Additive-free regio- and diastereoselective construction of fully-substituted isoxazolidines employing diazo compounds

Ekta Gupta,^a Mohd Khalid Zaheer,^a Ruchir Kant^b and Kishor Mohanan^{a,c*}

^aMedicinal and Process Chemistry Division and ^bMolecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India

^cAcademy of Scientific and Innovative Research, New Delhi, India

kishor.mohanan@cdri.res.in

SUPPORTING INFORMATION

Content:

- 1. General experimental information (p. S2)
- 2. General procedure for the synthesis of trifluoromethylated isoxazolidines (p. S3)
- 3. Characterization data for compounds 4a-4r (p. S3)
- 4. Optimization studies for the synthesis of phosphonylated isoxazolidines (p. S11)
- 5. General procedure for synthesis of phosphonylated isoxazolidines (p. S12)
- 6. Characterization data for compounds **6a-6m & 7** (p. S12)
- 7. General procedure for the synthesis of γ -lactam (p. S19)
- 8. Characterization data for compounds 8a-8h (p. S19)
- 9. X-ray data of compounds **4m** and **8a** (p. S24)
- 10. Copies of ¹H, ¹³C NMR, ¹⁹F, and ³¹P spectra (p. S27)

General experimental information

Unless otherwise specified, all reactions were performed in oven-dried glasswares under nitrogenous atmosphere using dry deoxygenated solvent. The reactions were monitored by TLC visualized by UV (254 nm) and/or with iodine. Column chromatography was performed on 100-200 mesh silica gel using the gradient system ethyl acetate-hexane. NMR data were recorded at Bruker AV 400 MHz in CDCl₃/DMSO-d₆ using as internal standards the residual CHCl₃ signal for ¹H NMR (δ = 7.26 ppm) and the deuterated solvent signal for ¹³C NMR (δ = 77.16 ppm). The residual DMSO signal for ¹H NMR (δ = 2.50 ppm) and the deuterated solvent signal for ¹³C NMR (δ = 39.51 ppm). Coupling constants are given in Hertz (Hz) and the classical abbreviations are used to describe the signal multiplicities. Melting points were measured with a Büchi B-540 apparatus and are uncorrected. High resolution mass spectra were obtained using Q-TOF mass spectrometer. All commercially available reagents were used as received. All allenic esters (**3a-3m**)¹ and nitroarenes² were synthesized following literature procedure. Stock solution of the CF₃CHN₂ and Seyferth-Gilbert reagent were preapared according to the literature procedure.^{3,4}

3. G. A. Molander and D. Ryu, Angew. Chem., Int. Ed., 2014, 53, 14181.

^{1.} L. Rout and A. M. Harned, *Chem. Eur. J.*, 2009, **15**, 12926.

S. Chakrabarty, I. Chatterjee, L. Tebben and A. Studer, *Angew. Chem., Int. Ed.*, 2013, 52, 2968.

^{4.} A. K. Gupta, N. K. Vaishanv, R. Kant and K. Mohanan, Org. Biomol. Chem., 2017, **15**, 6411.

General procedure for the synthesis of trifluoromethylated isoxazolidines 4a-4r

A 10 mL round-bottom flask charged with nitrosobenzene **1a** (54 mg, 0.50 mmol, 1.0 equiv) was sealed, evacuated, backfilled with nitrogen and added dry CH₃CN (2 mL). Subsequently, the requisite amount of CF₃CHN₂ in toluene **2** (1.90 mL, 1.5 mmol) and ethyl penta-2,3-dienoate **3a** (95 mg, 0.75 mmol) were added via a syringe. This reaction mixture was stirred at 50 °C for 12 h. After the completion of reaction, as indicated by TLC, solvent was evaporated under reduced pressure. The residue was purified using column chromatography (100-200 mesh silica gel) using ethyl acetate/hexane as the eluent.

Compound 4a: Ethyl 4-ethylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.5 mmol) and ethyl penta-2,3-dienoate **3a** (95 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4a** as liquid (113 mg, 72%). **R**_f (EtOAc/Hexane: 1/9) = 0.40. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.5 (C), 149.6 (C), 133.2 (C), 128.9 (CH), 128.9 (CH), 125.7 (CH), 122.6 (CH), 120.6 (q, *J*_{C-F} = 278.6 Hz, C), 114.2 (CH), 114.2 (CH), 78.6 (CH), 67.7 (q, *J*_{C-F} = 31.9 Hz, CH), 61.9 (CH₂), 16.3 (CH₃), 13.6

(CH₃). ¹**H NMR** (400 MHz, δ ppm/CDCl₃): 7.27-7.23 (m, 2H), 7.04 (d, *J* = 7.6 Hz, 2H), 6.97 (t, *J* = 7.4 Hz, 1H), 6.08 (q, *J* = 6.8 Hz, 1H), 5.17 (s, 1H), 4.86-4.81 (m, 1H), 4.01-3.87 (m, 2H), 1.72 (d, *J* = 7.2 Hz, 3H), 1.01 (t, *J* = 7.2 Hz, 3H). ¹⁹**F NMR** (376 MHz, δ ppm/CDCl₃): -74.6 (s). **HRMS** for C₁₅H₁₇F₃NO₃⁺: calcd. [M+H]⁺: 316.1155, found: 316.1154.

Compound 4b: Ethyl 4-methylene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl buta-2,3-dienoate **3b** (84 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4b** as liquid (90 mg, 60%). **R**_f (EtOAc/Hexane: 1/9) = 0.41. ¹³C NMR (100 MHz, δ ppm/CDCl₃): 168.4 (C), 149.5 (C), 140.3 (C), 128.9 (CH), 128.9 (CH), 124.0 (q, J_{C-F} = 278.9 Hz, C), 123.4 (CH), 115.7 (CH), 115.7 (CH), 114.7

(CH₂), 79.1 (CH), 69.1 (q, J_{C-F} = 31.9 Hz, CH), 62.1 (CH₂), 13.9 (CH₃). ¹H NMR (400 MHz, $\delta ppm/CDCl_3$): 7.31-7.27 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.03 (t, J = 7.2 Hz, 1H), 5.69 (s, 1H), 5.64 (s, 1H), 5.15-5.14 (m, 1H), 4.79-4.34 (m, 1H), 4.11 (q, J_{H-F} = 7.2 Hz, 2H), 1.17 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, $\delta ppm/CDCl_3$): -74.8 (s). HRMS for C₁₄H₁₅F₃NO₃⁺: calcd. [M+H]⁺: 302.0999, found: 302.1001.

Compound 4c: Ethyl 2-phenyl-4-propylidene-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl hexa-2,3-dienoate **3c** (105 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4c** as liquid (107 mg, 65%). **R**_f (EtOAc/Hexane: 1/9) = 0.51. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.7 (C), 149.7 (C), 132.4 (C), 131.5 (CH), 128.9 (CH), 128.9 (CH), 124.3 (q, *J*_{C-F} = 287.7 Hz, C), 122.5 (CH), 114.0 (CH), 114.0 (CH), 78.5 (CH), 67.6 (q, *J*_{C-F} = 31.8 Hz, CH), 61.9 (CH₂), 24.5 (CH₂), 13.6

(CH₃), 13.2 (CH₃). ¹**H NMR** (400 MHz, δ ppm/CDCl₃): 7.28-7.24 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.98 (t, *J* = 7.4 Hz, 1H), 5.98 (t, *J* = 7.4 Hz, 1H), 5.16 (s, 1H), 4.84 (q, *J* = 7.2 Hz, 1H), 3.99-3.84 (m, 2H), 2.11-2.03 (m, 2H), 1.04-0.97 (m, 6H). ¹⁹**F NMR** (376 MHz, δ ppm/CDCl₃): -74.6 (s). **HRMS** for C₁₆H₁₉F₃NO₃⁺: calcd. [M+H]⁺: 330.1312, found: 330.1307.

Compound 4d: Ethyl 4-butylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.20 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl hepta-2,3-dienoate **3d** (116 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4d** as liquid (106 mg, 62%). **R**_f (EtOAc/Hexane: 1/9) = 0.56. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.7 (C), 149.7 (C), 132.3 (C), 130.9 (CH), 128.9 (CH), 128.9 (CH), 124.4 (q, *J*_{C-F} = 278.5 Hz, C), 122.5 (CH), 114.0 (CH), 114.0 (CH), 78.7 (CH), 67.6 (q, *J*_{C-F} = 31.8 Hz, CH), 61.8 (CH₂), 33.0 (CH₂), 22.0

(CH₂), 13.7 (CH₃), 13.6 (CH₃). ¹**H NMR** (400 MHz, δppm/CDCl₃): 7.27-7.23 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.97 (t, *J* = 7.4 Hz, 1H), 5.98 (t, *J* = 7.4 Hz, 1H), 5.15 (s, 1H), 4.84 (q, *J* = 7.2 Hz, 1H),

3.98-3.83 (m, 2H), 2.07-2.00 (m, 2H), 1.47-1.42 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H), 0.88 (t, *J* = 7.2 Hz, 3H). ¹⁹**F NMR** (376 MHz, δppm/CDCl₃): -74.6 (s). **HRMS** for C₁₇H₂₁F₃NO₃⁺: calcd. [M+H]⁺: 344.1468, found: 344.1465.

Compound 4e: Ethyl 4-pentylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl octa-2,3dienoate **3e** (126 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4e** as liquid (109 mg, 61%). **R**_f (EtOAc/Hexane: 1/9) = 0.59. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.7 (C), 149.7 (C), 132.1 (C), 131.0 (CH), 128.9 (CH), 128.9 (CH), 124.4 (q, *J*_{C-F} = 278.6 Hz, C), 122.5 (CH), 114.0 (CH), 114.0 (CH), 78.7 (CH), 67.6 (q, *J*_{C-F} = 31.8 Hz, CH), 61.8 (CH₂), 30.8 (CH₂), 30.8 (CH₂),

22.3 (CH₂), 13.9 (CH₃), 13.6 (CH₃). ¹**H NMR** (400 MHz, δ ppm/CDCl₃): 7.28-7.24 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.97 (t, *J* = 7.2 Hz, 1H), 5.98 (t, *J* = 7.4 Hz, 1H), 5.15 (s, 1H), 4.84 (q, *J* = 7.2 Hz, 1H), 4.00-3.83 (m, 2H), 2.08-2.03 (m, 2H), 1.42-1.31 (m, 4H), 0.97 (t, *J* = 7.0 Hz, 3H), 0.89 (t, *J* = 7.2 Hz, 3H). ¹⁹**F NMR** (376 MHz, δ ppm/CDCl₃): -74.6 (s). **HRMS** for C₁₈H₂₃F₃NO₃⁺: calcd. [M+H]⁺: 358.1625, found: 358.1623.

