [M+H]⁺: 185.0852; Found: 185.0855.

3.3.2 Isotope labeling experiment with H₂¹⁸O

A mixture of 1,1-diphenylethylene **1a** (90 mg, 0.50 mmol), B_2pin_2 (13 mg, 0.05 mmol), dry NMP (1.0 mL) and $H_2^{18}O$ (100 mg, 5.0 mmol) were added to a 10 mL

Schlenk tube. The reaction tube was flushed with O₂ for 1.0 minute and then equipped with a O₂ balloon. The reaction was stirred at 100 °C for 30 h. After cooling to ambient temperature, the resulting mixture was extracted with EtOAc (3×10 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)/EtOAc = 80:1, v/v) to afford the desired product in 75% yield. Then the product was analyzed by HRMS. **HRMS** (ESI) m/z Calcd for C₁₃H₁₁O [M+H]⁺: 183.0810; Found: 183.0811.

3.4 Intermediate probe experiment

A mixture of 2,2-diphenyloxirane **1a'** (98 mg, 0.50 mmol), B_2pin_2 (13 mg, 0.05 mmol) and NMP (1.0 mL) were added to a 10 mL Schlenk tube. The reaction tube was then equipped with a O₂ balloon. The reaction was stirred at 100 °C for 30 h. After cooling to ambient temperature, the resulting mixture was extracted with EtOAc (3×10 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)/EtOAc = 80:1, v/v) to afford the desired product in 77% yield.

3.5 Kinetic experiment

A mixture of 1,1-diphenylethylene **1a** (90 mg, 0.50 mmol), B_2pin_2 (13 mg, 0.05 mmol) and NMP (1.0 mL) were added to a 10 mL Schlenk tube. The reaction tube was flushed with O_2 for 1.0 minute and then equipped with a O_2 balloon. During the reaction, 0.05 mL of the reaction mixture was sampled every hour and immediately diluted with 0.5 mL of DCM at ambient temperature for GC analysis.

4. Analytical data

1-(1-Phenylvinyl)-4-(trifluoromethoxy)benzene (1f): New compound. 806 mg, 76% yield. Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.42-7.35 (m, 7H), 7.23-7.20 (m, 2H), 5.53 (d, J = 1.0 Hz, 1H), 5.50 (d, J = 1.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 149.0 x 2, 141.1, 140.4, 129.8, 128.5, 128.3, 128.1, 120.8, 120.7 (d, J = 256.0Hz), 115.1; ¹⁹F NMR (CDCl₃, 376 MHz) δ -57.77. HRMS (ESI) m/z Calcd for C₁₅H₁₂F₃O [M+H]⁺: 265.0840; Found: 265.0835.

1-(*tert*-Butyl)-4-(1-(4-fluorophenyl)vinyl)benzene (1u): New compound. 954 mg, 94% yield. White solid. m.p.: 48.9-51.0 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.44-

7.33 (m, 6H), 7.08 (t, J = 8.8 Hz, 2H), 5.51 (s, 1H), 5.43 (s, 1H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 162.6 (d, J = 245.0 Hz), 151.0, 149.0, 138.4, 137.9 (d, J = 4.0 Hz), 130.1 (d, J = 8.0 Hz), 128.0, 125.3, 115.1 (d, J = 21.0 Hz), 113.8, 34.7, 31.5; ¹⁹F NMR (CDCl₃, 376 MHz) δ -114.88. HRMS (ESI) m/z Calcd for C₁₈H₂₀F [M+H]⁺: 255.1549; Found: 255.1547.

1-Chloro-4-(1-(4-(trifluoromethoxy)phenyl)vinyl)benzene (1v): New compound. 824 mg, 69% yield. Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.38-7.21 (m, 8H), 5.51 (s, 1H), 5.49 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 149.1 (d, J = 1.0 Hz), 147.9, 139.8, 139.6, 134.1, 129.7, 129.6, 128.7, 123.1 (q, J = 261.0 Hz), 120.9, 115.5; ¹⁹F NMR (CDCl₃, 376 MHz) δ -57.78. HRMS (ESI) m/z Calcd for C₁₅H₁₁ClF₃O [M+H]⁺: 299.0451; Found: 299.0445.

