Additive-free regio- and diastereoselective construction of fully-substituted isoxazolidines employing diazo compounds

Ekta Gupta, ${ }^{\text {a }}$ Mohd Khalid Zaheer, ${ }^{\text {a }}$ Ruchir Kant ${ }^{\text {b }}$ and Kishor Mohanan ${ }^{\mathrm{a}, c *}$
${ }^{a}$ Medicinal and Process Chemistry Division and ${ }^{\text {b }}$ Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India

${ }^{\text {cAcademy of Scientific and Innovative Research, New Delhi, India }}$
kishor.mohanan@cdri.res.in

SUPPORTING INFORMATION

Content:

1. General experimental information (p. S2)
2. General procedure for the synthesis of trifluoromethylated isoxazolidines (p. S3)
3. Characterization data for compounds $\mathbf{4 a - 4 r}$ (p. S3)
4. Optimization studies for the synthesis of phosphonylated isoxazolidines (p. S11)
5. General procedure for synthesis of phosphonylated isoxazolidines (p. S12)
6. Characterization data for compounds 6a-6m \& $\mathbf{7}$ (p. S12)
7. General procedure for the synthesis of γ-lactam (p. S19)
8. Characterization data for compounds 8a-8h (p. S19)
9. X-ray data of compounds 4 m and 8 a (p. S24)
10. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ spectra ($\mathrm{p} . \mathrm{S} 27$)

General experimental information

Unless otherwise specified, all reactions were performed in oven-dried glasswares under nitrogenous atmosphere using dry deoxygenated solvent. The reactions were monitored by TLC visualized by UV (254 nm) and/or with iodine. Column chromatography was performed on 100-200 mesh silica gel using the gradient system ethyl acetate-hexane. NMR data were recorded at Bruker AV 400 MHz in $\mathrm{CDCl}_{3} / \mathrm{DMSO}_{-} \mathrm{d}_{6}$ using as internal standards the residual CHCl_{3} signal for ${ }^{1} \mathrm{H}$ NMR ($\delta=7.26 \mathrm{ppm}$) and the deuterated solvent signal for ${ }^{13} \mathrm{C}$ NMR ($\delta=$ $77.16 \mathrm{ppm})$. The residual DMSO signal for ${ }^{1} \mathrm{H}$ NMR ($\delta=2.50 \mathrm{ppm}$) and the deuterated solvent signal for ${ }^{13} \mathrm{C}$ NMR $(\delta=39.51 \mathrm{ppm})$. Coupling constants are given in $\mathrm{Hertz}(\mathrm{Hz})$ and the classical abbreviations are used to describe the signal multiplicities. Melting points were measured with a Büchi B-540 apparatus and are uncorrected. High resolution mass spectra were obtained using Q-TOF mass spectrometer. All commercially available reagents were used as received. All allenic esters $(3 a-3 m)^{1}$ and nitroarenes ${ }^{2}$ were synthesized following literature procedure. Stock solution of the $\mathrm{CF}_{3} \mathrm{CHN}_{2}$ and Seyferth-Gilbert reagent were preapared according to the literature procedure. ${ }^{3,4}$

1. L. Rout and A. M. Harned, Chem. Eur. J., 2009, 15, 12926.
2. S. Chakrabarty, I. Chatterjee, L. Tebben and A. Studer, Angew. Chem., Int. Ed., 2013, 52, 2968.
3. G. A. Molander and D. Ryu, Angew. Chem., Int. Ed., 2014, 53, 14181.
4. A. K. Gupta, N. K. Vaishanv, R. Kant and K. Mohanan, Org. Biomol. Chem., 2017, 15, 6411.

General procedure for the synthesis of trifluoromethylated isoxazolidines 4a-

 $4 r$

A 10 mL round-bottom flask charged with nitrosobenzene 1a ($54 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) was sealed, evacuated, backfilled with nitrogen and added dry $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. Subsequently, the requisite amount of $\mathrm{CF}_{3} \mathrm{CHN}_{2}$ in toluene $2(1.90 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and ethyl penta-2,3dienoate 3 a ($95 \mathrm{mg}, 0.75 \mathrm{mmol}$) were added via a syringe. This reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . After the completion of reaction, as indicated by TLC, solvent was evaporated under reduced pressure. The residue was purified using column chromatography (100-200 mesh silica gel) using ethyl acetate/hexane as the eluent.

Compound 4a: Ethyl 4-ethylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} \mathbf{2}(1.90 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and ethyl penta-2,3-dienoate 3a ($95 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 4 a as liquid (113 mg, 72\%). R \mathbf{R}_{f} (EtOAc/Hexane: $1 / 9$) $=0.40 .{ }^{13} \mathrm{C}$ NMR (100 MHz , Sppm/CDCl ${ }_{3}$): 168.5 (C), 149.6 (C), 133.2 (C), 128.9 (CH), 128.9 (CH), 125.7 (CH), 122.6 (CH), 120.6 ($\left.q, J_{C-F}=278.6 \mathrm{~Hz}, \mathrm{C}\right), 114.2(\mathrm{CH}), 114.2$ (CH), $78.6(\mathrm{CH}), 67.7\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.9 \mathrm{~Hz}, \mathrm{CH}\right), 61.9\left(\mathrm{CH}_{2}\right), 16.3\left(\mathrm{CH}_{3}\right), 13.6$ $\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}\right): 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.86-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.87(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.01(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): -74.6 (s). HRMS for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 316.1155$, found: 316.1154.

Compound 4b: Ethyl 4-methylene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl buta-2,3-dienoate 3b ($84 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{4 b}$ as liquid ($90 \mathrm{mg}, 60 \%$). \mathbf{R}_{f} (EtOAc/Hexane: $1 / 9$) $=0.41 .{ }^{13} \mathrm{C}$ NMR (100 MHz , Sppm/ CDCl_{3}): 168.4 (C), 149.5 (C), 140.3 (C), 128.9 (CH), 128.9 (CH), 124.0 ($\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=278.9 \mathrm{~Hz}, \mathrm{C}$), 123.4 (CH), 115.7 (CH), 115.7 (CH), 114.7 $\left(\mathrm{CH}_{2}\right), 79.1(\mathrm{CH}), 69.1\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.9 \mathrm{~Hz}, \mathrm{CH}\right), 62.1\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, Sppm/CDCl $)_{3}$: 7.31-7.27 (m, 2H), $7.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H})$, $5.64(\mathrm{~s}, 1 \mathrm{H}), 5.15-5.14(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.11\left(\mathrm{q}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.17(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, 3H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): -74.8 (s). HRMS for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. [M+H] ${ }^{+}$ 302.0999, found: 302.1001.

Compound 4c: Ethyl 2-phenyl-4-propylidene-3-(trifluoromethyl)isoxazolidine-5-

 carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl hexa-2,3-dienoate $3 \mathrm{c}(105 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 4 c as liquid ($107 \mathrm{mg}, 65 \%$). $\mathbf{R}_{f}($ EtOAc/Hexane: $1 / 9)=0.51 .{ }^{13} \mathrm{C} \mathbf{N M R}(100 \mathrm{MHz}$, סppm/ CDCl_{3}): 168.7 (C), 149.7 (C), 132.4 (C), 131.5 (CH), 128.9 (CH), 128.9 (CH), 124.3 ($\left.q, J_{C-F}=287.7 \mathrm{~Hz}, \mathrm{C}\right), 122.5(\mathrm{CH}), 114.0(\mathrm{CH}), 114.0$ $(\mathrm{CH}), 78.5(\mathrm{CH}), 67.6\left(\mathrm{q}, J_{C-F}=31.8 \mathrm{~Hz}, \mathrm{CH}\right), 61.9\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 13.6$ $\left(\mathrm{CH}_{3}\right), 13.2\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 7.28-7.24 (m, 2 H$), 7.03(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.84$ ($\mathrm{m}, 2 \mathrm{H}$), 2.11-2.03 (m, 2H), 1.04-0.97 (m, 6H). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): -74.6 (s). HRMS for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. [$\left.\mathrm{M}+\mathrm{H}\right]^{+}: 330.1312$, found: 330.1307.

Compound 4d: Ethyl 4-butylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.20 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl hepta-2,3-dienoate 3d (116 mg, 0.75 mmol$)$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{4 d}$ as liquid (106 mg, 62\%). R \mathbf{R}_{f} (EtOAc/Hexane: 1/9) = 0.56. ${ }^{13} \mathrm{C}$ NMR (100 MHz, סppm/ CDCl_{3}): 168.7 (C), 149.7 (C), 132.3 (C), 130.9 (CH), 128.9 (CH), 128.9 (CH), 124.4 (q, $\left.J_{C-F}=278.5 \mathrm{~Hz}, \mathrm{C}\right), 122.5(\mathrm{CH}), 114.0(\mathrm{CH}), 114.0$ (CH), $78.7(\mathrm{CH}), 67.6\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.8 \mathrm{~Hz}, \mathrm{CH}\right), 61.8\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 22.0$ $\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 7.27-7.23(m,2H), $7.03(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$,
3.98-3.83 (m, 2H), 2.07-2.00(m, 2H), 1.47-1.42 (m, 2H), 0.97 (t, J=7.2 Hz, 3H), $0.88(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): -74.6 (s). HRMS for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}$: 344.1468, found: 344.1465.