Compound 4f: Ethyl 4-hexylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.9 mL, 1.50 mmol) and ethyl nona-2,3dienoate **3f** (137 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4f** as liquid (122 mg, 66%). **R**_f (EtOAc/Hexane: 1/9) = 0.67. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.7 (C), 149.8 (C), 132.1 (C), 131.1 (CH), 128.9 (CH), 128.9 (CH), 124.4 (q, *J*_{C-F} = 278.6 Hz, C), 122.5 (CH), 114.0 (CH), 114.0 (CH), 78.7 (CH), 67.6 (q, *J*_{C-F} = 31.8 Hz, CH), 61.8 (CH₂), 31.4 (CH₂), 31.1

(CH₂), 28.4 (CH₂), 22.5 (CH₂), 14.1 (CH₃), 13.6 (CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.28-7.24 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.97 (t, *J* = 7.4 Hz, 1H), 5.98 (t, *J* = 7.4 Hz, 1H), 5.15 (s, 1H), 4.84 (q, *J* = 7.2 Hz, 1H), 3.98-3.83 (m, 2H), 2.07-2.02 (m, 2H), 1.43-1.39 (m, 2H), 1.30-1.23 (m, 4H), 0.97 (t, *J* = 7.2 Hz, 3H), 0.90 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, δ ppm/CDCl₃): -74.6 (s). HRMS for C₁₉H₂₅F₃NO₃⁺: calcd. [M+H]⁺: 372.1781, found: 372.1785.

Compound 4g: Ethyl 4-heptylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl deca-2,3dienoate **3g** (147 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4g** as liquid (117 mg, 61%). **R**_f (EtOAc/Hexane: 1/9) = 0.65. ¹³C NMR (100 MHz, δ ppm/CDCl₃): 168.7 (C), 149.8 (C), 132.1 (C), 131.1 (CH), 128.9 (CH), 128.9 (CH), 124.4 (q, *J*_{C-F} = 274.5 Hz, C), 122.5 (CH), 114.0 (CH), 114.0 (CH), 78.7 (CH), 67.6 (q, *J*_{C-F} = 31.6 Hz, CH), 61.8 (CH₂), 31.7 (CH₂), 31.1 (CH₂), 28.9

(CH₂) 28.7 (CH₂), 22.6 (CH₂), 14.1 (CH₃), 13.6 (CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.27-7.23 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.97 (t, *J* = 7.2 Hz, 1H), 5.97 (t, *J* = 7.4 Hz, 1H), 5.15 (s, 1H), 4.84 (q, *J* = 7.2 Hz, 1H), 3.96-3.84 (m, 2H), 2.12-2.02 (m, 2H), 1.42-1.37 (m, 2H), 1.31-1.23 (m, 6H), 0.97 (t, *J* = 7.0 Hz, 3H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹⁹F NMR (376 MHz, δ ppm/CDCl₃): -74.6 (s). HRMS for C₂₀H₂₇F₃NO₃⁺: calcd. [M+H]⁺: 386.1938, found: 386.1938.

Compound 4h: Ethyl 4-(2-methylpropylidene)-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl 5methylhexa-2,3-dienoate **3h** (116 mg, 0.75 mmol) and in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4h** as liquid (103 mg, 60%). **R**_f (EtOAc/Hexane: 1/9) = 0.45. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.9 (C), 149.8 (C), 137.3 (C), 129.8 (CH), 128.9 (CH), 128.9 (CH), 124.4 (q, J_{C-F} = 278.4 Hz, C), 122.5 (CH), 113.9 (CH), 78.4 (CH), 67.6 (q, J_{C-F} = 31.1 Hz, CH), 61.9 (CH₂), 31.3

(CH), 22.4 (CH₃), 21.8 (CH₃), 13.6 (CH₃). ¹**H NMR** (400 MHz, δ ppm/CDCl₃): 7.27-7.23 (m, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.96 (t, *J* = 7.2 Hz, 1H), 5.78 (d, *J* = 10.4 Hz, 1H), 5.17 (s, 1H), 4.83 (q, *J* = 7.2 Hz, 1H), 4.05-3.79 (m, 2H), 2.34-2.26 (m, 1H), 1.05-0.95 (m, 9H). ¹⁹**F NMR** (376 MHz, δ ppm/CDCl₃): -74.6 (s). **HRMS** for C₁₇H₂₁F₃NO₃⁺: calcd. [M+H]⁺: 344.1468, found: 344.1466.

Compound 4i: Ethyl 2-phenyl-4-(2-phenylethylidene)-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl 5-phenylpenta-2,3-dienoate **3i** (152 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4i** as liquid (113 mg, 58%). **R**_f (EtOAc/Hexane: 1/9) = 0.48. ¹³C NMR (100 MHz, δ ppm/CDCl₃): 168.5 (C), 149.6 (C), 138.2 (C), 133.4 (C), 129.5 (CH), 128.9 (CH), 128.9 (CH), 128.8 (CH), 128.4 (CH), 128.4 (CH), 126.8 (CH), 124.3 (q, *J*_{C-F} =

278.7 Hz, C), 122.6 (CH), 114.1 (CH), 114.1 (CH), 78.6 (CH), 67.6 (q, J_{C-F} = 31.8 Hz, CH), 63.1 (CH₂), 36.8 (CH₂), 13.5 (CH₃). ¹H NMR (400 MHz, δppm/CDCl₃): 7.34-7.25 (m, 5H), 7.16 (d, J = 7.6 Hz, 2H), 7.08-7.06 (m, 2H), 7.02-6.99 (m, 1H), 6.23 (t, J = 7.4 Hz, 1H), 5.26 (s, 1H), 4.94 (q, J = 6.8 Hz, 1H), 3.99-3.85 (m, 2H), 3.47-3.44 (m, 2H), 0.99-0.95 (m, 3H). ¹⁹F NMR (376 MHz, δppm/CDCl₃): -74.4. HRMS for C₂₁H₂₁F₃NO₃⁺: calcd. [M+H]⁺: 392.1468, found: 392.1464.

Compound 4j: Ethyl 5-benzyl-4-methylene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl 2-benzylbuta-2,3-dienoate **3j** (152 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4j** as liquid (137 mg, 70%). **R**_f(EtOAc/Hexane: 1/9) = 0.58. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 170.1 (C), 149.0 (C), 143.6 (C), 134.5 (C), 130.8 (CH), 130.8 (CH), 128.8 (CH), 128.2 (CH), 127.2 (CH), 124.1 (q, *J*_{C-F} = 279.3 Hz, C),

122.9 (CH), 115.6 (CH₂), 115.3 (CH), 115.3 (CH), 87.8 (C), 68.5 (q, J_{C-F} = 31.9 Hz, CH), 61.9 (CH₂), 43.3 (CH₂), 13.6 (CH₃). ¹H NMR (400 MHz, δppm/CDCl₃): 7.26-7.20 (m, 7H), 7.10-7.08 (m, 2H), 6.97-6.93 (m, 1H), 5.64 (s, 1H), 5.52 (s, 1H), 4.83-4.78 (m, 1H), 3.84-3.77 (m, 2H), 3.38-3.30 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, δppm/CDCl₃): -73.2 (s). HRMS for C₂₁H₂₁F₃NO₃⁺: calcd. [M+H]⁺: 392.1468, found: 392.1467.

Compound 4k: Methyl 4-ethylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.9 mL, 1.50 mmol) and methyl penta-2,3-dienoate **3k** (84 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4k** as liquid (92 mg, 61%). **R**_f (EtOAc/Hexane: 1/9) = 0.48. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.9 (C), 149.5 (C), 133.0 (C), 128.9 (CH), 128.9 (CH), 126.0 (CH), 124.3 (q, *J*_{C-F} = 278.7 Hz, C), 122.8 (CH), 114.2 (CH), 114.2 (CH), 78.2 (CH), 67.8 (q, *J*_{C-F} = 31.8 Hz, CH), 52.4 (CH₃), 16.3 (CH₃). ¹H **NMR** (400 MHz, $\delta ppm/CDCl_3$): 7.29-7.25 (m, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.98 (t, J = 7.4 Hz, 1H), 6.09 (q, J = 6.8 Hz, 1H), 5.18 (s, 1H), 4.86-4.80 (m, 1H), 3.49 (s, 3H), 1.73 (d, J = 6.8 Hz, 3H). ¹⁹**F NMR** (376 MHz, $\delta ppm/CDCl_3$): -74.7 (s). **HRMS** for $C_{14}H_{15}F_3NO_3^+$: calcd. [M+H]⁺: 302.0999, found: 302.0999.