1-Bromo-4-(1-(4-fluorophenyl)vinyl)benzene (1w): New compound. 885 mg, 80% yield. Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.48 (d, J = 8.4 Hz, 2H), 7.31-7.29 (m, 2H), 7.21 (d, J = 8.5 Hz, 2H), 7.05 (t, J = 8.7 Hz, 2H), 5.45 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 162.7 (d, J = 246.0 Hz), 148.1, 140.3, 137.1 (d, J = 3.0Hz), 131.5, 130.0, 129.9, 122.1, 115.3 (d, J = 22.0 Hz), 114.8; ¹⁹F NMR (CDCl₃, 376 MHz) δ -114.16. HRMS (ESI) m/z Calcd for C₁₄H₁₁BrF [M+H]⁺: 277.0028; Found: 277.0023.

4-(1-(4-Fluorophenyl)vinyl)-1,1'-biphenyl (1x): New compound. 897 mg, 82% yield. White solid. m.p.: 109.0-110.3 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.72-7.65 (m, 4H), 7.56-7.42 (m, 7H), 7.12 (t, *J* = 8.7 Hz, 2H), 5.59 (s, 1H), 5.52 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 162.7 (d, *J* = 245.0 Hz), 148.7, 140.8 (d, *J* = 8.0 Hz), 140.3, 137.6 x 2, 130.1 (d, *J* = 8.0 Hz), 128.9, 128.7, 127.5, 127.1 (d, *J* = 6.0 Hz), 115.8 (d, *J* = 22.0 Hz), 115.2 (d, *J* = 21.0 Hz), 114.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -114.57.

HRMS (ESI) m/z Calcd for C₂₀H₁₆F [M+H]⁺: 275.1236; Found: 275.1233.

(8R,9S,13S,14S)-13-methyl-3-(4-(1-(p-tolyl)vinyl)phenoxy)-

7,8,9,11,12,13,15,16-octahydro-*6H***-cyclopenta**[*a*]**phenanthren-17(14***H***)-one** (1y): New compound. 477 mg, 50% yield. White solid. m.p.: 170.0-172.0 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.31-7.27 (m, 2H), 7.26-7.24 (m, 3H), 7.16 (s, 1H), 7.14 (s, 1H), 6.96-6.93 (m, 2H), 6.83 (dd, *J* = 8.6, 2.7 Hz, 1H), 6.79-6.78 (m, 1H), 5.37 (s, 2H), 2.91-2.87 (m, 2H), 2.54-2.48 (m, 1H), 2.37 (s, 3H), 2.17-2.13 (m, 1H), 2.10-1.96 (m, 3H), 1.63-1.46 (m, 8H), 0.93 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 220.9, 157.3, 155.0, 149.4, 138.8, 138.4, 137.7, 136.5, 135.0, 129.7, 129.0, 128.3, 126.8, 119.3, 118.2, 116.6, 113.1, 50.6, 48.1, 44.3, 38.4, 36.0, 31.7, 29.7, 26.6, 26.0, 21.8, 21.3, 14.0. HRMS (ESI) m/z Calcd for C₃₃H₃₅O₂ [M+H]⁺: 463.2637; Found: 463.2596.

Benzophenone (2a)^[4]: Known compound. 82 mg, 90% yield. Colorless oil. ¹H
NMR (CDCl₃, 400 MHz) δ 7.80 (d, J = 8.1 Hz, 4H), 7.60-7.56 (m, 2H), 7.49-7.45 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 196.8, 137.7, 132.5, 130.1, 128.4.