Compound 4e: Ethyl 4-pentylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl octa-2,3dienoate 3 e ($126 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{4 e}$ as liquid (109 mg, 61\%). $\mathbf{R}_{f}(E t O A c / H e x a n e: ~ 1 / 9)=0.59 .{ }^{13} \mathrm{C}$ NMR (100 MHz, סppm/CDCl ${ }_{3}$: 168.7 (C), 149.7 (C), 132.1 (C), 131.0 (CH), 128.9 (CH), $128.9(\mathrm{CH}), 124.4\left(\mathrm{q}, J_{C-F}=278.6 \mathrm{~Hz}, \mathrm{C}\right), 122.5(\mathrm{CH}), 114.0(\mathrm{CH}), 114.0(\mathrm{CH})$, $78.7(\mathrm{CH}), 67.6\left(\mathrm{q}, J_{\mathrm{C}-F}=31.8 \mathrm{~Hz}, \mathrm{CH}\right), 61.8\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right)$, $22.3\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.03$ (d, J = 8.0 Hz, 2H), $6.97(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.00-3.83(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ ($\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): -74.6 (s). HRMS for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. [M+H] ${ }^{+}$: 358.1625, found: 358.1623.

Compound 4f: Ethyl 4-hexylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.9 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl nona-2,3dienoate $3 f(137 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{4 f}$ as liquid (122 mg, 66\%). $\mathbf{R}_{f}(E t O A c / H e x a n e: ~ 1 / 9)=0.67 .{ }^{13} \mathrm{C}$ NMR (100 MHz, סppm/CDCl ${ }_{3}$: 168.7 (C), 149.8 (C), 132.1 (C), 131.1 (CH), 128.9 (CH), $128.9(\mathrm{CH}), 124.4\left(\mathrm{q}, J_{C-F}=278.6 \mathrm{~Hz}, \mathrm{C}\right), 122.5(\mathrm{CH}), 114.0(\mathrm{CH}), 114.0$ $(\mathrm{CH}), 78.7(\mathrm{CH}), 67.6\left(\mathrm{q}, J_{C-F}=31.8 \mathrm{~Hz}, \mathrm{CH}\right), 61.8\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 31.1$ $\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 7.28-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}$, $1 \mathrm{H}), 4.84(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.83(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.23$ $(\mathrm{m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): -74.6 (s). HRMS for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}$: 372.1781, found: 372.1785.

Compound 4g: Ethyl 4-heptylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 mg, $0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl deca-2,3dienoate $3 \mathrm{~g}(147 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 4 g as liquid (117 mg, 61\%). \mathbf{R}_{f} (EtOAc/Hexane: 1/9) $=0.65 .{ }^{13} \mathrm{C}$ NMR (100 MHz, סppm/ CDCl_{3}): 168.7 (C), 149.8 (C), 132.1 (C), 131.1 (CH), 128.9 (CH), 128.9 $(\mathrm{CH}), 124.4\left(\mathrm{q}, J_{C-F}=274.5 \mathrm{~Hz}, \mathrm{C}\right), 122.5(\mathrm{CH}), 114.0(\mathrm{CH}), 114.0(\mathrm{CH}), 78.7$ $(\mathrm{CH}), 67.6\left(\mathrm{q}, J_{C-F}=31.6 \mathrm{~Hz}, \mathrm{CH}\right), 61.8\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 28.9$ $\left(\mathrm{CH}_{2}\right) 28.7\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 7.27-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}$, $1 \mathrm{H}), 4.84(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.84(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.23$ $(\mathrm{m}, 6 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): -74.6 (s). HRMS for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 386.1938$, found: 386.1938.

Compound 4h: Ethyl 4-(2-methylpropylidene)-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl 5-methylhexa-2,3-dienoate 3 h ($116 \mathrm{mg}, 0.75 \mathrm{mmol}$) and in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 4 h as liquid (103 mg, 60\%). \mathbf{R}_{f} (EtOAc/Hexane: 1/9) $=0.45 .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\delta p p m / C D C l_{3}\right): 168.9$ (C), 149.8 (C), 137.3 (C), 129.8 (CH), $128.9(\mathrm{CH}), 128.9(\mathrm{CH}), 124.4\left(\mathrm{q}, J_{C-F}=278.4 \mathrm{~Hz}, \mathrm{C}\right), 122.5(\mathrm{CH}), 113.9$ $(\mathrm{CH}), 113.9(\mathrm{CH}), 78.4(\mathrm{CH}), 67.6\left(\mathrm{q}, J_{C-F}=31.1 \mathrm{~Hz}, \mathrm{CH}\right), 61.9\left(\mathrm{CH}_{2}\right), 31.3$ $(\mathrm{CH}), 22.4\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 7.27-7.23(\mathrm{~m}, 2 \mathrm{H})$, $7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{q}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.79(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.95(\mathrm{~m}, 9 \mathrm{H}) .{ }^{19}$ F NMR (376 MHz, Sppm/CDCl ${ }_{3}$): -74.6 (s). HRMS for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}$: 344.1468, found: 344.1466.

Compound 4i: Ethyl 2-phenyl-4-(2-phenylethylidene)-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene $\mathbf{1 a}$ (54 mg , $0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl 5 -phenylpenta-2,3-dienoate 3 i ($152 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $4 i$ as liquid (113 $\mathrm{mg}, 58 \%)$. \mathbf{R}_{f} (EtOAc/Hexane: $1 / 9$) $=0.48 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 168.5 (C), 149.6 (C), 138.2 (C), 133.4 (C), 129.5 (CH), 128.9 (CH), 128.9 (CH), 128.8 (CH), 128.8 (CH), 128.4 (CH), 128.4 (CH), 126.8 (CH), 124.3 (q, J $J_{C-F}=$ $278.7 \mathrm{~Hz}, \mathrm{C}), 122.6(\mathrm{CH}), 114.1(\mathrm{CH}), 114.1(\mathrm{CH}), 78.6(\mathrm{CH}), 67.6\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.8 \mathrm{~Hz}, \mathrm{CH}\right), 63.1$ $\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 13.5\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.95(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Sppm/ CDCl_{3}): -74.4. HRMS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. [$\left.\mathrm{M}+\mathrm{H}\right]^{+}: 392.1468$, found: 392.1464.

Compound 4j: Ethyl 5-benzyl-4-methylene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene $\mathbf{1 a}$ (54 mg , $0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} \mathbf{2}(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl 2-benzylbuta-2,3-dienoate 3 j ($152 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 4 j as liquid (137 $\mathrm{mg}, 70 \%)$. $\mathbf{R}_{f}($ EtOAc $/$ Hexane: $1 / 9)=0.58 .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right)$: 170.1 (C), 149.0 (C), 143.6 (C), 134.5 (C), 130.8 (CH), 130.8 (CH), 128.8 (CH), $128.8(\mathrm{CH}), 128.2(\mathrm{CH}), 128.2(\mathrm{CH}), 127.2(\mathrm{CH}), 124.1\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=279.3 \mathrm{~Hz}, \mathrm{C}\right)$, $122.9(\mathrm{CH}), 115.6\left(\mathrm{CH}_{2}\right), 115.3(\mathrm{CH}), 115.3(\mathrm{CH}), 87.8(\mathrm{C}), 68.5\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.9 \mathrm{~Hz}, \mathrm{CH}\right), 61.9\left(\mathrm{CH}_{2}\right)$, $43.3\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): $7.26-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H})$, 6.97-6.93 (m, 1H), 5.64 (s, 1H), 5.52 (s, 1H), 4.83-4.78 (m, 1H), 3.84-3.77 (m, 2H), 3.38-3.30 ($\mathrm{m}, 2 \mathrm{H}$), $0.88(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): -73.2 (s). HRMS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 392.1468$, found: 392.1467.

Compound 4k: Methyl 4-ethylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol}$) with $\mathrm{CF}_{3} \mathrm{CHN}_{2} \mathbf{2}(1.9 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and methyl penta-2,3-dienoate $\mathbf{3 k}$ ($84 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{4 k}$ as liquid ($92 \mathrm{mg}, 61 \%$). $\mathbf{R f}_{f}$ (EtOAc/Hexane: $1 / 9$) $=0.48 .{ }^{13} \mathrm{C}$ NMR (100 MHz , Sppm $/ \mathrm{CDCl}_{3}$): 168.9 (C), 149.5 (C), 133.0 (C), 128.9 (CH), 128.9 (CH), $126.0(\mathrm{CH}), 124.3\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=278.7 \mathrm{~Hz}, \mathrm{C}\right), 122.8(\mathrm{CH}), 114.2(\mathrm{CH}), 114.2$ (CH), $78.2(\mathrm{CH}), 67.8\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.8 \mathrm{~Hz}, \mathrm{CH}\right), 52.4\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \delta p p m / C D C l_{3}$): 7.29-7.25 (m, 2H), $7.03(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.09(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.86-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): -74.7 (s). HRMS for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}$: 302.0999, found: 302.0999.

Compound 41: Benzyl 4-ethylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and benzyl penta-2,3-dienoate $\mathbf{3 I}(141 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 41 as liquid (119 mg, 63\%). $\mathbf{R}_{f}($ EtOAc/Hexane: $1 / 9)=0.43 .{ }^{13} \mathrm{C}$ NMR (100 MHz , Sppm/ CDCl_{3}): 168.3 (C), 149.5 (C), 134.8 (C), 133.0 (C), 128.9 (CH), 128.9 (CH), 128.7 (CH), 128.7 (CH), 128.6 (CH), 128.6 (CH), 128.6 (CH), 126.0 (CH), 124.3 ($\left.q, J_{C-F}=278.6 \mathrm{~Hz}, \mathrm{C}\right), 122.7(\mathrm{CH}), 114.2(\mathrm{CH}), 114.2(\mathrm{CH})$, $78.5(\mathrm{CH}), 67.8\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.9 \mathrm{~Hz}, \mathrm{CH}\right), 67.6\left(\mathrm{CH}_{2}\right), 16.3\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right)$: $7.32-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.80(\mathrm{~m}, 2 \mathrm{H}), 1.67$ (d, J = $5.6 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): -74.7 (s). HRMS for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FF}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. [$\mathrm{M}+\mathrm{H}]^{+}: 378.1312$, found: 378.1312 .

