Enhanced physical properties of γ-Al₂O₃-rGO hybrids prepared by solvothermal and hot-press processing

Mujtaba Ikram¹*, Zhuchen Tao¹, Jianglin Ye¹, Hafiz Adil Qayyum², Xuemei Sun ¹ and Jin Xu¹

¹Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, & Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

²Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

*Corresponding author: mujtaba@mail.ustc.edu.cn

Supporting Information

Fig.S1 (a) TGA curves of γ -Al₂O₃-rGO hybrids using calcination time of 1-h, 2-h and 3-h in air atmosphere up to 800°C. Powder colors of Al(O)_x/GO (b) before (c) after calcination at 723 K for 2 h

Fig. S2 (a, c) N₂ adsorption-desorption and pore size distribution curves for pure γ -Al₂O₃ (1-h calcination time) and (b, d) for γ -Al₂O₃-rGO hybrid (1-h calcination time)

Fig.S3 (a) XRD of γ -Al₂O₃-rGO hybrids taken from 500 K to 800 K (b) Average diameter of nano rods (nm) as function of calcination temperature (K) (c-h) TEM images showing variations in diameters of nano rod structures with various calcination temperatures. Units for diameters are in (nm)

Sample Type	BET surface area $[m^2g^{-1}]$				Bulk density [g/cm³]			
Our Method	γ-	γ-Al ₂ O ₃ -	γ-Al ₂ O ₃ -	γ-Al ₂ O ₃ -	γ-	γ-Al ₂ O ₃ -	γ-Al ₂ O ₃ -	γ-Al ₂ O ₃ -
(Solvothermal)	Al ₂ O ₃	rGO	rGO	rGO	Al ₂ O ₃	rGO	rGO	rGO
	(1h	(3h	(2h	(1h	(1h	(3h	(2h	(1h
	C.T)	Calcination	Calcination	Calcination	С.Т)	Calcination	Calcination	Calcination
		Time)	Time)	Time)		Time)	Time)	Time)
	280	361	408	379	2.75	1.61	1.37	0.92
Meso-porous Al ₂ O ₃ - rGO	Al ₂ O ₃		Al ₂ O ₃ -rGO		Al ₂ O ₃		Al ₂ O ₃ -rGO	
	243		327		2.40		1.65	
Core-shell flakes Al ₂ O ₃ -rGO	Al ₂ O ₃		Al ₂ O ₃ -rGO		Al ₂ O ₃		Al ₂ O ₃ -rGO	
	286.62		119.71		2.816		0.003	
In situ deposition Al ₂ O ₃ -rGO	Al ₂ O ₃		Al ₂ O ₃ -rGO		Al ₂ O ₃		Al ₂ O ₃ -rGO	
	N/A		242.4		N/A		N/A	

Table S1. BET surface area and density comparison for γ -Al₂O₃-rGO (1, 2 and 3 h calcination time) and pure γ -Al₂O₃ (1 h calcination time) with previous reports

Fig. S4 TEM morphology of γ -Al₂O₃-rGO nano rods using different calcination time and calcination temp (a-d) 2,3,4 and 5 h at 723 K (e-h) 2,3, 4 and 5 h at 823 K (i-l) 2,3,4 and 5 h at 923 K

Fig. S5 SEM images of hot pressed samples (a) γ -Al₂O₃-rGO (1 h calcination time) (b) γ -Al₂O₃-rGO (2 h calcination time) (c) γ -Al₂O₃-rGO (3 h calcination time) and (d) pure γ -Al₂O₃ (1 h calcination time)

Fig. S6 Young Modulus as function of average aspect ratio of nano rods in hot pressed samples γ -Al₂O₃-rGO hybrids with 1, 2 and 3 h calcination time

References

- A. M. Jastrzębska, J. Karcz, R. Letmanowski, D. Zabost, E. Ciecierska, J. Zdunek, E. Karwowska, M. Siekierski, A. Olszyna and A. Kunicki, *Appl. Surf. Sci.*, 2016, 362, 577–594.
- 2. K. Bhowmik, A. Chakravarty, S. Bysakh and G. De, *Energy Technol.*, 2016, 4, 1409–1419.
- 3. A. M. Jastrzębska, A. R. Olszyna, J. Jureczko and A. Kunicki, *Int. J. Appl. Ceram. Technol.*, 2015, **12**, 522–528.