Compound 4I: Benzyl 4-ethylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and benzyl penta-2,3-dienoate **3l** (141 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4l** as liquid (119 mg, 63%). **R**_f (EtOAc/Hexane: 1/9) = 0.43. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.3 (C), 149.5 (C), 134.8 (C), 133.0 (C), 128.9 (CH), 128.9 (CH), 128.7 (CH), 128.7 (CH), 128.6 (CH), 128.6 (CH), 128.6 (CH), 126.0 (CH), 124.3 (q, J_{CF} = 278.6 Hz, C), 122.7 (CH), 114.2 (CH), 114.2 (CH),

78.5 (CH), 67.8 (q, J_{C-F} = 31.9 Hz, CH), 67.6 (CH₂), 16.3 (CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.32-7.31 (m, 3H), 7.31 (t, J = 6.8 Hz, 2H), 7.14-7.13 (m, 2H), 7.01 (d, J = 6.0 Hz, 2H), 6.96 (t, J = 6.0 Hz, 1H), 6.11-6.01 (m, 1H), 5.22 (s, 1H), 5.02 (d, J = 9.6 Hz, 1H), 4.81-4.80 (m, 2H), 1.67 (d, J = 5.6 Hz, 3H). ¹⁹F NMR (376 MHz, δ ppm/CDCl₃): -74.7 (s). HRMS for C₂₀H₁₉F₃NO₃⁺: calcd. [M+H]⁺: 378.1312, found: 378.1312.

Compound 4m: *t*-Butyl 4-ethylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and *t*-butyl penta-2,3-dienoate **3m** (116 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4m** as white solid (117 mg, 68%). **M.P** 65-67 °C. **R**_f (EtOAc/Hexane: 1/9) = 0.53. ¹³C NMR (100 MHz, δ ppm/CDCl₃): 167.6 (C), 149.8 (C), 133.9 (C), 128.9 (CH), 128.9 (CH), 124.9 (CH), 124.4 (q, *J*_{C-F} = 278.6 Hz, C), 122.3 (CH), 114.1 (CH), 82.7 (C), 80.2 (CH), 67.4 (q, *J*_{C-F} = 31.9 Hz,

CH), 27.5 (CH₃), 27.5 (CH₃), 27.5 (CH₃), 16.1 (CH₃). ¹**H NMR** (400 MHz, δppm/CDCl₃): 7.28-7.24 (m, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.04 (t, *J* = 7.4 Hz, 1H), 6.04 (q, *J* = 6.8 Hz, 1H), 5.07 (s, 1H), 4.82-4.80 (m, 1H), 1.73 (d, *J* = 7.2 Hz, 3H), 1.20 (s, 9H). ¹⁹**F NMR** (376 MHz, δppm/CDCl₃): -74.7 (s). **HRMS** for C₁₇H₂₁F₃NO₃⁺: calcd. [M+H]⁺: 344.1468, found: 344.1468.

Compound 4n: Ethyl 4-propylidene-2-(*p*-tolyl)-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of 4-methyl nitrosobenzene **1b** (61 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl hexa-2,3-dienoate **3c** (105 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4n** as liquid (110 mg, 64%). **R**_f (EtOAc/Hexane: 1/9) = 0.57. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.8 (C), 147.3 (C), 132.4 (C), 132.3 (C), 131.7 (CH), 129.4 (CH), 129.4 (CH), 124.0 (q, *J*_{C-F} = 278.6 Hz, C), 114.6 (CH), 114.6 (CH), 78.4 (CH), 67.8 (q, *J*_{C-F} = 31.5 Hz, CH), 61.8 (CH₂), 24.6 (CH₃), 20.6 (CH₂), 13.7 (CH₃), 13.2 (CH₃). ¹**H NMR** (400 MHz, δ ppm/CDCl₃): 7.05 (d, *J* = 6.8 Hz,

2H), 6.97-6.93 (m, 2H), 5.96 (t, *J* = 5.8 Hz, 1H), 5.13 (s, 1H), 4.79 (q, *J* = 6.0 Hz, 1H), 4.00-3.88 (m, 2H), 2.27 (s, 3H), 2.08-2.03 (m, 2H), 1.05-1.01 (m, 6H). ¹⁹**F NMR** (376 MHz, δppm/CDCl₃): -74.7 (s). **HRMS** for C₁₇H₂₁F₃NO₃⁺: calcd. [M+H]⁺: 344.1468, found: 344.1460.

Compound 40: Ethyl-2-(4-bromophenyl)-4-propylidene-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of 4-bromonitrosobenzene **1c** (92 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl hexa-2,3-dienoate **3c** (105 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4o** as liquid (133 mg, 65%). **R**_f(EtOAc/Hexane: 1/9) = 0.54. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.6 (C), 148.8 (C), 132.7 (CH), 131.7 (CH), 131.7 (CH), 131.2 (C), 124.2 (q, J_{C-F} = 222.8 Hz, C), 115.7 (CH), 115.7 (CH), 114.9 (C), 78.6 (CH), 67.5 (q, J_{C-F} = 25.4 Hz, CH), 62.0 (CH₂), 24.5 (CH₂), 13.7 (CH₃), 13.2 (CH₃). ¹**H NMR** (400 MHz, δ ppm/CDCl₃): 7.35 (d, J = 6.8 Hz, 2H),

6.90 (d, J = 6.8 Hz, 2H), 5.97 (t, J = 6.4 Hz, 1H), 5.16 (s, 1H), 4.76 (q, J = 5.6 Hz, 1H), 4.04-3.90 (m, 2H), 2.13-2.03 (m, 2H), 1.06-1.01 (m, 6H). ¹⁹F NMR (376 MHz, δ ppm/CDCl₃): -74.6 (s). **HRMS** for C₁₆H₁₈BrF₃NO₃⁺: calcd. [M+H]⁺: 408.0417, found: 408.0417.

Compound 4p: Ethyl -2-(4-chlorophenyl)-4-propylidene-3-(trifluoromethyl)isoxazolidine-5carboxylate:

Following the general procedure, treatment of 4chloronitrosobenzene **1d** (70 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl hexa-2,3-dienoate **3c** (105 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4p** as liquid (127 mg, 70%). **R**_f (EtOAc/Hexane: 1/9) = 0.52. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.6 (C), 148.3 (C), 132.7 (CH), 131.2 (C), 128.8 (CH), 128.8 (CH), 127.6 (C), 124.2 (q, J_{C-F} = 371.5 Hz, C), 115.4 (CH), 115.4 (CH), 78.6 (CH), 67.6 (q, J_{C-F} = 42.5 Hz, CH), 62.0 (CH₂), 24.5 (CH₂), 13.7 (CH₃), 13.2 (CH₃). ¹**H NMR** (400 MHz, δppm/CDCl₃): 7.21 (d, J = 7.2 Hz, 2H), 6.96 (d, J = 7.2 Hz, 2H), 5.97 (t, J = 6.2 Hz, 1H), 5.16 (s, 1H), 4.76 (q, J = 6.0 Hz, 1H), 4.01-3.93 (m, 2H), 2.12-2.04 (m, 2H), 1.06-1.01 (m, 6H). ¹⁹**F NMR** (376 MHz, δ ppm/CDCl₃): -74.6 (s). **HRMS** for C₁₆H₁₈ClF₃NO₃⁺: calcd. [M+H]⁺: 364.0922, found: 364.0927.

Compound 4q: Ethyl -2-(4-cyanophenyl)-4-propylidene-3-(trifluoromethyl)isoxazolidine-5carboxylate:

Following the general procedure, treatment of 4-cyanonitrosobenzene **1e** (66 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.90 mL, 1.50 mmol) and ethyl hexa-2,3-dienoate **3c** (105 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4q** as liquid (113 mg, 64%). **R**_f (EtOAc/Hexane: 1/9) = 0.56. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.4 (C), 152.5 (C), 133.1 (CH), 133.1 (CH), 133.1 (CH), 130.5 (C), 124.0 (q, *J*_{C-F} = 279.2 Hz, C), 119.3 (C), 113.3 (CH), 113.3 (CH), 104.6 (C), 78.6 (CH), 66.1 (q, *J*_{C-F} = 32.6 Hz, CH), 62.1 (CH₂), 24.4 (CH₂), 13.7 (CH₃), 13.1 (CH₃). ¹**H NMR** (400 MHz, δ ppm/CDCl₃): 7.54 (d,

J = 7.2 Hz, 2H), 7.04 (d, J = 7.2 Hz, 2H), 6.00 (t, J = 6.2 Hz, 1H), 5.21 (s, 1H), 4.84 (q, J = 5.6 Hz, 1H), 4.04-3.91 (m, 2H), 2.16-2.08 (m, 2H), 1.04-1.00 (m, 6H). ¹⁹F NMR (376 MHz, δ ppm/CDCl₃): -74.5 (s). HRMS for C₁₇H₁₈F₃N₂O₃⁺: calcd. [M+H]⁺: 355.1264, found: 355.1266.

Compound 4r: Ethyl 4-propylidene-2-(*o*-tolyl)-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of 2-methyl nitrosobenzene **1f** (61 mg, 0.50 mmol) with CF₃CHN₂ **2** (1.9 mL, 1.50 mmol) and ethyl hexa-2,3-dienoate **3c** (105 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **4r** as liquid (106 mg, 62%) . **R**_f(EtOAc/Hexane: 1/9) = 0.57. ¹³C NMR (100 MHz, δ ppm/CDCl₃): 169.3 (C), 145.6 (C), 136.8 (C), 133.4 (C), 132.8 (CH), 131.3 (CH), 127.2 (CH), 125.8 (CH), 124.2 (q, *J*_{C-F} = 223.6 Hz, C), 120.0 (CH), 77.2 (CH), 65.6 (q, *J*_{C-F} = 24.7 Hz, CH), 61.6 (CH₂), 24.8 (CH₃), 18.5 (CH₂), 13.7

(CH₃), 13.4 (CH₃). ¹**H NMR** (400 MHz, δppm/CDCl₃): 7.22-7.20 (m, 1H), 7.13-7.02 (m, 3H), 6.08 (t, *J* = 7.6 Hz, 1H), 5.03 (s, 1H), 4.78 (q, *J* = 7.2 Hz, 1H), 3.89-3.66 (m, 2H), 2.50 (s, 3H), 2.28-2.17 (m, 2H), 1.10 (t, *J* = 7.4 Hz, 3H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹⁹**F NMR** (376 MHz, δppm/CDCl₃): -74.5 (s). **HRMS** for C₁₇H₂₁F₃NO₃⁺: calcd. [M+H]⁺: 344.1468, found: 344.1446.