Compound 4m: t-Butyl 4-ethylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and t-butyl penta-2,3-dienoate $3 \mathrm{~m}(116 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 4 m as white solid ($117 \mathrm{mg}, 68 \%$). M.P $65-67^{\circ} \mathrm{C}$. \mathbf{R}_{f} (EtOAc/Hexane: 1/9) = $0.53 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 167.6 (C), 149.8 (C), 133.9 (C), 128.9 (CH), 128.9 (CH), 124.9 (CH), 124.4 (q, $\left.J_{C-F}=278.6 \mathrm{~Hz}, \mathrm{C}\right), 122.3$ (CH), 114.1 (CH), 114.1 (CH), 82.7 (C), $80.2(\mathrm{CH}), 67.4\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.9 \mathrm{~Hz}\right.$, $\mathrm{CH})$, $27.5\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{3}\right)$, $27.5\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 7.28-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H})$, $4.82-4.80(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): -74.7 (s). HRMS for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 344.1468$, found: 344.1468.

Compound 4n: Ethyl 4-propylidene-2-(p-tolyl)-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of 4-methyl nitrosobenzene 1b ($61 \mathrm{mg}, 0.50 \mathrm{mmol}$) with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl hexa-2,3-dienoate $\mathbf{3 c}(105 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{4 n}$ as liquid ($110 \mathrm{mg}, 64 \%$). \mathbf{R}_{f} (EtOAc/Hexane: 1/9) $=0.57 .{ }^{13} \mathrm{C}$ NMR (100 MHz , Sppm/ CDCl_{3}): 168.8 (C), 147.3 (C), 132.4 (C), 132.3 (C), 131.7 (CH), 129.4 (CH), 129.4 (CH), 124.0 ($\left.q, J_{C-F}=278.6 \mathrm{~Hz}, \mathrm{C}\right), 114.6(\mathrm{CH}), 114.6(\mathrm{CH}), 78.4$ $(\mathrm{CH}), 67.8\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.5 \mathrm{~Hz}, \mathrm{CH}\right), 61.8\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{2}\right), 13.7$ $\left(\mathrm{CH}_{3}\right), 13.2\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 7.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.88$ $(\mathrm{m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.05-1.01(\mathrm{~m}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): -74.7 (s). HRMS for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. [M+H] ${ }^{+}$: 344.1468, found: 344.1460.

Compound 40: Ethyl-2-(4-bromophenyl)-4-propylidene-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of 4-bromonitrosobenzene $1 \mathrm{c}(92 \mathrm{mg}, 0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl hexa-2,3-dienoate $3 \mathrm{c}(105 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 40 as liquid ($133 \mathrm{mg}, 65 \%$). $\mathrm{R}_{f}($ EtOAc/Hexane: $1 / 9)=0.54 .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\delta \mathrm{ppm} / \mathrm{CDCl}_{3}\right): 168.6$ (C), 148.8 (C), 132.7 (CH), 131.7 (CH), 131.7 (CH), 131.2 (C), 124.2 (q, $\left.J_{C-F}=222.8 \mathrm{~Hz}, \mathrm{C}\right), 115.7(\mathrm{CH}), 115.7(\mathrm{CH}), 114.9(\mathrm{C})$, $78.6(\mathrm{CH}), 67.5\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=25.4 \mathrm{~Hz}, \mathrm{CH}\right), 62.0\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right)$, $13.2\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): $7.35(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.90(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{q}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.90$ ($\mathrm{m}, 2 \mathrm{H}$), 2.13-2.03 (m, 2H), 1.06-1.01 (m, 6H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): -74.6 (s). HRMS for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrF}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$: 408.0417, found: 408.0417.

Compound 4p: Ethyl -2-(4-chlorophenyl)-4-propylidene-3-(trifluoromethyl)isoxazolidine-5carboxylate:

Following the general procedure, treatment of 4chloronitrosobenzene 1d ($70 \mathrm{mg}, 0.50 \mathrm{mmol}$) with $\mathrm{CF}_{3} \mathrm{CHN}_{2} \mathbf{2}(1.90 \mathrm{~mL}$, 1.50 mmol) and ethyl hexa-2,3-dienoate $\mathbf{3 c}(105 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $4 p$ as liquid ($127 \mathrm{mg}, 70 \%$). \mathbf{R}_{f} (EtOAc/Hexane: $1 / 9)=0.52 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): $168.6(\mathrm{C}), 148.3(\mathrm{C})$, 132.7 (CH), 131.2 (C), 128.8 (CH), 128.8 (CH), 127.6 (C), 124.2 ($q, J_{C-F}=$ $371.5 \mathrm{~Hz}, \mathrm{C}), 115.4$ (CH), 115.4 (CH), 78.6 (CH), 67.6 ($q, J_{C-F}=42.5 \mathrm{~Hz}$,
$\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right)$, $13.7\left(\mathrm{CH}_{3}\right), 13.2\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): $7.21(\mathrm{~d}, \mathrm{~J}$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01-3.93(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.06-1.01(\mathrm{~m}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta$ ppm/ CDCl_{3}): -74.6 (s). HRMS for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. [M+H] ${ }^{+}$: 364.0922, found: 364.0927.

Compound 4q: Ethyl -2-(4-cyanophenyl)-4-propylidene-3-(trifluoromethyl)isoxazolidine-5carboxylate:

Following the general procedure, treatment of 4-cyanonitrosobenzene $1 \mathrm{e}(66 \mathrm{mg}, 0.50 \mathrm{mmol})$ with $\mathrm{CF}_{3} \mathrm{CHN}_{2} 2(1.90 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl hexa-2,3-dienoate $\mathbf{3 c}(105 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 4 q as liquid ($113 \mathrm{mg}, 64 \%$). \mathbf{R}_{f} (EtOAc/Hexane: 1/9) $=0.56 .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}\right): 168.4$ (C), 152.5 (C), 133.1 (CH), 133.1 (CH), 133.1 (CH), 130.5 (C), 124.0 (q, $\left.J_{C-F}=279.2 \mathrm{~Hz}, \mathrm{C}\right), 119.3$ (C), 113.3 (CH), 113.3 (CH), 104.6 (C), 78.6 (CH), $66.1\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=32.6 \mathrm{~Hz}, \mathrm{CH}\right), 62.1\left(\mathrm{CH}_{2}\right), 24.4$ $\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right), 13.1\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): $7.54(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{q}, J=5.6 \mathrm{~Hz}$, 1H), 4.04-3.91 (m, 2H), 2.16-2.08 (m, 2H), 1.04-1.00 (m, 6H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \delta$ ppm/ CDCl_{3}): -74.5 (s). HRMS for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 355.1264$, found: 355.1266.

Compound 4r: Ethyl 4-propylidene-2-(o-tolyl)-3-(trifluoromethyl)isoxazolidine-5carboxylate

Following the general procedure, treatment of 2-methyl nitrosobenzene 1f ($61 \mathrm{mg}, 0.50 \mathrm{mmol}$) with $\mathrm{CF}_{3} \mathrm{CHN}_{2} \mathbf{2}(1.9 \mathrm{~mL}, 1.50 \mathrm{mmol})$ and ethyl hexa-2,3-dienoate $\mathbf{3 c}(105 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 4 r as liquid (106 mg, 62\%) . R_{f} (EtOAc/Hexane: 1/9) = 0.57. ${ }^{13} \mathrm{C}$ NMR (100 MHz , סppm/CDCl ${ }_{3}$: 169.3 (C), 145.6 (C), 136.8 (C), 133.4 (C), 132.8 (CH), 131.3 (CH), 127.2 (CH), 125.8 (CH), 124.2 (q, $\left.J_{C-F}=223.6 \mathrm{~Hz}, \mathrm{C}\right), 120.0(\mathrm{CH}), 77.2$ (CH), $65.6\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=24.7 \mathrm{~Hz}, \mathrm{CH}\right), 61.6\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{2}\right), 13.7$ $\left(\mathrm{CH}_{3}\right), 13.4\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 7.22-7.20 (m, 1H), 7.13-7.02 (m, 3H), 6.08 $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.28-$ $2.17(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right)$: -74.5 (s). HRMS for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. [M+H]+: 344.1468, found: 344.1446.

Optmization study for the synthesis of phosphonyl isoxazolidines

Table S1: Optimization of the reaction conditions ${ }^{\text {a }}$

 1a			$\xrightarrow[\text { solvent }]{\text { additive }}$	
Entry	Solvent	additive	time (h)	yield (\%) ${ }^{\text {b }}$
1	$\mathrm{CH}_{3} \mathrm{CN}$	-	12	70
2	DCM	-	12	48
3	Toluene	-	12	52
4	DMF	-	12	65
5	DMSO	-	12	45
6	1,4-dioxane	-	12	42
7	DCE	-	12	40
8	THF	-	12	50
9	$\mathrm{CH}_{3} \mathrm{CN}$	CsF	12	58
10	$\mathrm{CH}_{3} \mathrm{CN}$	TBAF	12	50
11	$\mathrm{CH}_{3} \mathrm{CN}$	DBU	12	42
12	$\mathrm{CH}_{3} \mathrm{CN}$	DABCO	12	55
$13^{\text {c }}$	$\mathrm{CH}_{3} \mathrm{CN}$	-	72	55
$14^{\text {d }}$	$\mathrm{CH}_{3} \mathrm{CN}$	-	12	40

${ }^{\mathrm{a}}$ 1a (0.50 mmol), $\mathbf{5 a}(0.50 \mathrm{mmol})$, $\mathbf{3 d}(0.75 \mathrm{mmol})$ solvent $(2.0 \mathrm{~mL}), 50^{\circ} \mathrm{C} .{ }^{\text {b }}$ Isolated yield after silica gel column chromatography. ${ }^{\mathrm{C}}$ Reaction carried out at $25^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}}$ Reaction carried out at $80^{\circ} \mathrm{C}$.