Phenyl(*o*-tolyl)methanone (2b)^[4]: Known compound. 35 mg, 36% yield. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.82-7.79 (m, 2H), 7.60-7.56 (m, 1H), 7.48-7.44 (m, 2H), 7.42-7.37 (m, 1H), 7.33-7.23 (m, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 198.8, 138.7, 137.8, 136.9, 133.3, 131.1, 130.4, 130.3, 128.6 x 2, 125.3, 20.1.

Phenyl(*p***-tolyl)methanone (2c)**^[4]: Known compound. 78 mg, 80% yield. White solid. m.p.: 54.0-56.0 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.80-7.77 (m, 2H), 7.73 (d, *J*

= 8.2 Hz, 2H), 7.59-7.55 (m, 1H), 7.49-7.45 (m, 2H), 7.27 (t, *J* = 7.9 Hz, 2H), 2.44 (s, 3H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 196.6, 143.3, 138.1, 135.0, 132.3, 130.4, 130.0, 129.1, 128.3, 21.8.

(4-(*tert*-Butyl)phenyl)(phenyl)methanone (2d)^[5]: Known compound. 87 mg, 81%. Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.83-7.76 (m, 4H), 7.60-7.55 (m, 1H), 7.52-7.45 (m, 4H), 1.37 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 196.5, 156.3, 138.0, 134.9, 132.3, 130.2, 130.1, 128.3, 125.3, 35.2, 31.3.

(4-Ethoxyphenyl)(phenyl)methanone (2e)^[6]: Known compound. 93 mg, 82% yield. White solid. m.p.: 38.8-39.6 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.81 (dt, *J* = 8.7, 2.8 Hz, 2H), 7.76-7.73 (m, 2H), 7.57-7.52 (m, 1H), 7.48-7.43 (m, 2H), 6.93 (dt, *J* = 8.8, 2.7 Hz, 2H), 4.09 (q, *J* = 7.0 Hz, 2H), 1.44 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.6, 162.7, 138.4, 132.6, 131.9, 130.0, 129.7, 128.2, 114.0, 63.8, 14.8.

Phenyl(4-(trifluoromethoxy)phenyl)methanone (2f)^[7]: Known compound. 104 mg, 78%. White solid. m.p.: 53.4-54.4 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.86 (td, J = 8.9, 2.6 Hz, 2H), 7.80-7.77 (m, 2H), 7.62-7.58 (m, 1H), 7.51-7.47 (m, 2H), 7.33-7.30 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.2, 152.2, 137.3, 136.0, 132.8, 132.1, 130.1, 128.6, 120.5 (q, J = 258.0 Hz), 120.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -57.58.

Benzo[d][1,3]dioxol-5-yl(phenyl)methanone (2g)^[5]: Known compound. 87 mg, 77%. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.75-7.72 (m, 2H), 7.56-7.54 (m, 1H), 7.48-7.44 (m, 2H), 7.38-7.36 (m, 2H), 6.86-6.84 (m, 1H), 6.05 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.2, 151.6, 148.0, 138.2, 132.1, 132.0, 129.8, 128.3, 127.0, 110.0, 107.8, 102.0.

(2-Fluorophenyl)(phenyl)methanone (2h)^[5]: Known compound. 66 mg, 66%. Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.86-7.83 (m, 2H), 7.60-7.38 (m, 5H), 7.29-7.25 (m, 1H), 7.18-7.13 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 193.6, 160.2 (d, *J* = 251.0 Hz), 137.5, 133.5, 133.2 (d, *J* = 9.0 Hz), 130.9 (d, *J* = 3.0 Hz), 129.9, 128.6, 127.1 (d, *J* = 11.0 Hz), 124.4 (d, *J* = 4.0 Hz), 116.4 (d, *J* = 21.0 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -111.03.