Optmization study for the synthesis of phosphonyl isoxazolidines

N ²⁰ +	$ \begin{array}{c} PO(OMe)_2\\ I\\ N_2 \end{array} + n-Pr \end{array} $	CO ₂ Et	additive solvent	(MeO) ₂ OP N O
1a	5a	3d		
				6a

Table S1: Optimization	of the	reaction	conditions ^a
------------------------	--------	----------	--------------------------------

Entry	Solvent	additive	time (h)	yield (%) ^b
1	CH₃CN	-	12	70
2	DCM	-	12	48
3	Toluene	-	12	52
4	DMF	-	12	65
5	DMSO	-	12	45
6	1,4 –dioxane	-	12	42
7	DCE	-	12	40
8	THF	-	12	50
9	CH₃CN	CsF	12	58
10	CH₃CN	TBAF	12	50
11	CH₃CN	DBU	12	42
12	CH₃CN	DABCO	12	55
13 ^c	CH₃CN	-	72	55
14 ^d	CH₃CN	-	12	40

^a**1a** (0.50 mmol), **5a** (0.50 mmol), **3d** (0.75 mmol) solvent (2.0 mL), 50 °C. ^bIsolated yield after silica gel column chromatography. ^cReaction carried out at 25 °C. ^dReaction carried out at 80 °C.

General procedure for the synthesis of phosphonyl isoxazolidines 6a-6m

A 10 mL round-bottom flask charged with nitroso benzene **1a** (54 mg, 0.50 mmol) was sealed, evacuated, backfilled with nitrogen and added dry CH₃CN (2 mL). Subsquently, the Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and ethyl hepta-2,3-dienoate **3d** (116 mg, 0.75 mmol) were added via a syringe. This reaction mixture was stirred at 50 °C for 12 h. After the completion of reaction, as indicated by TLC, the solvent was evaporated under reduced pressure. The residue was purified using column chromatography (100-200 mesh silica gel) using ethyl acetate/hexane as the eluent.

Compound 6a: Ethyl 4-butylidene-3-(dimethoxyphosphoryl)-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and ethyl hepta-2,3-dienoate **3d** (116 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6a** as liquid (134 mg, 70%). **R**_f (EtOAc/Hexane: 6/4) = 0.19. ¹³C NMR (100 MHz, δ ppm/CDCl₃): 169.0 (C), 150.9 (d, *J*_{C-} = 12.5 Hz, C), 133.4 (d, *J*_{C-P} = 2.5 Hz, C), 128.7 (CH), 128.7 (CH), 128.3 (d, *J*_{C-P} = 7.5 Hz, CH), 122.0 (CH), 114.1 (CH), 78.2 (d, *J*_{C-P}

= 2.7 Hz, CH), 64.2 (d, J_{C-P} = 176.7 Hz, CH), 61.6 (CH₂), 54.7 (d, J_{C-P} = 7.2 Hz, CH₃), 53.9 (d, J_{C-P} = 7.4 Hz, CH₃), 32.8 (CH₂) 22.1 (d, J_{C-P} = 2.9 Hz, CH₂), 13.7 (CH₃), 13.4 (CH₃). ¹H NMR (400 MHz, δppm/CDCl₃): 7.24 (d, J = 7.8 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.92 (t, J = 7.2 Hz, 1H), 6.01-5.99 (m, 1H), 5.12 (s, 1H), 4.81 (d, J = 10.0 Hz, 1H), 3.91-3.74 (m, 8H), 2.02-2.00 (m, 2H), 1.44-1.39 (m, 2H), 0.90-0.86 (m, 6H). ³¹P NMR (161.9 MHz, δppm/CDCl₃): 20.4 (s). HRMS for C₁₈H₂₇NO₆P⁺: calcd. [M+H]⁺: 384.1571, found: 384.1570.

Compound 6b: Ethyl 3-(dimethoxyphosphoryl)-4-methylene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and ethyl buta-2,3-dienoate **3b** (84 mg, 0.75 mmol) and in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6b** as liquid (111 mg, 65%). **R**_f (EtOAc/Hexane: 6/4) = 0.50. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.7 (d, *J*_{C-P} = 1.9 Hz, C), 150.5 (d, *J*_{C-P})

= 12.7 Hz, C), 142.0 (d, J_{C-P} = 3.5 Hz, C), 128.7 (CH), 128.7 (CH), 123.0 (CH), 115.8 (CH), 115.8 (CH), 111.9 (d, J_{C-P} = 8.2 Hz, CH₂), 79.2 (d, J_{C-P} = 2.6 Hz, CH), 65.9 (d, J_{C-P} = 175.2 Hz, CH), 61.9 (CH₂), 54.7 (d, J_{C-P} = 7.2 Hz, CH₃), 54.1 (d, J_{C-P} = 7.2 Hz, CH₃), 13.9 (CH₃). ¹H NMR (400 MHz, δppm/CDCl₃): 7.29-7.27 (m, 2H), 7.25-7.21 (m, 2H), 7.00 (t, J = 7.2 Hz, 1H), 5.59-5.52 (m, 2H), 5.15-5.14 (m, 1H), 4.78-4.74 (m, 1H), 4.09-4.04 (m, 2H), 3.88 (d, J_{H-P} = 2.4 Hz, 3H), 1.12 (t, J = 7.2 Hz, 3H). ³¹P NMR (161.9 MHz, δppm/CDCl₃): 19.6 (s). HRMS for C₁₅H₂₁NO₆P⁺: calcd. [M+H]⁺: 342.1101, found: 342.1091.

Compound 6c: Ethyl 3-(dimethoxyphosphoryl)-2-phenyl-4-propylideneisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and ethyl hexa-2,3-dienoate **3c** (105 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6c** as liquid (111 mg, 60%). **R**_f (EtOAc/Hexane: 6/4) = 0.25. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 169.0 (d, *J*_{C-P} = 4.3 Hz, C), 150.9 (d, *J*_{C-P} = 10.0 Hz, C), 132.8 (d, *J*_{C-P} = 2.0 Hz, C), 129.8 (d, *J*_{C-P} = 6.1 Hz, CH), 128.7 (CH), 128.7 (CH), 122.2 (CH), 114.3 (CH),

114.3 (CH), 78.1 (d, J_{C-P} = 2.2 Hz, CH), 64.3 (d, J_{C-P} = 141.1 Hz, CH), 61.7 (CH₂), 54.8 (d, J_{C-P} = 5.7 Hz, CH₃), 53.9 (d, J_{C-P} = 5.9 Hz, CH₃), 24.4 (d, J_{C-P} = 4.0 Hz, CH₂), 13.4 (CH₃), 13.4 (d, J_{C-P} = 2.7 Hz, CH₃). ¹H NMR (400 MHz, δppm/CDCl₃): 7.26-7.21 (m, 2H), 7.04 (d, J = 7.6 Hz, 2H), 6.93 (t, J = 7.2 Hz, 1H), 6.03-5.96 (m, 1H), 5.13 (s, 1H), 4.83-4.80 (m, 1H), 3.92-3.77 (m, 8H), 2.14-1.99 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H). ³¹P NMR (161.9 MHz, δppm/CDCl₃): 20.4 (s). HRMS for C₁₇H₂₅NO₆P⁺: calcd. [M+H]⁺: 370.1414, found: 370.1408.

Compound 6d: Ethyl 3-(dimethoxyphosphoryl)-4-pentylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and ethyl octa-2,3-dienoate **3e** (126 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6d** as liquid (141 mg, 71%). **R**_f (EtOAc/Hexane: 6/4) = 0.44. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 169.0 (d, *J*_{C-P} = 2.2 Hz, C), 150.9 (d, *J*_{C-P} = 12.4 Hz, C), 133.2 (d, *J*_{C-P} = 2.6 Hz, C), 128.7 (CH), 128.5 (d, *J*_{C-P} = 7.6 Hz, CH), 122.1 (CH), 114.1 (CH), 114.1 (CH),

78.2 (d, J_{C-P} = 2.8 Hz, CH), 64.2 (d, J_{C-P} = 176.7 Hz, CH), 61.6 (CH₂), 54.7 (d, J_{C-P} = 7.2 Hz, CH₃), 53.9 (d, J_{C-P} = 7.4 Hz, CH₃), 31.0 (d, J_{C-P} = 2.9 Hz, CH₂), 30.7 (d, J_{C-P} = 2.6 Hz, CH₂), 22.3 (CH₂), 14.0 (CH₃), 13.5 (CH₃). ¹H NMR (400 MHz, δppm/CDCl₃): 7.26-7.21 (m, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.93 (t, J = 7.2 Hz, 1H), 6.02-6.00 (m, 1H), 5.12 (s, 1H), 4.81 (d, J = 9.6 Hz, 1H), 3.93-3.75 (m, 8H), 2.05-2.03 (m, 2H), 1.37-1.29 (m, 4H), 0.92-0.85 (m, 6H). ³¹P NMR (161.9 MHz, δppm/CDCl₃): 20.4 (s). HRMS for C₁₉H₂₉NO₆P⁺: calcd. [M+H]⁺: 398.1727, found: 398.1724.

Compound 6e: Ethyl 3-(dimethoxyphosphoryl)-4-hexylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and ethyl nona-2,3-dienoate **3f** (137 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6e** as liquid (144 mg, 70%). **R**_f (EtOAc/Hexane: 6/4) = 0.39. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 169.0 (d, *J*_{C-p} = 2.3 Hz, C), 151.0 (d, *J*_{C-P} = 12.4 Hz, C), 133.2 (d, *J*_{C-P} = 2.4 Hz, C), 128.7 (CH), 128.6 (d, *J*_{C-P} = 7.6 Hz, CH), 122.1 (CH), 114.2 (CH),

114.2 (CH), 78.3 (d, J_{C-P} = 2.7 Hz, CH), 64.3 (d, J_{C-P} = 176.6 Hz, CH), 61.7 (CH₂), 54.7 (d, J_{C-P} = 7.2 Hz, CH₃), 54.0 (d, J_{C-P} = 7.3 Hz, CH₃), 31.5 (CH₂), 31.0 (d, J_{C-P} = 2.5 Hz, CH₂), 28.6 (d, J_{C-P} = 2.9 Hz, CH₂), 22.6 (CH₂), 14.1 (CH₃), 13.5 (CH₃) . ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.26-7.21 (m, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.93 (t, J = 7.2 Hz, 1H), 6.04-6.00 (m, 1H), 5.12 (s, 1H), 4.82 (d, J = 10.0 Hz, 1H), 3.93-3.75 (m, 8H), 2.06-2.01 (m, 2H), 1.41-1.36 (m, 2H), 1.28-1.25 (m, 4H), 0.92-0.84 (m, 6H). ³¹P NMR (161.9 MHz, δ ppm/CDCl₃): 20.4 (s). HRMS for C₂₀H₃₁NO₆P⁺: calcd. [M+H]⁺: 412.1884, found: 412.1882.