General procedure for the synthesis of phosphonyl isoxazolidines $\mathbf{6 a - 6 m}$

A 10 mL round-bottom flask charged with nitroso benzene $\mathbf{1 a}$ ($54 \mathrm{mg}, 0.50 \mathrm{mmol}$) was sealed, evacuated, backfilled with nitrogen and added dry $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. Subsquently, the SeyferthGilbert reagent 5 a ($75 \mathrm{mg}, 0.50 \mathrm{mmol}$) and ethyl hepta-2,3-dienoate 3 d ($116 \mathrm{mg}, 0.75 \mathrm{mmol}$) were added via a syringe. This reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 12 h . After the completion of reaction, as indicated by TLC, the solvent was evaporated under reduced pressure. The residue was purified using column chromatography (100-200 mesh silica gel) using ethyl acetate/hexane as the eluent.

Compound 6a: Ethyl 4-butylidene-3-(dimethoxyphosphoryl)-2-phenylisoxazolidine-5carboxylate

[^0]Compound 6b: Ethyl 3-(dimethoxyphosphoryl)-4-methylene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent $5 \mathrm{a}(75 \mathrm{mg}, 0.50 \mathrm{mmol})$ and ethyl buta-2,3-dienoate $\mathbf{3 b}$ ($84 \mathrm{mg}, 0.75 \mathrm{mmol}$) and in $\mathrm{CH}_{3} \mathrm{CN}$ (2 mL) at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 b}$ as liquid ($111 \mathrm{mg}, 65 \%$). \mathbf{R}_{f} (EtOAc/Hexane: 6/4) $=0.50 .{ }^{13} \mathbf{C}$
NMR ($\left.100 \mathrm{MHz}, \delta p p m / C D C l_{3}\right): 168.7\left(\mathrm{~d}, \mathrm{~J}_{C-p}=1.9 \mathrm{~Hz}, \mathrm{C}\right), 150.5\left(\mathrm{~d}, \mathrm{~J}_{C-p}\right.$ $=12.7 \mathrm{~Hz}, \mathrm{C}), 142.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=3.5 \mathrm{~Hz}, \mathrm{C}\right), 128.7(\mathrm{CH}), 128.7(\mathrm{CH}), 123.0(\mathrm{CH}), 115.8(\mathrm{CH}), 115.8$ (CH), 111.9 ($\mathrm{d}, J_{C-p}=8.2 \mathrm{~Hz}, \mathrm{CH}_{2}$), 79.2 ($\mathrm{d}, \mathrm{J}_{C-p}=2.6 \mathrm{~Hz}, \mathrm{CH}$), $65.9\left(\mathrm{~d}, J_{C-p}=175.2 \mathrm{~Hz}, \mathrm{CH}\right), 61.9$ $\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{~d}, \mathrm{~J}_{C-p}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 54.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Sppm/CDCl $)_{3}$: 7.29-7.27 (m, 2H), 7.25-7.21 (m, 2H), $7.00(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.52(\mathrm{~m}, 2 \mathrm{H})$, 5.15-5.14 (m, 1H), 4.78-4.74 (m, 1H), 4.09-4.04 (m, 2H), $3.88\left(\mathrm{~d}, \mathrm{~J}_{H-P}=2.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 3.85\left(\mathrm{~d}, \mathrm{~J}_{H-P}\right.$ $=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($161.9 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 19.6 (s). HRMS for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 342.1101$, found: 342.1091.

Compound 6c: Ethyl 3-(dimethoxyphosphoryl)-2-phenyl-4-propylideneisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a ($54 \mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent 5 ($75 \mathrm{mg}, 0.50$ mmol) and ethyl hexa-2,3-dienoate $\mathbf{3 c}$ ($105 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 c}$ as liquid ($111 \mathrm{mg}, 60 \%$). $\mathbf{R}_{f}($ EtOAc/Hexane: $6 / 4)=0.25 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): $169.0\left(\mathrm{~d}, \mathrm{~J}_{c-p}=4.3\right.$ $\mathrm{Hz}, \mathrm{C}), 150.9\left(\mathrm{~d}, J_{C-p}=10.0 \mathrm{~Hz}, \mathrm{C}\right), 132.8\left(\mathrm{~d}, J_{C-p}=2.0 \mathrm{~Hz}, \mathrm{C}\right), 129.8$ (d, $\left.J_{C-P}=6.1 \mathrm{~Hz}, \mathrm{CH}\right), 128.7(\mathrm{CH}), 128.7(\mathrm{CH}), 122.2(\mathrm{CH}), 114.3(\mathrm{CH})$, $114.3(\mathrm{CH}), 78.1\left(\mathrm{~d}, J_{C-p}=2.2 \mathrm{~Hz}, \mathrm{CH}\right), 64.3\left(\mathrm{~d}, J_{C-p}=141.1 \mathrm{~Hz}, \mathrm{CH}\right), 61.7\left(\mathrm{CH}_{2}\right), 54.8\left(\mathrm{~d}, J_{C-p}=5.7\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 53.9\left(\mathrm{~d}, \mathrm{~J}_{C-p}=5.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 24.4\left(\mathrm{~d}, \mathrm{~J}_{C-p}=4.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 13.4\left(\mathrm{CH}_{3}\right), 13.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right.$, CH_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 7.26-7.21 (m, 2H), $7.04(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.83-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.77(\mathrm{~m}, 8 \mathrm{H}), 2.14-1.99(\mathrm{~m}$, $2 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($\left.161.9 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 20.4$ (s). HRMS for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 370.1414$, found: 370.1408.

Compound 6d: Ethyl 3-(dimethoxyphosphoryl)-4-pentylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a ($54 \mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent 5 a ($75 \mathrm{mg}, 0.50$ $\mathrm{mmol})$ and ethyl octa-2,3-dienoate $3 \mathrm{e}(126 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ $(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 d}$ as liquid ($141 \mathrm{mg}, 71 \%$). \mathbf{R}_{f} (EtOAc/Hexane: 6/4) $=$ 0.44. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 169.0 (d, $\left.\mathrm{J}_{\mathrm{c}-\mathrm{p}}=2.2 \mathrm{~Hz}, \mathrm{C}\right)$, 150.9 ($\mathrm{d}, J_{C-P}=12.4 \mathrm{~Hz}, \mathrm{C}$), 133.2 ($\left.\mathrm{d}, J_{C-P}=2.6 \mathrm{~Hz}, \mathrm{C}\right), 128.7$ (CH), 128.7 (CH), 128.5 (d, $\left.J_{C-p}=7.6 \mathrm{~Hz}, \mathrm{CH}\right), 122.1$ (CH), 114.1 (CH), 114.1 (CH), $78.2\left(\mathrm{~d}, J_{C-p}=2.8 \mathrm{~Hz}, \mathrm{CH}\right), 64.2\left(\mathrm{~d}, J_{C-p}=176.7 \mathrm{~Hz}, \mathrm{CH}\right), 61.6\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{~d}, \mathrm{~J}_{C-p}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $53.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{p}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 31.0\left(\mathrm{~d}, J_{C-p}=2.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right)$, $14.0\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): $7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.02-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.75$ $(\mathrm{m}, 8 \mathrm{H}), 2.05-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 6 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (161.9 MHz , Sppm/ $/ \mathrm{CDCl}_{3}$): 20.4 (s). HRMS for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 398.1727$, found: 398.1724.

Compound 6e: Ethyl 3-(dimethoxyphosphoryl)-4-hexylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a ($54 \mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent $\mathbf{5 a}(75 \mathrm{mg}, 0.50$ mmol) and ethyl nona-2,3-dienoate $\mathbf{3 f}$ ($137 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 e}$ as liquid ($144 \mathrm{mg}, 70 \%$). $\mathbf{R}_{f}(\mathrm{EtOAc} /$ Hexane: $6 / 4)=0.39 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): $169.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{p}}=2.3\right.$ $\mathrm{Hz}, \mathrm{C}), 151.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=12.4 \mathrm{~Hz}, \mathrm{C}\right), 133.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.4 \mathrm{~Hz}, \mathrm{C}\right), 128.7$ (CH), 128.7 (CH), 128.6 (d, J $\left.J_{-p}=7.6 \mathrm{~Hz}, \mathrm{CH}\right), 122.1$ (CH), 114.2 (CH), $114.2(\mathrm{CH}), 78.3\left(\mathrm{~d}, \mathrm{~J}_{C-p}=2.7 \mathrm{~Hz}, \mathrm{CH}\right), 64.3\left(\mathrm{~d}, \mathrm{~J}_{C-p}=176.6 \mathrm{~Hz}, \mathrm{CH}\right), 61.7\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{~d}, \mathrm{~J}_{C-p}=7.2\right.$ $\mathrm{Hz}, \mathrm{CH}_{3}$), $54.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.9 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2}\right)$, $22.6\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}\right): 7.26-7.21(\mathrm{~m}, 2 \mathrm{H})$, $7.04(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=10.0$ $\mathrm{Hz}, 1 \mathrm{H})$, 3.93-3.75 (m, 8H), 2.06-2.01 (m, 2H), 1.41-1.36 (m, 2H), 1.28-1.25 (m, 4H), 0.92-0.84 ($\mathrm{m}, 6 \mathrm{H}$). ${ }^{31}$ P NMR ($161.9 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 20.4 (s$)$. HRMS for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}$: 412.1884, found: 412.1882.