(4-Fluorophenyl)(phenyl)methanone (2i)^[6]: Known compound. 75 mg, 75%. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.87-7.82 (m, 2H), 7.78-7.76 (m, 2H), 7.61-7.57 (m, 1H), 7.51-7.46 (m, 2H), 7.18-7.13 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.4, 165.5 (d, J = 252.0 Hz), 137.6, 133.9 (d, J = 3.0 Hz), 132.8 (d, J = 10.0 Hz), 132.6, 130.0, 128.5, 115.6 (d, J = 22.0 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ - 105.95.

(4-Chlorophenyl)(phenyl)methanone (2j)^[4]: Known compound. 81 mg, 75% yield. White solid. m.p.: 73.0-73.2 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.79-7.74 (m, 4H), 7.62-7.57 (m, 1H), 7.51-7.44 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.5, 139.0, 137.3, 135.9, 132.7, 131.5, 130.0, 128.7, 128.5.

(4-Bromophenyl)(phenyl)methanone (2k)^[6]: Known compound. 90 mg, 69% yield. White solid. m.p.: 79.4-79.8 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.77-7.75 (m, 2H), 7.68-7.66 (m, 2H), 7.62-7.57 (m, 3H), 7.48 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.6, 137.2, 136.3, 132.7, 131.7, 131.6, 130.0, 128.5, 127.6.

Phenyl(4-(trifluoromethyl)phenyl)methanone (2l)^[5]: Known compound. 78 mg, 66% yield. White solid. m.p.: 112.8-113.5 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.89 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 7.6 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.6, 140.8, 136.8, 133.8 (q, J = 33.0 Hz), 133.2, 130.3, 130.2, 128.6, 125.5 (q, J = 4.0 Hz), 123.8 (q, J = 271.0 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -63.00.

(4-(ethylsulfonyl)phenyl)(phenyl)methanone (2m)^[8]: Known compound. 91 mg, 70% yield. White solid. m.p.: 139.5-140.7 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.04 (d, J = 8.1 Hz, 2H), 7.91 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 3.09 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.1, 143.4, 142.3, 136.3, 133.4, 130.5, 130.1, 128.6, 127.4, 44.3.

[1,1'-Biphenyl]-4-yl(phenyl)methanone (2n)^[5]: Known compound. 90 mg, 70% yield. White solid. m.p.: 99.4-100.9 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.93-7.90 (m, 2H), 7.87-7.85 (m, 2H), 7.73-7.70 (m, 2H), 7.68-7.66 (m, 2H), 7.64-7.59 (m, 1H), 7.53-7.48 (m, 4H), 7.44-7.40 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 196.4, 145.3, 140.1, 137.9, 136.3, 132.5, 130.8, 130.1, 129.1, 128.4, 128.3, 127.4, 127.1.

Naphthalen-2-yl(phenyl)methanone (2o)^[4]: Known compound. 95 mg, 82% yield. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 8.28 (s, 1H), 7.96-7.95 (m, 2H), 7.93-7.90 (m, 2H), 7.89-7.88 (m, 1H), 7.88-7.87 (m, 1H), 7.63-7.59 (m, 2H), 7.57-7.50 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 196.8, 138.0, 135.3, 134.9, 132.5, 132.3,

132.0, 130.2, 129.5, 128.4 x 2, 127.9, 126.9, 125.8.

Phenyl(thiophen-2-yl)methanone (2p)^[4]: Known compound. 38 mg, 40% yield. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.88-7.86 (m, 2H), 7.72 (dd, J = 5.0, 1.1 Hz, 1H), 7.65 (dd, J = 3.8, 1.1 Hz, 1H), 7.62-7.57 (m, 2H), 7.52-7.48 (m, 2H), 7.16 (dd, J = 5.0, 3.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.3, 143.8, 138.3, 135.0, 134.3, 132.4, 129.3, 128.5, 128.1.