Compound 6f: Ethyl 3-(dimethoxyphosphoryl)-4-heptylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and ethyl deca-2,3-dienoate **3g** (147 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6f** as liquid (149 mg, 70%). **R**_f (EtOAc/Hexane: 6/4) = 0.56. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 169.0 (C), 150.9 (d, *J*_{C-P} = 12.4 Hz, C), 133.1 (C), 128.7 (CH), 128.7 (CH), 128.5 (d, *J*_{C-P} = 7.6 Hz, CH), 122.0

(CH), 114.1 (CH), 114.1 (CH), 78.2 (d, $J_{C-P} = 2.8$ Hz, CH), 64.2 (d, $J_{C-P} = 176.7$ Hz, CH), 61.6 (CH₂), 54.7 (d, $J_{C-P} = 7.2$ Hz, CH₃), 53.9 (d, $J_{C-P} = 7.4$ Hz, CH₃), 31.7 (CH₂), 31.0 (CH₂), 28.9 (CH₂), 28.8 (CH₂), 22.6 (CH₂), 14.0 (CH₃), 13.4 (CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.26-7.21 (m, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.93 (t, J = 7.2 Hz, 1H), 6.03-5.98 (m, 1H), 5.12 (s, 1H), 4.81 (d, J = 9.6 Hz, 1H), 3.90-3.78 (m, 8H), 2.07-1.99 (m, 2H), 1.40-1.36 (m, 2H), 1.29-1.21 (m, 6H), 0.91-0.84 (m, 6H). ³¹P NMR (161.9 MHz, δ ppm/CDCl₃): 20.4 (s). HRMS for C₂₁H₃₃NO₆P⁺: calcd. [M+H]⁺: 426.2040, found: 426.2040.

Compound6g:Ethyl3-(dimethoxyphosphoryl)-2-phenyl-4-(2-phenylethylidene)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and ethyl 5-phenylpenta-2,3-dienoate **3i** (152 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6g** as liquid (129 mg, 60%). **R**_f (EtOAc/Hexane: 6/4) = 0.52. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.9 (d, *J*_{C-P} = 2.1 Hz, C), 150.9 (d, *J*_{C-P} = 12.5 Hz, C), 138.8 (d, *J*_{C-P} = 2.8 Hz, C), 134.7 (d, *J*_{C-P} = 2.7 Hz, C), 128.8 (CH), 128.8 (CH), 128.7 (CH), 128.7

(CH), 128.4 (CH), 128.4 (CH), 126.6 (CH), 126.5 (d, $J_{C-P} = 7.6$ Hz, CH), 122.3 (CH), 114.3 (CH), 114.3 (CH), 78.2 (d, $J_{C-P} = 2.7$ Hz, CH), 64.4 (d, $J_{C-P} = 176.8$ Hz, CH), 61.8 (CH₂), 54.7 (d, $J_{C-P} = 7.1$ Hz, CH₃), 54.0 (d, $J_{C-P} = 7.4$ Hz, CH₃), 36.7 (d, $J_{C-P} = 2.6$ Hz, CH₂), 13.5 (CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.28-7.19 (m, 5H), 7.15 (d, J = 7.2 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.95 (t, J = 7.2 Hz, 1H), 6.25-6.20 (m, 1H), 5.23 (s, 1H), 4.89 (d, J = 10.4 Hz, 1H), 3.88-3.80 (m, 8H), 3.46-3.40, (m, 2H), 0.88 (t, J = 7.0 Hz, 3H). ³¹P NMR (161.9 MHz, δ ppm/CDCl₃): 20.3 (s). HRMS for C₂₂H₂₇NO₆P⁺: calcd. [M+H]⁺: 432.1571, found: 432.1569.

Compound 6h: Ethyl 3-(dimethoxyphosphoryl)-4-(2-methylpropylidene)-2-phenylisoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and ethyl 5-methylhexa-2,3-dienoate **3h** (116 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6h** as liquid (105 mg, 55%). **R**_f (EtOAc/Hexane: 6/4) = 0.44. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 169.1 (d, *J*_{C-P} = 2.1 Hz, C), 150.9 (d, *J*_{C-P} = 12.3 Hz, C), 134.7 (d, *J*_{C-P} = 7.6 Hz, CH), 130.9 (d, *J*_{C-P} = 2.4 Hz, C), 128.7 (CH), 128.7 (CH), 122.0

(CH), 114.1 (CH), 114.1 (CH), 77.9 (d, $J_{C-P} = 2.9$ Hz, CH), 64.1 (d, $J_{C-P} = 176.6$ Hz, CH), 61.6 (CH₂), 54.7 (d, $J_{C-P} = 7.1$ Hz, CH₃), 54.0 (d, $J_{C-P} = 7.4$ Hz, CH₃), 31.1 (d, $J_{C-P} = 2.4$ Hz, CH), 22.5 (d, $J_{C-P} = 3.7$ Hz, CH₃), 21.9 (d, $J_{C-P} = 2.8$ Hz, CH₃), 13.5 (CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.26-7.12 (m, 2H), 7.02 (d, J = 8.0 Hz, 2H), 6.92 (t, J = 7.2 Hz, 1H), 5.85-5.81 (m, 1H), 5.13 (s, 1H), 4.79 (d, J = 10.0 Hz, 1H), 3.92-3.72 (m, 8H), 2.33-2.26 (m, 1H), 1.03 (d, J = 6.4 Hz, 3H), 0.93-0.87 (m, 6H). ³¹P NMR (161.9 MHz, δ ppm/CDCl₃): 20.3 (s). HRMS for C₁₈H₂₇NO₆P⁺: calcd. [M+H]⁺: 384.1571, found: 384.1576.

Compound 6i: Methyl 3-(dimethoxyphosphoryl)-4-ethylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and methyl penta-2,3-dienoate **3k** (84 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6i** as liquid (102 mg, 60%). **R**_f (EtOAc/Hexane: 6/4) = 0.23. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 169.2 (d, *J*_{C-P} = 2.2 Hz, C), 150.6 (d, *J*_{C-P} = 12.8 Hz, C), 134.1 (d, *J*_{C-P} = 2.9 Hz, C), 128.8 (CH), 123.2 (d, *J*_{C-P} = 7.7 Hz, CH), 122.4 (CH), 114.4 (CH),

114.4 (CH), 77.9 (d, $J_{C-P} = 2.8$ Hz, CH), 64.5 (d, $J_{C-P} = 176.5$ Hz, CH), 54.7 (d, $J_{C-P} = 7.2$ Hz, CH₃), 53.9 (d, $J_{C-P} = 8.0$ Hz, CH₃), 52.3 (CH₃), 16.2 (d, $J_{C-P} = 2.9$ Hz, CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.27-7.23 (m, 2H), 7.05 (d, J = 8.0 Hz, 2H), 6.95 (t, J = 7.2 Hz, 1H), 6.11-6.07 (m, 1H), 5.16 (s, 1H), 4.83-4.80 (m, 1H), 3.87 (d, J = 2.8 Hz, 3H), 3.84 (d, J = 2.4 Hz, 3H), 3.47 (s, 3H), 1.73-1.67 (m, 3H). ³¹P NMR (161.9 MHz, δ ppm/CDCl₃): 20.4 (s). HRMS for C₁₅H₂₁NO₆P⁺: calcd. [M+H]⁺: 342.1101, found: 342.1112.

Compound 6j: *t*-Butyl 3-(dimethoxyphosphoryl)-4-ethylidene-2-phenylisoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and *t*-butyl penta-2,3-dienoate **3m** (116 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6j** as liquid (115 mg, 60%). **M.P** 125-127 °C. **R**_f (EtOAc/Hexane: 6/4) = 0.32. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.0 (d, *J*_{C-P} = 2.1 Hz, C), 151.0 (d, *J*_{C-P} = 12.1 Hz, C), 135.1 (d, *J*_{C-P} = 2.7 Hz, C), 128.8 (CH), 122.2 (d, *J*_{C-P} = 7.6 Hz, CH), 121.8

(CH), 114.3 (CH), 114.3 (CH), 82.4 (C), 79.7 (d, $J_{C-P} = 2.9$ Hz, CH), 64.0 (d, $J_{C-P} = 176.9$ Hz, CH), 54.7 (d, $J_{C-P} = 7.1$ Hz, CH₃), 53.8 (d, $J_{C-P} = 7.6$ Hz, CH₃), 27.4 (CH₃), 27.4 (CH₃), 27.4 (CH₃), 16.0 (d, J = 2.9 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.26-7.21 (m, 2H), 7.06 (d, J = 7.6 Hz, 2H), 6.93 (t, J = 7.2 Hz, 1H), 6.08-6.03 (m, 1H), 5.04 (s, 1H), 4.80-4.77 (m, 1H), 3.83 (d, J = 5.4 Hz, 3H), 1.03 (d, J = 6.4 Hz, 3H), 1.73-1.70 (m, 3H), 1.14 (s, 9H). ³¹P NMR (161.9 MHz, δ ppm/CDCl₃): 20.4 (s). HRMS for C₁₈H₂₇NO₆P⁺: calcd. [M+H]⁺: 384.1571, found: 384.1570.