Compound 6f: Ethyl 3-(dimethoxyphosphoryl)-4-heptylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent $\mathbf{5 a}(75 \mathrm{mg}, 0.50 \mathrm{mmol})$ and ethyl deca-2,3-dienoate $\mathbf{3 g}$ ($147 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 f}$ as liquid ($149 \mathrm{mg}, 70 \%$). $\mathbf{R}_{f}($ EtOAc/Hexane: $6 / 4)=0.56 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 169.0 (C), 150.9 (d, $J_{C-P}=12.4 \mathrm{~Hz}, \mathrm{C}$), 133.1 (C), 128.7 (CH), 128.7 (CH), 128.5 (d, $\left.J_{C-p}=7.6 \mathrm{~Hz}, \mathrm{CH}\right), 122.0$ (CH), $114.1(\mathrm{CH}), 114.1(\mathrm{CH}), 78.2\left(\mathrm{~d}, J_{C-p}=2.8 \mathrm{~Hz}, \mathrm{CH}\right), 64.2\left(\mathrm{~d}, \mathrm{~J}_{C-p}=176.7 \mathrm{~Hz}, \mathrm{CH}\right), 61.6\left(\mathrm{CH}_{2}\right)$, $54.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-p}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 53.9\left(\mathrm{~d}, \mathrm{~J}_{C-p}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 31.7\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 28.8$ $\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right), 13.4\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 7.26-7.21 (m, 2H), $7.03(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=9.6$ $\mathrm{Hz}, 1 \mathrm{H})$, 3.90-3.78 (m, 8H), 2.07-1.99 (m, 2H), 1.40-1.36 (m, 2H), 1.29-1.21 (m, 6H), 0.91-0.84 ($\mathrm{m}, 6 \mathrm{H}$). ${ }^{31}$ P NMR ($161.9 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 20.4 (s$)$. HRMS for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}$: 426.2040, found: 426.2040 .

Compound 6g: Ethyl 3-(dimethoxyphosphoryl)-2-phenyl-4-(2-phenylethylidene)isoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene 1a ($54 \mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent 5 a ($75 \mathrm{mg}, 0.50$ mmol) and ethyl 5 -phenylpenta-2,3-dienoate $\mathbf{3 i}$ ($152 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 g}$ as liquid ($129 \mathrm{mg}, 60 \%$). \mathbf{R}_{f} (EtOAc/Hexane: 6/4) $=0.52 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 168.9 ($\mathrm{d}, \mathrm{J}_{C-p}=2.1 \mathrm{~Hz}, \mathrm{C}$), 150.9 ($\left.\mathrm{d}, \mathrm{J}_{C-p}=12.5 \mathrm{~Hz}, \mathrm{C}\right), 138.8\left(\mathrm{~d}, \mathrm{~J}_{C-p}=2.8 \mathrm{~Hz}\right.$, C), 134.7 (d, J $\mathrm{C}_{-\mathrm{p}}=2.7 \mathrm{~Hz}, \mathrm{C}$), 128.8 (CH), 128.8 (CH), 128.7 (CH), 128.7 (CH), 128.4 (CH), 128.4 (CH), $126.6(\mathrm{CH}), 126.5\left(\mathrm{~d}, J_{C-p}=7.6 \mathrm{~Hz}, \mathrm{CH}\right), 122.3(\mathrm{CH}), 114.3(\mathrm{CH})$, $114.3(\mathrm{CH}), 78.2\left(\mathrm{~d}, \mathrm{~J}_{c-p}=2.7 \mathrm{~Hz}, \mathrm{CH}\right), 64.4\left(\mathrm{~d}, J_{C-p}=176.8 \mathrm{~Hz}, \mathrm{CH}\right), 61.8\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{~d}, J_{c-p}=7.1\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 54.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 36.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 13.5\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Sppm $/ \mathrm{CDCl}_{3}$): 7.28-7.19 (m, 5H), $7.15(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.25-6.20(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 8 \mathrm{H}), 3.46-3.40$, $(\mathrm{m}, 2 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($161.9 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 20.3 (s). HRMS for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. [M+H] ${ }^{+}$: 432.1571, found: 432.1569.

Compound 6h: Ethyl 3-(dimethoxyphosphoryl)-4-(2-methylpropylidene)-2-phenylisoxazolidine-5-carboxylate

Following the general procedure, treatment of nitrosobenzene 1a ($54 \mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent 5 ($75 \mathrm{mg}, 0.50$ mmol) and ethyl 5 -methylhexa-2,3-dienoate $\mathbf{3 h}$ ($116 \mathrm{mg}, 0.75$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 h}$ as liquid ($105 \mathrm{mg}, 55 \%$). $\mathrm{R}_{f}\left(\right.$ EtOAc/Hexane: 6/4) $=0.44 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): $169.1\left(\mathrm{~d}, J_{C-p}=2.1 \mathrm{~Hz}, \mathrm{C}\right), 150.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=12.3 \mathrm{~Hz}, \mathrm{C}\right), 134.7\left(\mathrm{~d}, \mathrm{~J}_{C-p}=\right.$ $7.6 \mathrm{~Hz}, \mathrm{CH}), 130.9$ (d, $\left.\mathrm{J}_{\mathrm{c}-\mathrm{p}}=2.4 \mathrm{~Hz}, \mathrm{C}\right), 128.7$ (CH), 128.7 (CH), 122.0 (CH), 114.1 (CH), 114.1 (CH), 77.9 (d, $\left.J_{C-p}=2.9 \mathrm{~Hz}, \mathrm{CH}\right), 64.1\left(\mathrm{~d}, \mathrm{~J}_{C-p}=176.6 \mathrm{~Hz}, \mathrm{CH}\right), 61.6\left(\mathrm{CH}_{2}\right)$, $54.7\left(\mathrm{~d}, J_{c-p}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 54.0\left(\mathrm{~d}, J_{C-p}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 31.1\left(\mathrm{~d}, J_{c-p}=2.4 \mathrm{~Hz}, \mathrm{CH}\right), 22.5\left(\mathrm{~d}, J_{C-p}=\right.$ $\left.3.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 21.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{p}}=2.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 7.26-7.12$ $(\mathrm{m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.72(\mathrm{~m}, 8 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.87(\mathrm{~m}$, 6 H). ${ }^{31} \mathrm{P}$ NMR ($161.9 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 20.3 (s). HRMS for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$: 384.1571, found: 384.1576.

Compound 6i: Methyl 3-(dimethoxyphosphoryl)-4-ethylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a ($54 \mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent 5 a ($75 \mathrm{mg}, 0.50$ mmol) and methyl penta-2,3-dienoate $3 \mathrm{k}(84 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 i}$ as liquid ($102 \mathrm{mg}, 60 \%$). \mathbf{R}_{f} (EtOAc/Hexane: $6 / 4)=0.23 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): $169.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{p}}=2.2\right.$ $\mathrm{Hz}, \mathrm{C}), 150.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}, \mathrm{C}\right), 134.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}, \mathrm{C}\right), 128.8$ $(\mathrm{CH}), 128.8(\mathrm{CH}), 123.2\left(\mathrm{~d}, J_{C-p}=7.7 \mathrm{~Hz}, \mathrm{CH}\right), 122.4(\mathrm{CH}), 114.4(\mathrm{CH})$, $114.4(\mathrm{CH}), 77.9\left(\mathrm{~d}, J_{C-p}=2.8 \mathrm{~Hz}, \mathrm{CH}\right), 64.5\left(\mathrm{~d}, J_{C-p}=176.5 \mathrm{~Hz}, \mathrm{CH}\right), 54.7\left(\mathrm{~d}, J_{C-p}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $53.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=8.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 52.3\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(400 \mathrm{MHz}$, Sppm/CDCl $)_{3}$: 7.27-7.23 (m, 2H), $7.05(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.07(\mathrm{~m}$, $1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.83-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.47(\mathrm{~s}$, 3H), 1.73-1.67 (m, 3H). ${ }^{31}$ P NMR ($161.9 \mathrm{MHz}, \delta p p m / C D C l_{3}$): 20.4 (s). HRMS for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. [M+H]+: 342.1101, found: 342.1112.

Compound 6j: t-Butyl 3-(dimethoxyphosphoryl)-4-ethylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a ($54 \mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent 5 ($75 \mathrm{mg}, 0.50$ mmol) and t-butyl penta-2,3-dienoate $\mathbf{3 m}$ ($116 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 6 j as liquid ($115 \mathrm{mg}, 60 \%$). M.P $125-127^{\circ} \mathrm{C}$. \mathbf{R}_{f} (EtOAc/Hexane: 6/4) $=0.32 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): $168.0\left(\mathrm{~d}, \mathrm{~J}_{C-p}=2.1 \mathrm{~Hz}, \mathrm{C}\right), 151.0\left(\mathrm{~d}, \mathrm{~J}_{C-p}=12.1 \mathrm{~Hz}, \mathrm{C}\right), 135.1\left(\mathrm{~d}, \mathrm{~J}_{C-p}=\right.$ $2.7 \mathrm{~Hz}, \mathrm{C}), 128.8$ (CH), 128.8 (CH), 122.2 (d, $\left.\mathrm{J}_{--p}=7.6 \mathrm{~Hz}, \mathrm{CH}\right), 121.8$ (CH), 114.3 (CH), 114.3 (CH), $82.4(\mathrm{C}), 79.7\left(\mathrm{~d}, J_{C-p}=2.9 \mathrm{~Hz}, \mathrm{CH}\right), 64.0\left(\mathrm{~d}, J_{C-p}=176.9 \mathrm{~Hz}, \mathrm{CH}\right)$, $54.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{p}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 53.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{3}\right), 16.0$ ($d, J=2.9 \mathrm{~Hz}, \mathrm{CH}_{3}$). ${ }^{1 \mathbf{H}}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): $7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.80-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=5.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (161.9 MHz , סppm/ CDCl_{3}): 20.4 (s). HRMS for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. [M+H]+: 384.1571, found: 384.1570.