Di-*p***-tolylmethanone (2q)**^[4]: Known compound. 81 mg, 77% yield. White solid. m.p.: 79.0-81.0 °C. ¹**H NMR** (CDCl₃, 400 MHz) δ 7.71 (d, *J* = 8.1 Hz, 4H), 7.27 (dd, *J* = 8.4, 0.6 Hz, 4H), 2.44 (s, 6H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 196.4, 143.0, 135.3, 130.3, 129.0, 21.7.

(4-Chlorophenyl)(*p*-tolyl)methanone (2r)^[4]: Known compound. 81 mg, 70% yield. White solid. m.p.: 120.0-121.0 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.73 (dt, *J* = 8.7, 2.3 Hz, 2H), 7.69 (dt, *J* = 8.1, 1.8 Hz, 2H), 7.45 (dt, *J* = 8.7, 2.3 Hz, 2H), 7.28 (dd, *J* = 8.5, 0.6 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.3, 143.6, 138.7, 136.4, 134.7, 131.5, 130.3, 129.2, 128.7, 21.8.

(4-Bromophenyl)*(p*-tolyl)methanone (2s)^[9]: Known compound. 101 mg, 73% yield. White solid. m.p.: 136.0-138.0 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.70-7.66 (m, 3H), 7.65-7.62 (m, 3H), 7.28 (d, *J* = 7.9 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.5, 143.7, 136.8, 134.6, 131.7, 131.6, 130.3, 129.2, 127.3, 21.8.

Thiophen-2-yl(p-tolyl)methanone (2t)^[4]: Known compound. 33 mg, 31% yield,

Yellow oil. ¹**H NMR** (CDCl₃, 400 MHz) δ 7.79 (dt, *J* = 8.2, 1.9 Hz, 2H), 7.70 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.65 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.31-7.28 (m, 2H), 7.16 (dd, *J* = 5.0, 3.8 Hz, 1H), 2.44 (s, 3H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 188.0, 143.9, 143.2, 135.6, 134.6, 133.9, 129.5, 129.2, 128.0, 21.8.

(4-(*tert***-Butyl)phenyl)(4-fluorophenyl)methanone (2u)**^[10]: Known compound. 90 mg, 70% yield. White solid. m.p.: 70.2-71.8 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.87-7.82 (m, 2H), 7.74-7.72 (m, 2H), 7.51-7.49 (m, 2H), 7.17-7.12 (m, 2H), 1.36 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.0, 165.3 (d, *J* = 253.0 Hz), 156.3, 134.8, 134.2 (d, *J* = 3.0 Hz), 132.7 (d, *J* = 9.0 Hz), 130.1, 125.4, 115.4 (d, *J* = 22.0 Hz), 35.2, 31.2; ¹⁹F NMR (CDCl₃, 376 MHz) δ -106.45.

(4-Chlorophenyl)(4-(trifluoromethoxy)phenyl)methanone (2v)^[11]: Known compound. 105 mg, 70% yield, White solid. m.p.: 73.2-73.7 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.83 (dt, J = 8.8, 2.6 Hz, 2H), 7.75-7.72 (m, 2H), 7.49-7.45 (m, 2H), 7.34-7.30 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 194.0, 152.4 (q, J = 2.0 Hz), 139.4, 135.6, 135.5, 132.0, 131.5, 128.9, 120.4 (d, J = 258.0 Hz), 120.5 (d, J = 1.0 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -57.59.

(4-Bromophenyl)(4-fluorophenyl)methanone (2w)^[12]: Known compound. 99 mg, 71% yield, White solid. m.p.: 109.3-109.8 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.84-7.79 (m, 2H), 7.63 (s, 4H), 7.19-7.13 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 194.2, 165.6 (d, J = 254.0 Hz), 136.3, 133.5 (d, J = 3.0 Hz), 132.7 (d, J = 9.0 Hz), 131.8, 131.5, 127.7, 115.7 (d, J = 22.0 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ - 105.33.