Compound 6k: Benzyl 3-(dimethoxyphosphoryl)-4-ethylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5a** (75 mg, 0.50 mmol) and benzyl penta-2,3-dienoate **3l** (141 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6k** as liquid (127 mg, 61%). **R**_f (EtOAc/Hexane: 6/4) = 0.36. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 168.6 (d, *J*_{C-P} = 2.2 Hz, C), 150.7 (d, *J*_{C-P} = 12.8 Hz, C), 134.9 (C), 134.1 (d, *J*_{C-P} = 2.9 Hz, C), 128.8 (CH), 128.8

(CH), 128.6 (CH), 128.6 (CH), 128.5 (CH),128.5 (CH), 128.5 (CH), 123.3 (d, $J_{C-P} = 7.8$ Hz, CH), 122.4 (CH), 114.4 (CH), 114.4 (CH), 78.1 (d, $J_{C-P} = 2.8$ Hz, CH), 67.4 (CH₂), 64.6 (d, $J_{C-P} = 176.6$ Hz, CH), 54.8 (d, $J_{C-P} = 7.2$ Hz, CH₃), 53.9 (d, $J_{C-P} = 7.4$ Hz, CH₃), 16.2 (d, $J_{C-P} = 3.0$ Hz, CH₃). ¹H **NMR** (400 MHz, δ ppm/CDCl₃): 7.30-7.26 (m, 3H), 7.21-7.17 (m, J = 8.0 Hz, 2H), 7.09-7.03 (m, 4H), 6.93 (t, J = 7.4 Hz, 1H), 6.08-6.04 (m, 1H), 5.20 (s, 1H), 4.97 (d, J = 12.4 Hz, 1H), 4.81-4.78 (m, 1H), 4.73 (d, J = 12.4 Hz, 1H), 3.85 (d, J = 2.0 Hz, 3H), 3.83 (d, J = 2.0 Hz, 3H), 1.67-1.66 (m, 3H). ³¹P NMR (161.9 MHz, δ ppm/CDCl₃): 20.4 (s). HRMS for C₁₈H₂₅NO₆P⁺: calcd. [M+H]⁺: 418.1414, found: 418.1415.

Compound 6I: Methyl 3-(diisopropoxyphosphoryl)-4-ethylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with Seyferth-Gilbert reagent **5b** (103 mg, 0.50 mmol) and methyl penta-2,3-dienoate **3j** (84 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 °C for 12 h followed by column chromatography afforded the product **6k** as liquid (119 mg, 60%). **R**_f (EtOAc/Hexane: 6/4) = 0.56. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 169.4 (C), 151.1 (d, *J*_{C-P} = 13.2 Hz, C), 134.6 (d, *J*_{C-P} = 2.4 Hz, C), 128.6 (CH), 128.6 (CH), 122.6 (d, *J*_{C-P} = 7.7 Hz, CH), 122.1 (CH),

114.5 (CH), 114.5 (CH), 77.9 (d, J_{C-P} = 1.8 Hz, CH), 72.7 (d, J_{C-P} = 7.2 Hz, CH), 72.1 (d, J_{C-P} = 7.7 Hz, CH), 65.2 (d, J_{C-P} = 178.6 Hz, CH), 52.2 (CH₃), 24.5 (d, J_{C-P} = 2.8 Hz, CH₃), 24.2 (d, J_{C-P} = 3.1 Hz, CH₃), 24.1 (d, J_{C-P} = 5.2 Hz, CH₃), 23.8 (d, J_{C-P} = 5.5 Hz, CH₃), 16.1 (d, J_{C-P} = 2.2 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.26-7.20 (m, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.91 (t, J = 7.2 Hz, 1H), 6.09-6.05 (m, 1H), 5.13 (s, 1H), 4.87-4.79 (m, 2H), 4.73-4.69 (m, 1H), 3.43 (s, 3H), 1.70-1.67 (m, 3H), 1.36-1.32 (m, 9H), 1.26 (d, J = 6.0 Hz, 3H). ³¹P NMR (161.9 MHz, δ ppm/CDCl₃): 16.9 (s). HRMS for C₁₉H₂₉NO₆P⁺: calcd. [M+H]⁺: 398.1727, found: 398.1714.

Compound 6m: Diethyl-2-phenyl-4-propylideneisoxazolidine-3,5-dicarboxylate:

Following the general procedure, treatment of nitrosobenzene **1a** (54 mg, 0.50 mmol) with ethyl diazoacetate **5c** (57mg, 0.50 mmol) and ethyl hexa-2,3-dienoate **3c** (105 mg, 0.75 mmol) in CH₃CN (2 mL) at 50 $^{\circ}$ C for 12 h followed by column chromatography afforded the product **6m** as liquid (50 mg, 30%). **R**_f(EtOAc/Hexane: 1/9) = 0.56. ¹³C NMR (100 MHz, δ ppm/CDCl₃): 169.5 (C), 169.2 (C), 148.9 (C), 135.5 (C), 129.3 (CH), 128.8 (CH), 128.8 (CH), 122.2 (CH), 115.0 (CH), 115.0 (CH), 76.8 (CH), 68.0 (CH), 61.8 (CH₂), 61.7 (CH₂), 23.7 (CH₂), 14.2 (CH₃), 14.0 (CH₃),

13.5 (CH₃). ¹**H NMR** (400 MHz, δppm/CDCl₃): 7.17-7.13 (m, 2H), 6.90 (d, *J* = 7.6 Hz, 2H), 6.85 (t, *J* = 8.0 Hz, 1H), 5.75-5.70 (m, 1H), 5.12 (s, 1H), 4.83-4.81 (m, 1H), 4.14-3.96 (m, 4H), 2.11-2.05 (m, 2H), 1.09-1.03 (m, 6H), 0.93 (t, *J* = 7.6 Hz, 3H). **HRMS** for C₁₈H₂₄NO₅⁺: calcd. [M+H]⁺: 334.1649, found: 334.1651.

Compound 7: Ethyl-2-hydroxy-3-trifluoromethyl-1-(phenylamino)ethyl)pent-3-enoate

A 10 mL round-bottom flask charged with ethyl-4-ethylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate **4a** (63 mg, 0.20 mmol) was added Zn dust (260 mg, 4.0 mmol, 20 equiv) and acetic acid (2 mL). This reaction mixture was stirred at 25 °C for 2 h. After completion of the reaction, as indicated by TLC, the reaction mixture was quenched with water and extracted with ethyl acetate. The combine organic layer was washed with saturated solution of NaHCO₃ and brine, dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified using column chromatography

(100-200 mesh silica gel) using ethyl acetate/hexane afforded the product **7** as liquid (49 mg, 78%). **R**_f (EtOAc/Hexane: 3/7) = 0.60. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 173.5 (C), 145.5 (C), 132.0 (CH), 131.0 (C), 129.4 (CH), 129.4 (CH), 125.1 (q, J_{C-F} = 224.1 Hz, C), 119.1 (CH), 113.7 (CH), 113.7 (CH), 68.0 (CH), 62.5 (CH₂) 56.1 (q, J_{C-F} = 24.2 Hz, CH), 14.2 (CH₃), 14.0 (CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.21-7.17 (m, 2H), 6.80-6.77 (m, 1H), 6.70-6.67 (m, 2H), 6.16-6.10 (m, 1H),

5.14 (s, 1H), 4.74-4.46 (m, 1H), 4.15-4.10 (m, 2H), 4.01-3.97 (m, 1H), 3.36 (s, 1H), 1.84 (d, J = 5.2 Hz, 3H), 1.18-1.16 (m, 3H). ¹⁹**F NMR** (376 MHz, δ ppm/CDCl₃): -73.4 (s). **HRMS** for C₁₅H₁₉F₃NO₃⁺: calcd. [M+H]⁺: 318.1312, found: 318.1309.

General procedure for the synthesis of *p*-lactam 8

A 10 mL round-bottom flask charged with ethyl-2-phenyl-4-propylidene-3-(trifluoromethyl)isoxazolidine-5-carboxylate **4c** (66 mg, 0.20 mmol) was added Zn dust (260 mg, 4.0 mmol, 20 equiv) and acetic acid (2 mL). This reaction mixture was stirred at 50 °C for 2 h. After completion of the reaction, as indicated by TLC, the reaction mixture was quenched with water and extracted with ethyl acetate. The combine organic layer was washed with saturated solution of NaHCO₃ and brine, dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified using column chromatography (100-200 mesh silica gel) using ethyl acetate/hexane as the eluent.

Compound 8a: 3-Hydroxy-1-phenyl-4-propylidene-5-(trifluoromethyl)pyrrolidin-2-one

Following the general procedure, treatment of ethyl 2-phenyl-4propylidene-3-(trifluoromethyl)isoxazolidine-5-carboxylate **4c** (66 mg, 0.20 mmol) with zinc dust (260 mg, 4.00 mmol) in CH₃COOH (2 mL) at 50 °C for 2 h followed by column chromatography afforded the product **8a** as white solid (34 mg, 60%). **Mp** 158-160 °C. **R**_f (EtOAc/Hexane: 6/4) = 0.38. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 173.3 (C), 140.6 (C), 136.4 (C), 129.4 (CH), 129.4 (CH), 127.8 (CH), 125.2 (CH), 125.2 (CH), 124.4 (CH), 123.7 (q, *J*_{C-F} = 280.5 Hz, C), 67.8 (CH), 64.0 (q, *J*_{C-F} = 31.6 Hz, CH), 22.7 (CH₂), 13.6

(CH₃). ¹**H NMR** (400 MHz, δppm/CDCl₃): 7.45-7.41 (m, 2H), 7.38-7.35 (m, 2H), 7.34-7.30 (m, 1H), 6.17 (t, *J* = 7.2 Hz, 1H), 5.06 (q, *J*_{*C-F*} = 5.6 Hz, 1H), 4.85 (s, 1H), 3.18 (d, *J* = 4.4 Hz, 1H), 2.38-

2.35 (m, 2H), 1.12 (t, J = 7.6 Hz, 3H). ¹⁹F NMR (376 MHz, $\delta ppm/CDCl_3$): -73.7 (s). HRMS for $C_{14}H_{15}F_3NO_2^+$: calcd. [M+H]⁺: 286.1049, found: 286.1050.