Compound 6k: Benzyl 3-(dimethoxyphosphoryl)-4-ethylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent 5 a ($75 \mathrm{mg}, 0.50 \mathrm{mmol}$) and benzyl penta-2,3-dienoate $\mathbf{3 1}(141 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ (2 mL) at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 k}$ as liquid ($127 \mathrm{mg}, 61 \%$). \mathbf{R}_{f} (EtOAc/Hexane: 6/4) $=0.36$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 168.6 ($\left.\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{p}}=2.2 \mathrm{~Hz}, \mathrm{C}\right), 150.7$ (d , $\left.J_{C-P}=12.8 \mathrm{~Hz}, \mathrm{C}\right), 134.9$ (C), 134.1 ($\left.\mathrm{d}, J_{C-p}=2.9 \mathrm{~Hz}, \mathrm{C}\right), 128.8(\mathrm{CH}), 128.8$ (CH), 128.6 (CH), 128.6 (CH), 128.5 (CH), 128.5 (CH), 128.5 (CH), 123.3 (d, $\left.J_{C-p}=7.8 \mathrm{~Hz}, \mathrm{CH}\right)$, $122.4(\mathrm{CH}), 114.4(\mathrm{CH}), 114.4(\mathrm{CH}), 78.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.8 \mathrm{~Hz}, \mathrm{CH}\right), 67.4\left(\mathrm{CH}_{2}\right), 64.6\left(\mathrm{~d}, J_{C-p}=176.6\right.$ $\mathrm{Hz}, \mathrm{CH}), 54.8\left(\mathrm{~d}, \mathrm{~J}_{c-p}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 53.9\left(\mathrm{~d}, \mathrm{~J}_{c-p}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, \mathrm{~J}_{c-p}=3.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 7.30-7.26 (m, 3H), 7.21-7.17 (m, J = 8.0 Hz, 2H), 7.09-7.03 (m, $4 \mathrm{H}), 6.93(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.78$ $(\mathrm{m}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.66(\mathrm{~m}$, 3H). ${ }^{31}$ P NMR ($161.9 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 20.4 (s). HRMS for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$: 418.1414, found: 418.1415.

Compound 6I: Methyl 3-(diisopropoxyphosphoryl)-4-ethylidene-2-phenylisoxazolidine-5carboxylate

Following the general procedure, treatment of nitrosobenzene 1a ($54 \mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent 5 b (103 mg , 0.50 mmol) and methyl penta-2,3-dienoate 3 j ($84 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 k}$ as liquid ($119 \mathrm{mg}, 60 \%$). R_{f} (EtOAc/Hexane: 6/4) $=0.56 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 169.4 (C), 151.1 ($\left.\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=13.2 \mathrm{~Hz}, \mathrm{C}\right), 134.6\left(\mathrm{~d}, J_{C-p}=2.4 \mathrm{~Hz}, \mathrm{C}\right)$, 128.6 (CH), 128.6 (CH), 122.6 (d, J $\left.\mathrm{J}_{-\mathrm{p}}=7.7 \mathrm{~Hz}, \mathrm{CH}\right), 122.1$ (CH), 114.5 (CH), 114.5 (CH), 77.9 (d, $\left.J_{C-p}=1.8 \mathrm{~Hz}, \mathrm{CH}\right), 72.7\left(\mathrm{~d}, J_{C-p}=7.2 \mathrm{~Hz}, \mathrm{CH}\right), 72.1\left(\mathrm{~d}, J_{C-p}=7.7 \mathrm{~Hz}\right.$, $\mathrm{CH}), 65.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=178.6 \mathrm{~Hz}, \mathrm{CH}\right), 52.2\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{~d}, J_{C-p}=2.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 24.2\left(\mathrm{~d}, J_{c-p}=3.1 \mathrm{~Hz}\right.$, CH_{3}), $24.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 23.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=5.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d}, \mathrm{~J}_{C-p}=2.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 7.26-7.20 (m, 2H), 7.06 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.91(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.09-6.05 (m, 1H), $5.13(\mathrm{~s}, 1 \mathrm{H}), 4.87-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.69(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.67$ ($\mathrm{m}, 3 \mathrm{H}$), 1.36-1.32 (m, 9H), $1.26(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31}$ P NMR ($\left.161.9 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 16.9$ (s). HRMS for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. [M+H] ${ }^{+}$: 398.1727, found: 398.1714.

Compound 6m: Diethyl-2-phenyl-4-propylideneisoxazolidine-3,5-dicarboxylate:

Following the general procedure, treatment of nitrosobenzene 1a (54 $\mathrm{mg}, 0.50 \mathrm{mmol}$) with ethyl diazoacetate $5 \mathrm{c}(57 \mathrm{mg}, 0.50 \mathrm{mmol})$ and ethyl hexa-2,3-dienoate $\mathbf{3 c}(105 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at 50 ${ }^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product 6 m as liquid ($50 \mathrm{mg}, 30 \%$). $\mathbf{R}_{f}($ EtOAc/Hexane: $1 / 9)=0.56$. ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}\right): 169.5$ (C), 169.2 (C), 148.9 (C), 135.5 (C), 129.3 (CH), 128.8 (CH), 128.8 (CH), 122.2 (CH), $115.0(\mathrm{CH}), 115.0(\mathrm{CH}), 76.8$ $(\mathrm{CH}), 68.0(\mathrm{CH}), 61.8\left(\mathrm{CH}_{2}\right), 61.7\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right)$, $13.5\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 7.17-7.13 (m, 2H), $6.90(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ (t, J = 8.0 Hz, 1H), 5.75-5.70 (m, 1H), $5.12(\mathrm{~s}, 1 \mathrm{H}), 4.83-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.14-3.96(\mathrm{~m}, 4 \mathrm{H}), 2.11-$ $2.05(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.03(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{5}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}$: 334.1649, found: 334.1651.

Compound 7: Ethyl-2-hydroxy-3-trifluoromethyl-1-(phenylamino)ethyl)pent-3-enoate

A 10 mL round-bottom flask charged with ethyl-4-ethylidene-2-phenyl-3(trifluoromethyl) isoxazolidine-5-carboxylate $\mathbf{4 a}$ ($63 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added Zn dust (260 $\mathrm{mg}, 4.0 \mathrm{mmol}, 20$ equiv) and acetic acid (2 mL). This reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . After completion of the reaction, as indicated by TLC, the reaction mixture was quenched with water and extracted with ethyl acetate. The combine organic layer was washed with saturated solution of NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The residue was purified using column chromatography

(100-200 mesh silica gel) using ethyl acetate/hexane afforded the product $\mathbf{7}$ as liquid (49 mg, 78\%). \mathbf{R}_{f} (EtOAc/Hexane: 3/7) $=0.60 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 173.5 (C), 145.5 (C), 132.0 (CH), 131.0 (C), 129.4 (CH), 129.4 (CH), 125.1 (q, $\left.J_{C-F}=224.1 \mathrm{~Hz}, \mathrm{C}\right), 119.1$ (CH), 113.7 (CH), $113.7(\mathrm{CH}), 68.0(\mathrm{CH}), 62.5\left(\mathrm{CH}_{2}\right) 56.1\left(\mathrm{q}, J_{C-F}=24.2 \mathrm{~Hz}\right.$, $\mathrm{CH}), 14.2\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 7.217.17 (m, 2H), 6.80-6.77 (m, 1H), 6.70-6.67 (m, 2H), 6.16-6.10 (m, 1H), $5.14(\mathrm{~s}, 1 \mathrm{H}), 4.74-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 1.84(\mathrm{~d}, \mathrm{~J}=$ $5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.16(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): -73.4 (s). HRMS for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}$: 318.1312, found: 318.1309.

General procedure for the synthesis of γ-lactam 8

A 10 mL round-bottom flask charged with ethyl-2-phenyl-4-propylidene-3-(trifluoromethyl)isoxazolidine-5-carboxylate $\mathbf{4 c}$ ($66 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added Zn dust (260 $\mathrm{mg}, 4.0 \mathrm{mmol}, 20$ equiv) and acetic acid (2 mL). This reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . After completion of the reaction, as indicated by TLC, the reaction mixture was quenched with water and extracted with ethyl acetate. The combine organic layer was washed with saturated solution of NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The residue was purified using column chromatography (100-200 mesh silica gel) using ethyl acetate/hexane as the eluent.

Compound 8a: 3-Hydroxy-1-phenyl-4-propylidene-5-(trifluoromethyl)pyrrolidin-2-one

Following the general procedure, treatment of ethyl 2-phenyl-4-propylidene-3-(trifluoromethyl)isoxazolidine-5-carboxylate 4c (66 mg, $0.20 \mathrm{mmol})$ with zinc dust $(260 \mathrm{mg}, 4.00 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{COOH}(2 \mathrm{~mL})$ at 50 ${ }^{\circ} \mathrm{C}$ for 2 h followed by column chromatography afforded the product 8 a as white solid ($34 \mathrm{mg}, 60 \%$). Mp 158-160 ${ }^{\circ} \mathrm{C}$. \mathbf{R}_{f} (EtOAc/Hexane: 6/4) $=0.38$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 173.3 (C), 140.6 (C), 136.4 (C), 129.4 (CH), 129.4 (CH), 127.8 (CH), 125.2 (CH), 125.2 (CH), 124.4 (CH), 123.7 (q, $\left.J_{C-F}=280.5 \mathrm{~Hz}, \mathrm{C}\right), 67.8(\mathrm{CH}), 64.0\left(\mathrm{q}, J_{C-F}=31.6 \mathrm{~Hz}, \mathrm{CH}\right), 22.7\left(\mathrm{CH}_{2}\right), 13.6$ $\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 7.45-7.41 (m, 2H), 7.38-7.35 (m, 2H), 7.34-7.30 (m, $1 \mathrm{H}), 6.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-$
$2.35(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): -73.7 (s). HRMS for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}:$286.1049, found: 286.1050 .