[1,1'-Biphenyl]-4-yl(4-fluorophenyl)methanone (2x)^[13]: Known compound. 111 mg, 80% yield. White solid. m.p.: 146.8-148.0 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.91-7.86 (m, 4H), 7.73-7.71 (m, 2H), 7.67-7.65 (m, 2H), 7.51-7.47 (m, 2H), 7.44-7.40 (m, 1H), 7.21-7.15 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 194.9, 165.4 (d, J = 253.0 Hz), 145.3, 139.9, 136.1, 134.0 (d, J = 3.0 Hz), 132.7 (d, J = 10.0 Hz), 130.6, 129.0, 128.3, 127.3, 127.1, 115.5 (d, J = 21.0 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -106.02.

(8R,9S,13S,14S)-13-methyl-3-(4-(4-methylbenzoyl)phenoxy)-

7,8,9,11,12,13,15,16-octahydro-*6H***-cyclopenta**[*a*]**phenanthren-17(14***H***)-one** (2y): New compound. 67 mg, 29% yield. White solid. m.p.: 165.0-168.0 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.82-7.79 (m, 2H), 7.72-7.70 (m, 2H), 7.32-7.27 (m, 3H), 7.08-7.00 (m, 2H), 6.90-6.88 (m, 1H), 6.88-6.83 (m, 1H), 2.92-2.87 (m, 2H), 2.54-2.50 (m, 1H), 2.45 (s, 3H), 2.19-2.01 (m, 6H), 1.68-1.48 (m, 6H), 0.95 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 220.9, 195.5, 161.8, 153.6, 143.0, 138.8, 136.2, 135.3, 132.4, 130.2, 129.1, 127.0, 125.9, 120.3, 117.6, 117.1, 50.6, 48.1, 44.3, 38.3, 36.0, 31.7, 29.6, 26.5, 26.0, 22.7, 21.8, 14.0. HRMS (ESI) m/z Calcd for C₃₂H₃₃O₃ [M+H]⁺: 465.2430; Found: 465.2415.

1,4-Phenylenebis(phenylmethanone) (4)^[14]: Known compound. 82 mg, 57% yield, White solid. m.p.: 150-152 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.89 (s, 4H), 7.85-7.83 (m, 4H), 7.65-7.61 (m, 2H), 7.55-7.49 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 196.1, 140.7, 137.0, 133.1, 130.2, 129.8, 128.6.

Benzene-1,3,5-triyltris(phenylmethanone) (6)^[15]: Known compound. 86 mg, 44% yield, White solid. m.p.: 113-114 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.40 (s, 3H), 7.87-7.84 (m, 6H), 7.65-7.61 (m, 3H), 7.54-7.50 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.0, 138.4, 136.6, 134.2, 133.4, 130.2, 128.8.

5. References

- [1] Wang, T. Q.; Hu, Y. Y.; Zhang, S. L. Org. Biomol. Chem. 2010, 8, 2312-2315.
- [2] Li, J.; Chen, J. Z.; Jiao, W.; Wang, G. Q.; Li, Y.; Cheng, X.; Li, G. G. J. Org. Chem. 2016, 81, 9992–10001.
- [3] Güell, I.; Ribas, X. Eur. J. Org. Chem. 2014, 3188-3195.
- [4] Hao, W. Y.; Liu, H. Y.; Yin, L.; Cai, M. Z. J. Org. Chem. 2016, 81, 4244-4251.
- [5] Meng, G. R.; Lalancette, R.; Szostak, R.; Szostak, M. Org. Lett. 2017, 19, 4656-4659.
- [6] Tran, P. H.; Hansen, P. E.; Pham, T. T.; Huynh, V. T.; Huynh, V. H.; Tran, T. D. T.; Huynh, T. V.; Le, T. N. Synth. Commun. 2014, 44, 2921–2929.
- [7] Liu, J.-B.; Chen, C.; Chu, L. L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Angew. Chem. Int. Ed. 2015, 54, 11839-11842.
- [8] Jereb, M. Green Chem. 2012, 14, 3047-3052.
- [9] Kangani, C. O.; Day, B. W. Org. Lett. 2008, 10, 2645-2648.
- [10] García-Cuadrado, D.; de Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren,
 A. M. J. Am. Chem. Soc. 2007, 129, 6880-6886.
- [11] Peng, Z. H.; Li, N.; Sun, X. Y.; Wang, F.; Xu, L. J.; Jiang, C. Y.; Song, L. H.; Yan, Z.-F. Org. Biomol. Chem. 2014, 12, 7800–7809.
- [12] Kunchithapatham, K.; Eichman, C. C.; Stambuli, J. P. Chem. Commun. 2011, 47, 12679–12681.