Compound 8b: 4-Butylidene-3-hydroxy-1-phenyl-5-(trifluoromethyl)pyrrolidin-2-one

Following the general procedure, treatment of ethyl 4-butylidene-2phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate **4d** (69 mg, 0.20 mmol) with zinc dust (260 mg, 4.00 mmol) in CH₃COOH (2 mL) at 50 °C for 2 h followed by column chromatography afforded the product **8b** as white solid (39 mg, 65%). **Mp** 160-162 °C. **R**_f (EtOAc/Hexane: 3/7) = 0.30 ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 173.5 (C), 139.1 (C), 136.4 (C), 129.4 (CH), 129.4 (CH), 127.8 (CH), 125.1 (CH), 125.1 (CH), 125.0 (CH), 123.7 (q, *J*_{C-F} = 283.0 Hz, C), 67.8 (CH), 64.1 (q, *J*_{C-F} = 31.7 Hz, CH), 31.1 (CH₂), 22.2 (CH₂), 13.8

(CH₃). ¹**H NMR** (400 MHz, δppm/CDCl₃): 7.45-7.41 (m, 2H), 7.38-7.35 (m, 2H), 7.34-7.30 (m, 1H), 6.18 (t, J = 7.4 Hz, 1H), 5.02 (q, J_{C-F} = 5.6 Hz, 1H), 4.86 (s, 1H), 3.55 (d, J = 4.0 Hz, 1H), 2.38-2.31 (m, 2H), 1.57-1.50 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹⁹**F NMR** (376 MHz, δppm/CDCl₃): -73.7 (s). **HRMS** for C₁₅H₁₇F₃NO₂⁺: calcd. [M+H]⁺: 300.1206, found: 300.1202.

Compound 8c: 4-Heptylidene-3-hydroxy-1-phenyl-5-(trifluoromethyl)pyrrolidin-2-one

Following the general procedure, treatment of ethyl 4-heptylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate **4g** (77 mg, 0.20 mmol) with zinc dust (260 mg, 4.00 mmol) in CH₃COOH (2 mL) at 50 °C for 2 h followed by column chromatography afforded the product **8c** as white solid (47 mg, 69%). **Mp** 170-172 °C. **R**_f (EtOAc/Hexane: 3/7) = 0.42 ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 173.5 (C), 139.4 (C), 136.4 (C), 129.4 (CH), 129.4 (CH), 127.8 (CH), 125.1 (CH), 125.1 (CH), 124.8 (CH), 123.7 (q, *J*_{C-F} = 282.0 Hz, C), 67.8 (CH), 64.0 (q, *J*_{C-F} = 31.6 Hz, CH), 31.7 (CH₂), 29.2 (CH₂), 29.0

(CH₂), 29.0 (CH₂), 22.7 (CH₂), 14.2 (CH₃). ¹**H NMR** (400 MHz, δ ppm/CDCl₃): 7.45-7.41 (m, 2H), 7.38-7.35 (m, 2H), 7.34-7.30 (m, 1H), 6.17 (t, *J* = 7.4 Hz, 1H), 5.03-4.99 (m, 1H), 4.85 (d, *J* = 3.2 Hz, 1H), 3.28 (d, *J* = 4.4 Hz, 1H), 2.40-2.31 (m, 2H), 1.53-1.49 (m, 2H), 1.39-1.31 (m, 6H), 0.91-0.88 (m, 3H). ¹⁹**F NMR** (376 MHz, δ ppm/CDCl₃): -73.7 (s). **HRMS** for C₁₈H₂₃F₃NO₂⁺: calcd. [M+H]⁺: 342.1675, found: 342.1674.

Compound 8d: 3-Hydroxy-4-(2-methylpropylidene)-1-phenyl-5-(trifluoromethyl)pyrrolidin-2-one

Following the general procedure, treatment of ethyl 4-(2-methylpropylidene)-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate **4h** (69 mg, 0.20 mmol) with zinc dust (260 mg, 4.00 mmol) in CH₃COOH (2 mL) at 50 °C for 2 h followed by column chromatography afforded the product **8d** as white solid (41 mg, 68%). **Mp** 200-202 °C. **R**_f (EtOAc/Hexane: 3/7) = 0.32. ¹³C NMR (100 MHz, δppm/DMSO-d₆): 172.9 (C), 142.4 (C), 136.9 (C), 128.7 (CH), 128.7 (CH), 126.5 (CH), 124.5 (CH), 124.4 (CH), 124.2 (q, J_{C-F} = 282.3 Hz, C), 66.5 (CH), 61.7 (q, J_{C-F}

= 31.3 Hz, CH), 27.9 (CH), 22.6 (CH₃), 21.9 (CH₃). ¹H NMR (400 MHz, δppm/DMSO-d₆): 7.50-7.48 (m, 2H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.28 (t, *J* = 7.2 Hz, 1H), 6.30 (d, *J* = 6.0 Hz, 1H), 5.84 (d, J = 10 Hz, 1H), 5.69 (q, J_{C-F} = 6.0 Hz, 1H), 4.71 (d, *J* = 4.8 Hz, 1H), 2.84-2.78 (m, 1H), 1.04 (d, *J* = 2.4 Hz, 3H), 1.02 (d, *J* = 2.4 Hz, 3H). ¹⁹F NMR (376 MHz, δppm/DMSO-d₆): -72.3 HRMS for C₁₅H₁₇F₃NO₂⁺: calcd. [M+H]⁺: 300.1206, found: 300.1207.

Compound 8e: Dimethyl (4-hydroxy-5-oxo-3-pentylidene-1-phenylpyrrolidin-2-yl)phosphonate

Following the general procedure, treatment of ethyl 3-(dimethoxyphosphoryl)-4-pentylidene-2-phenylisoxazolidine-5carboxylate **6d** (79 mg, 0.20 mmol) with zinc dust (260 mg, 4.00 mmol) in CH₃COOH (2 mL) at 50 °C for 2 h followed by column chromatography afforded the product **8e** as white solid (35 mg, 50%). **Mp** 112-115 °C. **R**_f (EtOAc/Hexane: 6/4) = 0.32. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 172.6 (C), 137.1 (C), 136.1 (d, *J*_{C-P} = 8.9 Hz, C), 129.1 (CH), 129.1 (CH), 127.5 (d, *J*_{C-P} = 7.2 Hz, CH), 126.7 (CH), 123.8 (CH),

123.8 (CH), 68.8 (CH), 60.7 (d, J_{C-P} = 155.2 Hz, CH), 54.1 (d, J_{C-P} = 7.7 Hz, CH₃), 53.8 (d, J_{C-P} = 7.4 Hz, CH₃), 31.4 (d, J_{C-P} = 3.3 Hz, CH₂), 28.8 (d, J_{C-P} = 2.7 Hz, CH₂), 22.5 (CH₂), 14.0 (CH₃). ¹H NMR (400 MHz, δppm/CDCl₃): 7.51 (d, J = 8.0 Hz, 2H), 7.40 (t, J = 7.8 Hz, 2H), 7.26-7.22 (m, 1H), 6.05-6.00 (m, 1H), 4.97 (d, J = 3.6 Hz, 1H), 4.67 (d, J = 10.0 Hz, 1H), 4.33 (d, J = 10.0 Hz, 1H), 3.70 (d, J = 10.8 Hz, 3H), 3.28 (d, J = 10.8 Hz, 3H), 2.37-2.34 (m, 2H), 1.50-1.34 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H). ³¹P NMR (161.9 MHz, δppm/CDCl₃): 24.0 (s). HRMS for C₁₇H₂₅NO₅P⁺: calcd. [M+H]⁺: 354.1465, found: 354.1465.

Compound 8f: Dimethyl (3-hexylidene-4-hydroxy-5-oxo-1-phenylpyrrolidin-2-yl)phosphonate

Following the general procedure, treatment of ethyl 3-(dimethoxyphosphoryl)-4-hexylidene-2-phenylisoxazolidine-5carboxylate **6e** (82 mg, 0.20 mmol) with zinc dust (260 mg, 4.00 mmol) in CH₃COOH (2 mL) at 50 °C for 2 h followed by column chromatography afforded the product **8f** as white solid (43 mg, 58%). **Mp** 110-115 °C. **R**_f (EtOAc/Hexane: 6/4) = 0.36. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 172.6 (C), 137.1 (C), 136.2 (d, *J*_{C-P} = 8.5 Hz, C), 129.1 (CH), 129.1 (CH), 127.4 (d, *J*_{C-P} = 8.6 Hz, CH), 126.6 (CH), 123.8 (CH), 123.8

(CH), 68.8 (CH), 60.7 (d, $J_{C-P} = 155.0$ Hz, CH), 54.1 (d, $J_{C-P} = 7.2$ Hz, CH₃), 53.8 (d, $J_{C-P} = 6.7$ Hz, CH₃), 31.5 (CH₂), 29.0 (CH₂), 29.0 (CH₂), 22.6 (CH₂), 14.1 (CH₃). ¹H NMR (400 MHz, $\delta ppm/CDCl_3$): 7.51 (d, J = 8.0 Hz, 2H), 7.40 (t, J = 7.8 Hz, 2H), 7.26-7.21 (m, 1H), 6.05-6.00 (m, 1H), 4.97 (d, J = 3.6 Hz, 1H), 4.67 (d, J = 9.6 Hz, 1H), 4.36 (d, J = 9.6 Hz, 1H), 3.70 (d, J = 10.8 Hz, 3H), 3.27 (d, J = 10.8 Hz, 3H), 2.34-2.32 (m, 2H), 1.51-1.45 (m, 2H), 1.34-1.33 (m, 4H), 0.91-0.88 (m, 3H). ³¹P NMR (161.9 MHz, $\delta ppm/CDCl_3$): 24.0 (s). HRMS for C₁₈H₂₇NO₅P⁺: calcd. [M+H]⁺: 368.1621, found: 368.1620.

