Supporting Information

Prussian blue-derived synthesis of uniform nanoflakesassembled NiS₂ hierarchical microspheres as highly efficient electrocatalysts in dye-sensitized solar cells

Shoushuang Huang, ^a Haitao Wang, ^a Yang Zhang, ^b Shangdai Wang, ^a Zhiwen Chen, ^{a*} Zhangjun Hu, ^a and Xuefeng Qian*^b

^a School of Environmental and Chemical Engineering, Shanghai University, Shanghai,

200444, China.

^b Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.

Fig. S1 SEM images of the as-obtained products with $Ni(NO_3)_2$ and $Ni(CH_3COO)_2$ as nickel source.

Fig. S2 SEM images of the as-obtained products with different reaction temperature: (a) 60°C; (b) 100°C; (c) 140°C and (d) 180°C.

Fig. S3 SEM images of the as-obtained products with different reaction solvent: (a)30 mL ethanol + 60 mL water; (b) 60 mL ethanol + 30 mL water; (c) pure water.

Fig. S4 XRD pattern of the as-obtained samples with different reaction time: (a) 0.5

hour; (b) 1.0 hour; (c) 1.5 hour and (d) 10 hour.

Fig. S5 EDX spectra of the as-obtained products after reaction for 1.5 h.

Fig. S6 Nitrogen adsorption/desorption isotherms of the as-synthesized 3D hierarchical

NiS₂ microspheres (a) and irregular NiS₂ nanoparticles (b).

Fig. S7 CV curves of the NiS₂ NSs CE at different scan rate; (b) the relationship between the peak current density and the square root of scanning rate of NiS₂ NSs CEs.

CEs	Number	V _{oc}	J _{sc}	FF	η
		[mV]	[mA/cm ²]		[%]
NiS ₂ MSs	1#	746	16.23	0.70	8.48
	2#	762	15.93	0.71	8.62
	3#	749	16.27	0.70	8.53
	4#	744	16.32	0.69	8.38
	5#	740	16.29	0.70	8.44
	6#	748	16.07	0.69	8.29
	Average	745	16.28	0.70	8.46
	SD	3.775	0.038	0.005	0.063
NiS ₂ NPs	1#	747	15.29	0.68	7.76
	2#	745	15.22	0.68	7.71
	3#	738	15.36	0.70	7.94
	4#	742	15.27	0.69	7.82
	5#	748	15.13	0.67	7.58
	6#	746	15.28	0.68	7.75
	Average	745	15.27	0.68	7.76
	SD	2.161	0.031	0.004	0.040
Pt	1#	741	15.75	0.69	8.05
	2#	735	15.51	0.70	7.98
	3#	744	15.76	0.69	8.09
	4#	747	15.56	0.70	8.14
	5#	737	15.52	0.68	7.89
	6#	742	15.64	0.69	8.03
	Average	741	15.66	0.70	8.04
	SD	3.873	0.116	0.005	0.046

Tab S1. Photovoltaic performances of DSSCs with different CEs under AM1.5G illumination.

The average value of PCE is determined by ignoring one largest and one smallest value.

SD: standard deviation

Fig. S8 Nyquist plots of complete DSSCs under illumination of 100 mW cm⁻² with a bias voltage of V_{oc} . The inset shows the relevant equivalent circuit mode by the Zview software.

Fig. S9 100 consecutive CVs of NiS₂ NSs CE with a scan rate of 50 mV s⁻¹ in 10 mM LiI, 1 mM I₂, and 0.1 M LiClO₄ acetonitrile.

Fig. S10 Nyquist plots of EIS for the symmetrical cells with Pt (a) and (b) NiS₂ MSs CEs. The cell was first subjected to CV scanning from 0 to 1 V and then from -1 to 0 V with a scan rate of 100 mV s⁻¹, followed by 60 s relaxation at 0 V, and then EIS measurement at 0 V from 0.1 Hz to 1 M Hz was performed. This sequential electrochemical test was repeated for10 times.