Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Cobalt metal-mixed organic complex-based hybrid micromaterials:

ratiometric detection of cyanide

Hai-Bo Liu,* He-Song Han, Bin Lan, Dong-Mei Xiao, Jing Liang, Zi-Ying Zhang and Jing Wang*

School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China E-mail: lwllhb@gxu.edu.cn (H. B. Liu); wjwyj82@gxu.edu.cn (J. Wang)

Table S1 Comparison of a few recent examples for CN⁻ sensors based on organicmetal complexes

Complex	Mechanism	Specificity	Detection mode	Detection limit	pН	Ref.
	Strategy (iii)	CN-	A456nm/A537nm	1.8 μM	2.5–9.5	This work
	Strategy (iii)	CN⁻	A450nm, A517nm	10 μM	_	1
N N N N N N O N O O O O O O O O	Strategy (iii)	HCO3-	F _{616nm}	-	7.5	2

$\left(\begin{array}{c} 1\\ -N\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Strategy (iii)	NO	F _{505nm}	50-100 μM	_	2
E ₁₂ N O O O C C O O O O O O O O O O O O O O	Strategy (ii)	CN ⁻ (no study for S ²⁻)	F _{460nm}	-	-	3
	Strategy (ii)	CN⁻	A _{562nm} , F _{580nm}	0.14 μM	7.0	4
O CI Zn N	Strategy (ii)	CN⁻	F _{550nm}	30 nm	-	5
$ \begin{array}{c} O \\ H \\$	Strategy (ii)	CN ⁻ (no study for S ²⁻)	F _{600nm} , A495/A325	-	5–11	6
	Strategy (i)	CN⁻	A_{400nm}	4.0 μΜ	_	7
	Strategy (i)	CN [−] (no study for S ²⁻)	F _{748nm}	5 μΜ	2.7–10.4	4

Abbreviations used: A-Absorbance; F-Fluorescence

Strategy (i): "displacement" approach;

Strategy (ii): "binding site-signaling subunit" protocol;

Strategy (iii): partial replacement of the bound ligand/antenna, accompanied by the formation of a new organic-metal-anion adduct;

References

- 1 I. Bhowmick, D. J. Boston, R. F. Higgins, C. M. Klug, M. P. Shores, T. Gupta, *Sens. Actuators B*, 2016, **235**, 325–329.
- 2 Z. Liu, W. He and Z. Guo, Chem. Soc. Rev., 2013, 42, 1568-1600.
- 3 J. Wu, B. Kwon, W. Liu, E. V. Anslyn, P. Wang and J. S. Kim, *Chem. Rev.*, 2015, **115**, 7893–7943.
- 4 F. Wang, L. Wang, X. Chen and J. Yoon, Chem. Soc. Rev., 2014, 43, 4312-4324.
- 5 C. Parthiban, S. Ciattini, L. Chelazzi, K. P. Elango, Sens. Actuators B, 2016, 231, 768-778.
- 6 J. Wang and C.S. Ha, Analyst, 2011, 136, 1627–1631.
- 7 D. Wang, J. Q. Zheng, X. Yan, X. J. Zheng and L. P. Jin, *RSC Adv.*, 2015, 5, 64756–64762
- 8 K. H. Jung and K. H. Lee, Anal. Chem., 2015, 87, 9308-9314
- 9 J. Wang and C.S. Ha, Tetrahedron, 2010, 66, 1846-1851.

Fig. S1 Examples in Table S1 based on strategy (iii).

Fig. S2 FTIR spectra of DHAB, TAC, CoSO₄·7H₂O and complex 1.

Fig. S3 QTOF–MS spectrum of 1 in acetonitrile.

Fig. S4 Powder X-ray diffraction patterns of 1.

Fig. S5 Absorption spectra of DHAB (2×10^{-5} M) and TAC (2×10^{-5} M) in the absence and presence of Co²⁺ (1.0×10^{-4} M), and absorption spectra of complex **1** (2×10^{-5} M) in DMF-HEPES buffer solutions (4/1, v/v, pH 7.0).

Fig. S6 Absorption spectra of **1** (2×10^{-5} M) upon titrating S²⁻ ($0 - 2.0 \times 10^{-3}$ M) (a) and SO₃²⁻ ($0 - 2.0 \times 10^{-3}$ M) (b) in DMF-HEPES buffer solutions (4/1, v/v, pH 7.0).

Fig. S7 Changes in the absorption spectra of **1** upon titrating CN^- (0-2.0×10⁻³ M) at 765 nm, 456 nm and 537 nm in DMF-HEPES buffer solutions (4/1, v/v, pH 7.0).

Fig. S8 (a) Absorption spectra and (b) visual colors of **1** $(2 \times 10^{-5} \text{ M})$ with 10 equivalents of CN⁻ and 20 fold concentrations of other anions with respect to CN⁻, in DMF-HEPES buffer solutions (4/1, v/v, pH 7.0). Blank: **1** in the presence of 10 equivalents of CN⁻.

Fig. S9 Absorption spectra of **1** (2×10^{-5} M) in the absence (a) and presence of 10 equivalents of CN⁻ (b), and (c) absorption spectra of DHAB-Co(II) (2×10^{-5} M/ 2×10^{-5} M) in presence of 10 equivalents of CN⁻, and (d) absorption spectra of TAC (2×10^{-5} M), in DMF-HEPES buffer solutions (4/1, v/v, pH 7.0).

Fig. S10 TLC experiments of 1 with CN^- . The TLC plate was developed by 4:1 petroleum ether/ethyl acetate. Results indicated that TAC was released from complex 1 upon adding CN^- , while the dissociation of DHAB from complex 1 was not observed.

Fig. S11 QTOF–MS spectra of 1 with CN⁻ in acetonitrile.

Fig. S12 QTOF–MS spectra of DHAB in the presence of Co²⁺ and CN⁻ in acetonitrile.

Fig. S13 Schematic illustration of CN⁻ detection using complex 1.