Compound 8g: Dimethyl (3-heptylidene-4-hydroxy-5-oxo-1-phenylpyrrolidin-2yl)phosphonate

Following the general procedure, treatment of ethyl 3-(dimethoxyphosphoryl)-4-heptylidene-2-phenylisoxazolidine-5carboxylate **6f** (85 mg, 0.20 mmol) with zinc dust (260 mg, 4.00 mmol) in CH₃COOH (2 mL) at 50 °C for 2 h followed by column chromatography afforded the product **8g** as white solid (40 mg, 52%). **Mp** 120-122 °C. **R**_f (EtOAc/Hexane: 6/4) = 0.36. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 172.6 (C), 137.1 (C), 136.2 (d, *J*_{C-P} = 7.1 Hz, C), 129.1 (CH), 129.1 (CH), 127.5 (d, *J*_{C-P} = 5.5 Hz, CH), 126.7 (CH), 123.8 (CH),

123.8 (CH), 68.9 (CH), 60.7 (d, J_{C-P} = 124.0 Hz, CH), 54.1 (d, J_{C-P} = 6.1 Hz, CH₃), 53.5 (d, J_{C-P} = 7.7 Hz, CH₃), 31.8 (CH₂), 29.3 (d, J_{C-P} = 2.6 Hz, CH₂), 29.1 (CH₂), 29.0 (d, J_{C-P} = 2.1 Hz, CH₂), 22.7 (CH₂), 14.2 (CH₃). ¹H NMR (400 MHz, δ ppm/CDCl₃): 7.51 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 8.0 Hz, 2H), 7.26-7.22 (m, 1H), 6.05-6.00 (m, 1H), 4.98 (d, J = 3.6 Hz, 1H), 4.67 (d, J = 10.4 Hz, 1H), 4.33 (d, J = 10.4 Hz, 1H), 3.70 (d, J = 10.8 Hz, 3H), 3.28 (d, J = 10.8 Hz, 3H), 2.38-2.31 (m, 2H), 1.51-1.25 (m, 8H), 0.89 (t, J = 6.8 Hz, 3H). ³¹P NMR (161.9 MHz, δ ppm/CDCl₃): 24.0 (s). HRMS for C₁₉H₂₉NO₅P⁺: calcd. [M+H]⁺: 382.1776, found: 382.1776.

Compound 8h: Dimethyl (4-hydroxy-3-(2-methylpropylidene)-5-oxo-1-phenylpyrrolidin-2yl)phosphonate

Following the general procedure, treatment of ethyl 3-(dimethoxyphosphoryl)-4-(2-methylpropylidene)-2phenylisoxazolidine-5-carboxylate **6h** (77 mg, 0.20 mmol) with zinc dust (260 mg, 4.00 mmol) in CH₃COOH (2 mL) at 50 °C for 2 h followed by column chromatography afforded the product **8h** as white solid (38 mg, 56%). **Mp** 120-122 °C. **R**_f (EtOAc/Hexane: 6/4) = 0.24. ¹³C NMR (100 MHz, δ ppm/CDCl₃): 172.5 (C), 142.7 (d, *J*_{C-P} = 8.8 Hz, C), 137.1 (C), 129.1 (CH), 129.1 (CH), 126.7 (CH), 125.5 (d, *J*_{C-P} = 6.9 Hz, CH),

123.8 (CH), 123.8 (CH), 68.9 (CH), 60.7 (d, J_{C-P} = 155.1 Hz, CH), 54.4 (d, J_{C-P} = 7.7 Hz, CH₃), 53.7 (d, J_{C-P} = 7.4 Hz, CH₃), 28.8 (d, J_{C-P} = 2.5 Hz, CH), 23.1 (d, J_{C-P} = 4.1 Hz, CH₃), 22.5 (d, J_{C-P} = 2.8 Hz, CH₃). ¹H NMR (400 MHz, δppm/CDCl₃): 7.52-7.50 (m, 2H), 7.42-7.38 (m, 2H), 7.26-7.22 (m, 1H), 5.85-5.80 (m, 1H), 4.94-4.93 (m, 1H), 4.68 (d, J = 10.8 Hz, 1H), 4.41 (d, J = 10.8 Hz, 1H), 3.72 (d, J = 10.8 Hz, 3H), 3.28 (d, J = 10.8 Hz, 3H), 2.90-2.84 (m, 1H), 1.13 (d, J = 6.4 Hz, 3H), 1.07 (d, J = 6.8 Hz, 3H). ³¹P NMR (161.9 MHz, δppm/CDCl₃): 24.2 (s). HRMS for C₁₆H₂₃NO₅P⁺: calcd. [M+H]⁺: 340.1308, found: 340.1313.

X-ray data collection and structure refinement details of compound 4m:

A good quality colorless single crystal of size 0.20 x 0.14 x 0.07 mm, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal X-ray data for compound **4m** were collected on the Rigaku Kappa 3 circle diffractometer equipped with the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4x4 bin mode using the monochromated Mo-K α radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω -scans of 0.5° steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku CrystalClear-SM Expert 2.1 b24 software. Structure solution and refinement were performed by using SHELXTL-NT. Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model.

Figure S1 ORTEP diagram drawn with 30% ellipsoid probability for non-H atoms of the crystal structure of compound **4m** determined at 293 K.

Compound	4m
Empirical formula	$C_{17}H_{20}F_3NO_3$
Formula weight	343.34
Crystal System	Monoclinic
Space group	<i>P</i> 2 ₁ /c
<i>a</i> (Å)	11.431(6)
<i>b</i> (Å)	5.931(3)
<i>c</i> (Å)	25.849(14)
α (°)	90.00
β(°)	94.751(10)
γ (°)	90.00
V (Å ³)	1746.5(16)
Ζ	4
D _c (g/cm ³)	1.306
F ₀₀₀	720
μ (mm⁻¹)	0.110
$ heta_{max}$ (°)	25.40
Total reflections	8980
Unique reflections	3036
Reflections [$l > 2\sigma(l)$]	1522
Parameters	217
R _{int}	0.0595
Goodness-of-fit	0.912
$R [F^2 > 2\sigma(F^2)]$	0.0596
wR (F ² , all data)	0.1776
CCDC No.	1857117

Table S2: Crystal data and structure refinement details for compound 4m

X-ray data collection and structure refinement details of compound 8a:

A good quality colorless single crystal of size 0.52 x 0.10 x 0.08 mm, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal X-ray data for compound **8a** were collected on the Rigaku Kappa 3 circle diffractometer equipped with the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4x4 bin mode using the monochromated Mo-K α radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω -scans of 0.5° steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku CrystalClear-SM Expert 2.1 b24 software. Structure solution and refinement were performed by using SHELXTL-NT. Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model.

Figure S2 ORTEP diagram drawn with 30% ellipsoid probability for non-H atoms of the crystal structure of compound **8a** determined at 293 K.

Table S3 Crystal data and s	tructure refinement details for compound 8a
-	

Compound	8a
Empirical formula	$C_{14} H_{14} F_3 N O_2$
Formula weight	285.26
Crystal System	Triclinic
Space group	<i>P</i> -1
<i>a</i> (Å)	11.218(3)
b (Å)	12.296(3)
<i>c</i> (Å)	16.820(5)
α (°)	108.32(2)
β(°)	101.98(3)
γ (°)	102.65(2)
V (Å ³)	2051.1(10)
Ζ	6
D _c (g/cm ³)	1.386
F ₀₀₀	888
μ (mm⁻¹)	0.120
$ heta_{\sf max}$ (°)	25.44
Total reflections	9236
Unique reflections	5731
Reflections $[l > 2\sigma(l)]$	1340
Parameters	545
R _{int}	0.0800
Goodness-of-fit	0.595
$R [F^2 > 2\sigma(F^2)]$	0.0555
wR (F ² , all data)	0.1588
CCDC No.	1857118

100 90 f1 (ppm)

S30

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

f1 (ppm)

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

f1 (ppm)

5.0 f1 (ppm) 10.0 3.5 1.0 9.5 9.0 8.5 7.5 7.0 6.5 6.0 5.5 4.0 3.0 2.5 2.0 1.5 0.5 0.0 8.0 4.5

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

100 90 f1 (ppm)

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-7,7384 -7,7384 -7,7384 -7,7384 -5,160 <t

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) C7.531 C7.5331 C5.995 C

---74,467

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

.... т 0 T -20 -40 -60 f1 (ppm) 20 -80 140 120 100 80 60 40 -100 -130 -160 -190 -220

20 -20 0 -40 -60 f1 (ppm) 140 80 60 40 -130 -190 120 100 -80 -100 -160 -220

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

140 0 -40 -60 f1 (ppm) 120 100 80 60 40 20 -20 -100 -130 -160 -190 -80 -220

133.149 128.678 128.634 128.459 --122.030 --114.114

78 180 777 478 777 478 65.842 65.085 63.318 63.318 63.318 53.846 53.846 ✓31.680 →30.956 →28.900 →22.612 →22.612 ✓13.444

<150.985 <150.861

-168.972

n-Hex

`Ņ_Ò

6f 100 MHz/CDCl₃

(MeO)₂OP

CO₂Et

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

140 80 60 20 0 -20 -40 -60 f1 (ppm) 120 100 40 -130 -160 -190 -80 -100 -220

f1 (ppm)

f1 (ppm)

20 11 140 80 0 -20 -40 -60 f1 (ppm) 120 60 40 -80 -100 -130 -190 -220 100 -160

f1 (ppm)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

20 0 -20 11.1 80 60 -40 -60 f1 (ppm) 140 40 -130 -190 120 100 -80 -100 -160 -220

f1 (ppm)

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

0.0

f1 (ppm)

-20 --80 -100 -130 -160 -40 -60 f1 (ppm) -190 -220

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

f1 (ppm)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 fl (ppm)

40 20 0 -20 -130 140 -40 -60 f1 (ppm) -220 120 80 60 -80 -100 -190 100 -160