Compound 8b: 4-Butylidene-3-hydroxy-1-phenyl-5-(trifluoromethyl)pyrrolidin-2-one

Following the general procedure, treatment of ethyl 4-butylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate 4d ($69 \mathrm{mg}, 0.20$ mmol) with zinc dust ($260 \mathrm{mg}, 4.00 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{COOH}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 2 h followed by column chromatography afforded the product $\mathbf{8 b}$ as white solid ($39 \mathrm{mg}, 65 \%$). Mp 160-162 ${ }^{\circ} \mathrm{C}$. \mathbf{R}_{f} (EtOAc/Hexane: 3/7) $=0.30{ }^{13} \mathbf{C} \mathbf{N M R}$ ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 173.5 (C), 139.1 (C), 136.4 (C), 129.4 (CH), 129.4 (CH), 127.8 (CH), $125.1(\mathrm{CH}), 125.1(\mathrm{CH}), 125.0(\mathrm{CH}), 123.7\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=283.0\right.$ $\mathrm{Hz}, \mathrm{C}), 67.8(\mathrm{CH}), 64.1\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.7 \mathrm{~Hz}, \mathrm{CH}\right), 31.1\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 13.8$ $\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, ~ \delta p p m / \mathrm{CDCl}_{3}\right)$: 7.45-7.41 (m, 2H), 7.38-7.35 (m, 2H), 7.34-7.30 (m, $1 \mathrm{H}), 6.18(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-$ $2.31(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 73.7 (s). HRMS for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 300.1206$, found: 300.1202.

Compound 8c: 4-Heptylidene-3-hydroxy-1-phenyl-5-(trifluoromethyl)pyrrolidin-2-one

Following the general procedure, treatment of ethyl 4-heptylidene-2-phenyl-3-(trifluoromethyl)isoxazolidine-5-carboxylate 4 g ($77 \mathrm{mg}, 0.20$ mmol) with zinc dust ($260 \mathrm{mg}, 4.00 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{COOH}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 2 h followed by column chromatography afforded the product $\mathbf{8 c}$ as white solid ($47 \mathrm{mg}, 69 \%$). Mp 170-172 ${ }^{\circ} \mathrm{C}$. \mathbf{R}_{f} (EtOAc/Hexane: 3/7) $=0.42{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 173.5 (C), 139.4 (C), 136.4 (C), 129.4 (CH), 129.4 (CH), 127.8 (CH), 125.1 (CH), 125.1 (CH), 124.8 (CH), 123.7 (q, $J_{C-F}=282.0$ $\mathrm{Hz}, \mathrm{C}), 67.8(\mathrm{CH}), 64.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=31.6 \mathrm{~Hz}, \mathrm{CH}\right), 31.7\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.0$ $\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}\right): 7.45-7.41(\mathrm{~m}, 2 \mathrm{H})$, 7.38-7.35 (m, 2H), 7.34-7.30 (m, 1H), $6.17(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=3.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.28 (d, J= $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40-2.31 (m, 2H), 1.53-1.49 (m, 2H), 1.39-1.31 (m, 6H), 0.91$0.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): -73.7 (s$)$. HRMS for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$: calcd. [$\mathrm{M}+\mathrm{H}]^{+}: 342.1675$, found: 342.1674.

Compound 8d: 3-Hydroxy-4-(2-methylpropylidene)-1-phenyl-5-(trifluoromethyl)pyrrolidin-

 2-one
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}$ Mw: 299.2932

Following the general procedure, treatment of ethyl 4-(2-methylpropylidene)-2-phenyl-3-(trifluoromethyl)isoxazolidine-5carboxylate 4 h ($69 \mathrm{mg}, 0.20 \mathrm{mmol}$) with zinc dust ($260 \mathrm{mg}, 4.00 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{COOH}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 2 h followed by column chromatography afforded the product 8d as white solid ($41 \mathrm{mg}, 68 \%$). Mp 200-202 ${ }^{\circ} \mathrm{C} . \mathbf{R}_{f}$ (EtOAc/Hexane: 3/7) = 0.32. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta p p m / D M S O-d_{6}$): 172.9 (C), 142.4 (C), 136.9 (C), 128.7 (CH), 128.7 (CH), $126.5(\mathrm{CH}), 124.5(\mathrm{CH})$, $124.5(\mathrm{CH}), 124.4(\mathrm{CH}), 124.2\left(\mathrm{q}, J_{C-F}=282.3 \mathrm{~Hz}, \mathrm{C}\right), 66.5(\mathrm{CH}), 61.7\left(\mathrm{q}, J_{C-F}\right.$ $=31.3 \mathrm{~Hz}, \mathrm{CH}), 27.9(\mathrm{CH}), 22.6\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \delta p p m / D M S O-d_{6}\right): 7.50-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, \mathrm{~J}=$ $10 \mathrm{~Hz}, 1 \mathrm{H}), 5.69\left(\mathrm{q}, J_{C-F}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.71(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.02 (d, J = $2.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \delta p p m / D M S O-d_{6}$): -72.3 HRMS for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 300.1206$, found: 300.1207.
Compound 8e: Dimethyl (4-hydroxy-5-oxo-3-pentylidene-1-phenylpyrrolidin-2yl)phosphonate

Mw: 353.3548

Following the general procedure, treatment of ethyl 3-(dimethoxyphosphoryl)-4-pentylidene-2-phenylisoxazolidine-5carboxylate 6d ($79 \mathrm{mg}, 0.20 \mathrm{mmol}$) with zinc dust ($260 \mathrm{mg}, 4.00$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{COOH}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 2 h followed by column chromatography afforded the product $8 \mathbf{e}$ as white solid ($35 \mathrm{mg}, 50 \%$). Mp 112-115 ${ }^{\circ} \mathrm{C} . \mathbf{R}_{f}$ (EtOAc/Hexane: 6/4) $=0.32 .{ }^{13} \mathrm{C}$ NMR (100 MHz , Sppm/CDCl ${ }_{3}$): 172.6 (C), 137.1 (C), 136.1 (d, $\left.J_{C-p}=8.9 \mathrm{~Hz}, \mathrm{C}\right), 129.1$ (CH), 129.1 (CH), 127.5 (d, J $J_{C-P}=7.2 \mathrm{~Hz}, \mathrm{CH}$), 126.7 (CH), 123.8 (CH), $123.8(\mathrm{CH}), 68.8(\mathrm{CH}), 60.7\left(\mathrm{~d}, J_{C-p}=155.2 \mathrm{~Hz}, \mathrm{CH}\right), 54.1\left(\mathrm{~d}, J_{C-p}=7.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 53.8\left(\mathrm{~d}, J_{C-p}=7.4\right.$ $\mathrm{Hz}, \mathrm{CH}_{3}$), $31.4\left(\mathrm{~d}, J_{C-P}=3.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\delta p p m / C D C l_{3}\right): 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, 6.05-6.00 (m, 1H), $4.97(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (161.9 MHz, $\delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): $24.0(\mathrm{~s}) . \mathrm{HRMS}$ for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{P}^{+}$: calcd. $[\mathrm{M}+\mathrm{H}]^{+}: 354.1465$, found: 354.1465.

Compound 8f: Dimethyl (3-hexylidene-4-hydroxy-5-oxo-1-phenylpyrrolidin-2yl)phosphonate

Following the general procedure, treatment of ethyl 3-(dimethoxyphosphoryl)-4-hexylidene-2-phenylisoxazolidine-5carboxylate 6 e ($82 \mathrm{mg}, 0.20 \mathrm{mmol}$) with zinc dust ($260 \mathrm{mg}, 4.00 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{COOH}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 2 h followed by column chromatography afforded the product 8 f as white solid ($43 \mathrm{mg}, 58 \%$). Mp 110-115 ${ }^{\circ} \mathrm{C} . \mathbf{R}_{f}$ (EtOAc/Hexane: 6/4) $=0.36 .{ }^{13} \mathrm{C} \mathbf{N M R}(100 \mathrm{MHz}$, סppm/CDCl ${ }_{3}$): 172.6 (C), 137.1 (C), 136.2 (d, $\left.\mathrm{J}_{\mathrm{c}-\mathrm{p}}=8.5 \mathrm{~Hz}, \mathrm{C}\right), 129.1$ (CH), 129.1 (CH), 127.4 (d, $\left.J_{C-p}=8.6 \mathrm{~Hz}, \mathrm{CH}\right), 126.6$ (CH), 123.8 (CH), 123.8 (CH), $68.8(\mathrm{CH}), 60.7\left(\mathrm{~d}, \mathrm{~J}_{C-p}=155.0 \mathrm{~Hz}, \mathrm{CH}\right), 54.1\left(\mathrm{~d}, \mathrm{~J}_{C-p}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 53.8\left(\mathrm{~d}, \mathrm{~J}_{C-p}=6.7 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\delta p p m / C D C l_{3}\right): 7.51(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.05-6.00(\mathrm{~m}$, $1 \mathrm{H}), 4.97$ (d, J = $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.67 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 3 \mathrm{H}), 3.27(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.34-2.32(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.33(\mathrm{~m}, 4 \mathrm{H}), 0.91-$ 0.88 ($\mathrm{m}, 3 \mathrm{H}$). ${ }^{31} \mathrm{P}$ NMR ($161.9 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 24.0 (s). HRMS for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{P}^{+}$: calcd. [$\mathrm{M}+\mathrm{H}]^{+}: 368.1621$, found: 368.1620.