- [13] Smith, D. W.; Oladoyinbo, F. O.; Mortimore, W. A.; Colquhoun, H. M.; Thomassen, M. S.; Ødegård, A.; Guillet, N.; Mayousse, E.; Klicpera, T.; Hayes, W. *Macromolecules* 2013, 46, 1504-1511.
- [14] Stępień, M.; Szyszko, B.; Latos-Grażyński, L. Org. Lett. 2009, 11, 3930-3933.
- [15] Chan, C. Y. K.; Zhao, Z. J.; Lam, J. W. Y.; Liu, J. Z.; Chen, S. M.; Lu, P.;
 Mahtab, F.; Chen, X. J.; Sung, H. H. Y.; Kwok, H. S.; Ma, Y. G.; Williams, I. D.;
 Wong, K. S.; Tang, B. Z. Adv. Funct. Mater. 2012, 22, 378-389.

6. Copies of NMR spectra (the new starting materials and all products)

¹H NMR of new starting material 1f in CDCl₃ (400 MHz)

¹⁹F NMR of new starting material 1f in CDCl₃ (376 MHz)

¹H NMR of new starting material 1u in CDCl₃ (400 MHz)

¹³C NMR of new starting material 1u in CDCl₃ (100 MHz)

¹⁹F NMR of new starting material 1u in CDCl₃ (376 MHz)

¹H NMR of new starting material 1v in CDCl₃ (400 MHz)

¹³C NMR of new starting material 1v in CDCl₃ (100 MHz)

¹⁹F NMR of new starting material 1v in CDCl₃ (376 MHz)

-90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm) 10 ò -10 -20 -30 -40 -50 -60 -70 -80 -170 -200

¹H NMR of new starting material 1w in CDCl₃ (400 MHz)

¹³C NMR of new starting material 1w in CDCl₃ (100 MHz)

¹⁹F NMR of new starting material 1w in CDCl₃ (376 MHz)

¹H NMR of new starting material 1x in CDCl₃ (400 MHz)

¹³C NMR of new starting material 1x in CDCl₃ (100 MHz)

¹⁹F NMR of new starting material 1x in CDCl₃ (376 MHz)

¹³C NMR of new starting material 1y in CDCl₃ (100 MHz)

¹H NMR of product 2a in CDCl₃ (400 MHz)

¹H NMR of product 2b in CDCl₃ (400 MHz)

¹³C NMR of product 2b in CDCl₃ (100 MHz)

¹³C NMR of product 2c in CDCl₃ (100 MHz)

¹³C NMR of product 2d in CDCl₃ (100 MHz)

¹³C NMR of product 2e in CDCl₃ (100 MHz)

¹H NMR of product 2f in CDCl₃ (400 MHz)

¹³C NMR of product 2f in CDCl₃ (100 MHz)

¹⁹F NMR of product 2f in CDCl₃ (376 MHz)

¹H NMR of product 2g in CDCl₃ (400 MHz)

¹³C NMR of product 2g in CDCl₃ (100 MHz)

¹H NMR of product 2h in CDCl₃ (400 MHz)

72,838.9 72,699.2 72,699.2 72,699.2 72,699.2 72,699.2 72,599.2 72,

¹³C NMR of product 2h in CDCl₃ (100 MHz)

¹⁹F NMR of product 2h in CDCl₃ (376 MHz)

¹³C NMR of product 2i in CDCl₃ (100 MHz)

¹⁹F NMR of product 2i in CDCl₃ (376 MHz)

¹H NMR of product 2j in CDCl₃ (400 MHz)

7,7867 7,7867 7,7867 7,7869 7,7890 7,7890 7,7890 7,7890 7,890 7,990 7,500 7,5000 7,5000 7,5000 7,5000 7,5000 7,5000 7,5000 7,5000 7,5000 7,5000 7,5000000000

¹³C NMR of product 2j in CDCl₃ (100 MHz)

¹H NMR of product 2k in CDCl₃ (400 MHz)

7.7728 7.7551 7.7551 7.7571 7.7571 7.7572 7.6773 7.6773 7.661 7.661 7.6631 7.6631 7.6631 7.6631 7.5633 7.7,5935 7.7,59355 7.7,59355 7.7,59

¹³C NMR of product 2k in CDCl₃ (100 MHz)

¹H NMR of product 2l in CDCl₃ (400 MHz)

7.8998 7.8799 7.8136 7.7946 7.77601 7.7601 7.6052 7.7552 7.6052 7.7552 7.6052 7.7552 7.7552 7.7552 7.7552 7.7552 7.7552 7.7552 7.75525 7.755525 7.755525 7.755525 7.75555

¹³C NMR of product 2l in CDCl₃ (100 MHz)

¹⁹F NMR of product 2l in CDCl₃ (376 MHz)

¹³C NMR of product 2m in CDCl₃ (100 MHz)

¹H NMR of product 2n in CDCl₃ (400 MHz)

¹³C NMR of product 2n in CDCl₃ (100 MHz)

¹H NMR of product 20 in CDCl₃ (400 MHz)

¹³C NMR of product 20 in CDCl₃ (100 MHz)

¹H NMR of product 2p in CDCl₃ (400 MHz)

¹³C NMR of product 2p in CDCl₃ (100 MHz)

¹³C NMR of product 2q in CDCl₃ (100 MHz)

¹H NMR of product 2r in CDCl₃ (400 MHz)

¹³C NMR of product 2r in CDCl₃ (100 MHz)

¹H NMR of product 2s in CDCl₃ (400 MHz)

2s

Br

¹³C NMR of product 2s in CDCl₃ (100 MHz)

¹H NMR of product 2t in CDCl₃ (400 MHz)

¹³C NMR of product 2t in CDCl₃ (100 MHz)

¹H NMR of product 2u in CDCl₃ (400 MHz)

¹³C NMR of product 2u in CDCl₃ (100 MHz)

¹⁹F NMR of product 2u in CDCl₃ (376 MHz)

¹H NMR of product 2v in CDCl₃ (400 MHz)

7,8802 7,8802 7,8802 7,8816 7,8816 7,8816 7,8816 7,8816 7,7817 7,7917 7,7917 7,7917 7,7917 7,7917 7,7917 7,7917 7,7917 7,

¹³C NMR of product 2v in CDCl₃ (100 MHz)

¹⁹F NMR of product 2v in CDCl₃ (376 MHz)

¹H NMR of product 2w in CDCl₃ (400 MHz)

¹³C NMR of product 2w in CDCl₃ (100 MHz)

¹⁹F NMR of product 2w in CDCl₃ (376 MHz)

¹H NMR of product 2x in CDCl₃ (400 MHz)

¹³C NMR of product 2x in CDCl₃ (100 MHz)

¹³C NMR of product 2y in CDCl₃ (100 MHz)

¹H NMR of product 4 in CDCl₃ (400 MHz)

¹³C NMR of product 4 in CDCl₃ (100 MHz)

¹³C NMR of product 6 in CDCl₃ (100 MHz)

20