Compound 8g: Dimethyl (3-heptylidene-4-hydroxy-5-oxo-1-phenylpyrrolidin-2yl)phosphonate

Following the general procedure, treatment of ethyl 3-(dimethoxyphosphoryl)-4-heptylidene-2-phenylisoxazolidine-5carboxylate $6 \mathrm{f}(85 \mathrm{mg}, 0.20 \mathrm{mmol}$) with zinc dust ($260 \mathrm{mg}, 4.00 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{COOH}(2 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 2 h followed by column chromatography afforded the product $\mathbf{8 g}$ as white solid ($40 \mathrm{mg}, 52 \%$). Mp 120-122 ${ }^{\circ} \mathrm{C} . \mathbf{R}_{f}$ (EtOAc/Hexane: 6/4) $=0.36 .{ }^{13} \mathrm{C}$ NMR (100 MHz , סppm/CDCl ${ }_{3}$): 172.6 (C), 137.1 (C), 136.2 (d, JC-p $\left.=7.1 \mathrm{~Hz}, \mathrm{C}\right), 129.1$ (CH), 129.1 (CH), 127.5 (d, $\left.J_{C-p}=5.5 \mathrm{~Hz}, \mathrm{CH}\right), 126.7$ (CH), 123.8 (CH), $123.8(\mathrm{CH}), 68.9(\mathrm{CH}), 60.7\left(\mathrm{~d}, J_{C-p}=124.0 \mathrm{~Hz}, \mathrm{CH}\right), 54.1\left(\mathrm{~d}, J_{C-p}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 53.5\left(\mathrm{~d}, J_{C-p}=7.7\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 22.7$ $\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): $7.51(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.05-6.00(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.70(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 3 \mathrm{H}$), $3.28(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 3 \mathrm{H}$), 2.38-2.31(m,2H), 1.51$1.25(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($161.9 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): $24.0(\mathrm{~s})$. HRMS for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{P}^{+}$: calcd. [$\left.\mathrm{M}+\mathrm{H}\right]^{+}: 382.1776$, found: 382.1776.

Compound 8h: Dimethyl (4-hydroxy-3-(2-methylpropylidene)-5-oxo-1-phenylpyrrolidin-2yl)phosphonate

Following the general procedure, treatment of ethyl 3-(dimethoxyphosphoryl)-4-(2-methylpropylidene)-2-phenylisoxazolidine-5-carboxylate $6 \mathrm{~h}(77 \mathrm{mg}, 0.20 \mathrm{mmol})$ with zinc dust ($260 \mathrm{mg}, 4.00 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{COOH}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 2 h followed by column chromatography afforded the product $\mathbf{8 h}$ as white solid (38 mg, 56\%). Mp 120-122 ${ }^{\circ} \mathrm{C} . \mathbf{R}_{f}$ (EtOAc/Hexane: 6/4) $=0.24 .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \delta p p m / C D C l_{3}\right): 172.5(\mathrm{C}), 142.7\left(\mathrm{~d}, J_{C-p}=8.8 \mathrm{~Hz}, \mathrm{C}\right), 137.1$ $(\mathrm{C}), 129.1(\mathrm{CH}), 129.1(\mathrm{CH}), 126.7(\mathrm{CH}), 125.5\left(\mathrm{~d}, J_{C-P}=6.9 \mathrm{~Hz}, \mathrm{CH}\right)$, $123.8(\mathrm{CH}), 123.8(\mathrm{CH}), 68.9(\mathrm{CH}), 60.7\left(\mathrm{~d}, J_{C-p}=155.1 \mathrm{~Hz}, \mathrm{CH}\right), 54.4\left(\mathrm{~d}, J_{C-p}=7.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 53.7$ (d, J $J_{C-p}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}$), $28.8\left(\mathrm{~d}, J_{C-p}=2.5 \mathrm{~Hz}, \mathrm{CH}\right.$), $23.1\left(\mathrm{~d}, J_{C-p}=4.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 22.5\left(\mathrm{~d}, J_{C-p}=2.8 \mathrm{~Hz}\right.$, CH_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 7.52-7.50 (m, 2H), 7.42-7.38 (m, 2H), 7.26-7.22 (m, $1 \mathrm{H}), 5.85-5.80(\mathrm{~m}, 1 \mathrm{H}), 4.94-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.07(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (161.9 MHz, $\left.\delta p p m / \mathrm{CDCl}_{3}\right): 24.2$ (s). HRMS for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{P}^{+}$: calcd. [M+H]+: 340.1308, found: 340.1313.

X-ray data collection and structure refinement details of compound 4m:

A good quality colorless single crystal of size $0.20 \times 0.14 \times 0.07 \mathrm{~mm}$, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal Xray data for compound 4 m were collected on the Rigaku Kappa 3 circle diffractometer equipped with the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4×4 bin mode using the monochromated Mo-K α radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω-scans of 0.5° steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku CrystalClear-SM Expert 2.1 b24 software. Structure solution and refinement were performed by using SHELXTL-NT. Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model.

Figure S1 ORTEP diagram drawn with 30% ellipsoid probability for non-H atoms of the crystal structure of compound $\mathbf{4 m}$ determined at 293 K .

Table S2: Crystal data and structure refinement details for compound $\mathbf{4 m}$

Compound	$\mathbf{4 m}$
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N} \mathrm{O}_{3}$
Formula weight	343.34
Crystal System	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$
$a(\AA \AA)$	$11.431(6)$
$b(\AA \AA)$	$5.931(3)$
$c(\AA \AA)$	$25.849(14)$
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	$94.751(10)$
$\gamma\left({ }^{\circ}\right)$	90.00
$V\left(\AA^{3}\right)$	$1746.5(16)$
Z	4
$D_{c}\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$	1.306
F_{000}	720
$\mu\left(\mathrm{~mm} \mathrm{~m}^{-1}\right)$	0.110
$\theta_{\text {max }}\left({ }^{\circ}\right)$	25.40
Total reflections	8980
Unique reflections	3036
Reflections $[I>2 \sigma(I)]$	1522
Parameters	217
R int	0.0595
Goodness-of-fit	0.912
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.0596
$w R\left(F^{2}\right.$, all data)	0.1776
$C C D C$ No.	1857117

X-ray data collection and structure refinement details of compound 8a:

A good quality colorless single crystal of size $0.52 \times 0.10 \times 0.08 \mathrm{~mm}$, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal Xray data for compound 8a were collected on the Rigaku Kappa 3 circle diffractometer equipped with the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4×4 bin mode using the monochromated Mo-Ka radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω-scans of 0.5° steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku CrystalClear-SM Expert 2.1 b24 software. Structure solution and refinement were performed by using SHELXTL-NT. Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model.

Figure S2 ORTEP diagram drawn with 30% ellipsoid probability for non-H atoms of the crystal structure of compound 8a determined at 293 K .

Table S3 Crystal data and structure refinement details for compound 8a

Compound	8a
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2}$
Formula weight	285.26
Crystal System	Triclinic
Space group	$P-1$
$a(\AA \AA)$	$11.218(3)$
$b(\AA \AA)$	$12.296(3)$
$c(\AA)$	$16.820(5)$
$\alpha\left({ }^{\circ}\right)$	$108.32(2)$
$\beta\left({ }^{\circ}\right)$	$101.98(3)$
$\nu\left({ }^{\circ}\right)$	$102.65(2)$
$V\left(\AA^{3}\right)$	$2051.1(10)$
Z	6
$D_{\mathrm{c}}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.386
F_{000}	888
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	0.120
$\theta_{\text {max }}\left({ }^{\circ}\right)$	25.44
Total reflections	9236
Unique reflections	5731
Reflections $[I>2 \sigma(I)]$	1340
Parameters	545
R int	0.0800
Goodness-of-fit	0.595
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.0555
$w R\left(F^{2}\right.$, all data $)$	0.1588
CCDC No.	1857118

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{gathered} -100 \\ \mathrm{f}_{1}(\mathrm{ppm}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

20,

$\begin{aligned} & \widetilde{(0} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\oplus}{\square} \end{aligned}$		 	 いに	$\stackrel{\text { B }}{\text { + }}$

$\stackrel{\stackrel{5}{8}}{\stackrel{8}{4}}$

$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{i} \end{aligned}$	$\begin{aligned} & \text { og } \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{\text { ल. }}{\sim}$	$\begin{aligned} & \overline{6} \\ & \stackrel{1}{0} \\ & \stackrel{1}{1} \end{aligned}$		

$--74.467$

\qquad

mon
mon

-115.006

(

[^1]

[^0]:

 Following the general procedure, treatment of nitrosobenzene 1a ($54 \mathrm{mg}, 0.50 \mathrm{mmol}$) with Seyferth-Gilbert reagent $\mathbf{5 a}(75 \mathrm{mg}, 0.50$ mmol) and ethyl hepta-2,3-dienoate 3d ($116 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 12 h followed by column chromatography afforded the product $\mathbf{6 a}$ as liquid ($134 \mathrm{mg}, 70 \%$). $\mathbf{R}_{f}(\mathrm{EtOAc} /$ Hexane: $6 / 4)=0.19 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \delta \mathrm{ppm} / \mathrm{CDCl}_{3}$): 169.0 (C), 150.9 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}}$ $p=12.5 \mathrm{~Hz}, \mathrm{C}), 133.4\left(\mathrm{~d}, J_{C-p}=2.5 \mathrm{~Hz}, \mathrm{C}\right), 128.7(\mathrm{CH}), 128.7(\mathrm{CH}), 128.3$ (d, $\left.J_{C-p}=7.5 \mathrm{~Hz}, \mathrm{CH}\right), 122.0(\mathrm{CH}), 114.1$ (CH), 114.1 (CH), 78.2 (d, J_{C-P} $=2.7 \mathrm{~Hz}, \mathrm{CH}), 64.2\left(\mathrm{~d}, \mathrm{~J}_{c-p}=176.7 \mathrm{~Hz}, \mathrm{CH}\right), 61.6\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{p}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 53.9\left(\mathrm{~d}, \mathrm{~J}_{c-p}=\right.$ $\left.7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 32.8\left(\mathrm{CH}_{2}\right) 22.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right), 13.4\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, סppm/CDCl 3): $7.24(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.99$ $(\mathrm{m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.74(\mathrm{~m}, 8 \mathrm{H}), 2.02-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.39$ ($\mathrm{m}, 2 \mathrm{H}$), 0.90-0.86 (m, 6H). ${ }^{31} \mathrm{P}$ NMR ($161.9 \mathrm{MHz}, \delta p p m / \mathrm{CDCl}_{3}$): 20.4 (s). HRMS for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{P}^{+}$: calcd. [M+H] ${ }^{+}$: 384.1571, found: 384.1570.

[^1]:

