Supplementary information

Substituted L-tryptophan-L-phenyllactic acid conjugates produced by an endophytic fungus *Aspergillus aculeatus* using an OSMAC approach

Hao Wang ^a, Peter M. Eze ^b, Simon-Patrick Höfert ^c, Christoph Janiak ^c, Rudolf Hartmann ^d, Festus B.C. Okoye ^e, Charles O. Esimone ^b, Raha S. Orfali ^f, Haofu Dai ^g, Zhen Liu ^{a,*}, Peter Proksch ^{a,*}

^aInstitute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany

^bDepartment of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria

^cInstitute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany

^dInstitute of Complex Systems: Structural Biochemistry, Forschungszentrum Juelich, Wilhelm-Johnen-Straße, 52428 Juelich, Germany

^eDepartment of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria

^fDepartment of Pharmacognosy, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia

^gKey Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

Table of Contents

Figure S1. UV spectrum of 1	4
Figure S2. HRESIMS of 1	4
Figure S3. ¹ H NMR (600 MHz, methanol- d_4) spectrum of 1	5
Figure S4. ¹³ C NMR (150 MHz, methanol- d_4) spectrum of 1	5
Figure S5. ¹ H- ¹ H COSY (600 MHz, methanol- d_4) spectrum of 1	6
Figure S6. HSQC (600 and 150 MHz, methanol-d ₄) spectrum of 1	6
Figure S7. HMBC (600 and 150 MHz, methanol- <i>d</i> ₄) spectrum of 1	7
Figure S8. UV spectrum of 2	7
Figure S9. HRESIMS of 2	8
Figure S10. ¹ H NMR (600 MHz, methanol- d_4) spectrum of 2	8
Figure S11. ¹³ C NMR (150 MHz, methanol- d_4) spectrum of 2	9
Figure S12. ¹ H- ¹ H COSY (600 MHz, methanol- d_4) spectrum of 2	9
Figure S13. HSQC (600 and 150 MHz, methanol- d_4) spectrum of 2	10
Figure S14. HMBC (600 and 150 MHz, methanol-d ₄) spectrum of 2	10
Figure S15. UV spectrum of 3	11
Figure S16. HRESIMS of 3	11
Figure S17. ¹ H NMR (600 MHz, methanol- d_4) spectrum of 3	12
Figure S18. ¹³ C NMR (150 MHz, methanol- d_4) spectrum of 3	12
Figure S19. ¹ H- ¹ H COSY (600 MHz, methanol- d_4) spectrum of 3	13
Figure S20. HSQC (600 and 150 MHz, methanol- d_4) spectrum of 3	13
Figure S21. HMBC (600 and 150 MHz, methanol-d ₄) spectrum of 3	14
Figure S22. UV spectrum of 4	14
Figure S23. HRESIMS of 4	15
Figure S24. ¹ H NMR (600 MHz, methanol- d_4) spectrum of 4	15
Figure S25. ¹³ C NMR (150 MHz, methanol- d_4) spectrum of 4	16
Figure S26. ¹ H- ¹ H COSY (600 MHz, methanol- d_4) spectrum of 4	16
Figure S27. HSQC (600 and 150 MHz, methanol- d_4) spectrum of 4	17
Figure S28. HMBC (600 and 150 MHz, methanol- d_4) spectrum of 4	17
Figure S29. UV spectrum of 5	18
Figure S30. HRESIMS of 5	18
Figure S31. ¹ H NMR (600 MHz, methanol- d_4) spectrum of 5	19
Figure S32. ¹³ C NMR (150 MHz, methanol- <i>d</i> ₄) spectrum of 5	19
Figure S33. ¹ H- ¹ H COSY (600 MHz, methanol- d_4) spectrum of 5	20
Figure S34. HSQC (600 and 150 MHz, methanol- d_4) spectrum of 5	20
Figure S35. HMBC (600 and 150 MHz, methanol-d ₄) spectrum of 5	21
Figure S36. UV spectrum of 6	21
Figure S37. HRESIMS of 6	22
Figure S38. ¹ H NMR (700 MHz, methanol- d_4) spectrum of 6	22
Figure S39. ¹ H- ¹ H COSY (700 MHz, methanol- d_4) spectrum of 6	23
Figure S40. HSQC (700 and 175 MHz, methanol- d_4) spectrum of 6	23
Figure S41. HMBC (700 and 175 MHz, methanol- <i>d</i> ₄) spectrum of 6	24
Figure S42. UV spectrum of 7	24

Figure S43. HRESIMS of 7	25
Figure S44. ¹ H NMR (600 MHz, methanol- d_4) spectrum of 7	25
Figure S45. ¹³ C NMR (150 MHz, methanol- d_4) spectrum of 7	26
Figure S46. ¹ H- ¹ H COSY (600 MHz, methanol- d_4) spectrum of 7	26
Figure S47. HSQC (600 and 150 MHz, methanol-d ₄) spectrum of 7	27
Figure S48. HMBC (600 and 150 MHz, methanol- d_4) spectrum of 7	27
Figure S49. UV spectrum of 8	28
Figure S50. HRESIMS of 8	28
Figure S51. ¹ H NMR (600 MHz, methanol- d_4) spectrum of 8	29
Figure S52. ¹³ C NMR (150 MHz, methanol- d_4) spectrum of 8	29
Figure S53. ^{1}H - ^{1}H COSY (600 MHz, methanol- d_{4}) spectrum of 8	
Figure S54. HSQC (600 and 150 MHz, methanol-d ₄) spectrum of 8	30
Figure S55. HMBC (600 and 150 MHz, methanol-d ₄) spectrum of 8	31
Figure S56. UV spectrum of 9	31
Figure S57. HRESIMS of 9	32
Figure S58. ¹ H NMR (600 MHz, methanol- d_4) spectrum of 9	32
Figure S59. $^{1}H^{-1}H COSY (600 \text{ MHz}, \text{ methanol-} d_4)$ spectrum of 9	33
Figure S60. HSQC (600 and 150 MHz, methanol-d ₄) spectrum of 9	33
Figure S61. HMBC (600 and 150 MHz, methanol-d ₄) spectrum of 9	34
Figure S62. UV spectrum of 10	34
Figure S63. HRESIMS of 10	35
Figure S64. ¹ H NMR (600 MHz, methanol- d_4) spectrum of 10	35
Figure S65. $^{1}H^{-1}H COSY (600 \text{ MHz}, methanol-d_{4}) spectrum of 10$	36
Figure S66. HSQC (600 and 150 MHz, methanol- d_4) spectrum of 10	36
Figure S67. HMBC (600 and 150 MHz, methanol-d ₄) spectrum of 10	37
Results of X-ray analysis of compound 1	37
Results of X-ray analysis of compound 2	45

Figure S1. UV spectrum of 1

Figure S2. HRESIMS of 1

Figure S3. ¹H NMR (600 MHz, methanol- d_4) spectrum of 1

Figure S4. ¹³C NMR (150 MHz, methanol-*d*₄) spectrum of **1**

Figure S5. ¹H-¹H COSY (600 MHz, methanol-*d*₄) spectrum of **1**

Figure S6. HSQC (600 and 150 MHz, methanol-d₄) spectrum of 1

Figure S7. HMBC (600 and 150 MHz, methanol-*d*₄) spectrum of 1

Figure S8. UV spectrum of 2

Figure S9. HRESIMS of 2

Figure S10.¹H NMR (600 MHz, methanol- d_4) spectrum of 2

Figure S11. ¹³C NMR (150 MHz, methanol- d_4) spectrum of **2**

Figure S12. ¹H-¹H COSY (600 MHz, methanol- d_4) spectrum of 2

Figure S13. HSQC (600 and 150 MHz, methanol- d_4) spectrum of 2

Figure S14. HMBC (600 and 150 MHz, methanol-d₄) spectrum of 2

 Method
 tune_low_new.m
 Operator
 Peter Tommes

 Sample Name
 Hao Wang AAN-19-5 (CH3OH)
 Instrument
 maXis
 288882.20213

 Comment
 Comment
 Comment
 Comment
 Comment
 Comment

Figure S16. HRESIMS of 3

Figure S17. ¹H NMR (600 MHz, methanol-*d*₄) spectrum of **3**

Figure S18. ¹³C NMR (150 MHz, methanol-*d*₄) spectrum of **3**

Figure S19. ¹H-¹H COSY (600 MHz, methanol- d_4) spectrum of **3**

Figure S20. HSQC (600 and 150 MHz, methanol-*d*₄) spectrum of **3**

Figure S21. HMBC (600 and 150 MHz, methanol-*d*₄) spectrum of **3**

Figure S22. UV spectrum of 4

Sample Name Comment	Hao Wang AAN-19-6 (CH3OH)			Instrument maXis	288882.2021
Acquisition Pa	rameter	and the second se			
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source
Intens. x10 ⁵	449.2	125		+MS, 3.4-	3.5min #205-209
8-	449.2	-55			1. 1. 1. 1.
6-					
4-					•
2-	×	450.2465			
0			451.2490		
44	8 449	450	451	452 453	m/z
Meas. m 449.243	/z # Ion Formula 35 1 C27H33N2O4	m/z err [ppm] 449.2435 0.0	mSigma #m 38.2	Sigma Score rdb e 1 100.00 12.5 e	Conf N-Rule

Dot

To

Figure S23. HRESIMS of 4

Method

tu

Figure S24. ¹H NMR (600 MHz, methanol- d_4) spectrum of 4

Figure S26. ¹H-¹H COSY (600 MHz, methanol- d_4) spectrum of **4**

Figure S27. HSQC (600 and 150 MHz, methanol-*d*₄) spectrum of 4

Figure S28. HMBC (600 and 150 MHz, methanol-*d*₄) spectrum of 4

Figure S29. UV spectrum of 5

Figure S30. HRESIMS of 5

Figure S31. ¹H NMR (600 MHz, methanol- d_4) spectrum of 5

Figure S32. ¹³C NMR (150 MHz, methanol-*d*₄) spectrum of 5

Figure S33. ¹H-¹H COSY (600 MHz, methanol- d_4) spectrum of 5

Figure S34. HSQC (600 and 150 MHz, methanol-d₄) spectrum of 5

Figure S35. HMBC (600 and 150 MHz, methanol-*d*₄) spectrum of 5

Figure S36. UV spectrum of 6

Figure S37. HRESIMS of 6

Figure S38. ¹H NMR (700 MHz, methanol- d_4) spectrum of 6

Figure S39. ¹H-¹H COSY (700 MHz, methanol- d_4) spectrum of **6**

Figure S40. HSQC (700 and 175 MHz, methanol-d₄) spectrum of 6

Figure S41. HMBC (700 and 175 MHz, methanol-*d*₄) spectrum of 6

Figure S42. UV spectrum of 7

Figure S43. HRESIMS of 7

Figure S44. ¹H NMR (600 MHz, methanol- d_4) spectrum of 7

Figure S45. ¹³C NMR (150 MHz, methanol-*d*₄) spectrum of 7

Figure S46. ¹H-¹H COSY (600 MHz, methanol-*d*₄) spectrum of 7

Figure S47. HSQC (600 and 150 MHz, methanol-*d*₄) spectrum of 7

Figure S48. HMBC (600 and 150 MHz, methanol-*d*₄) spectrum of 7

Figure S49. UV spectrum of 8

Figure S50. HRESIMS of 8

Figure S51. ¹H NMR (600 MHz, methanol- d_4) spectrum of 8

Figure S52. ¹³C NMR (150 MHz, methanol- d_4) spectrum of 8

Figure S53. ¹H-¹H COSY (600 MHz, methanol- d_4) spectrum of 8

Figure S54. HSQC (600 and 150 MHz, methanol-*d*₄) spectrum of 8

Figure S55. HMBC (600 and 150 MHz, methanol-*d*₄) spectrum of 8

Figure S56. UV spectrum of 9

 Sample Name
 Hao Wang AAN-22A-37-2 (CH3OH)
 Instrument
 maXis
 288882.20213

 Comment
 10 ul in 1 ml
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

Figure S57. HRESIMS of 9

Figure S58. ¹H NMR (600 MHz, methanol- d_4) spectrum of 9

Figure S59. ¹H-¹H COSY (600 MHz, methanol- d_4) spectrum of 9

Figure S60. HSQC (600 and 150 MHz, methanol-d₄) spectrum of 9

Figure S61. HMBC (600 and 150 MHz, methanol-*d*₄) spectrum of 9

Figure S62. UV spectrum of 10

Figure S63. HRESIMS of 10

Figure S64. ¹H NMR (600 MHz, methanol- d_4) spectrum of 10

Figure S65. 1 H- 1 H COSY (600 MHz, methanol- d_{4}) spectrum of 10

Figure S66. HSQC (600 and 150 MHz, methanol-d₄) spectrum of 10

Figure S67. HMBC (600 and 150 MHz, methanol-d₄) spectrum of 10

Results of X-ray analysis of compound 1

Due to very small crystal sizes and poor crystal quality of 1, only a very low resolution was obtainable. Crystals of 1 did not diffract beyond $q = 44.9^{\circ}$ (cf. desired 67.7°) for Cu-K α radiation, resulting in only 1538 total (1484 observed with I > 2s(I)) reflections versus 263 parameters for anisotropic refinement. Therefore the cif does not meet the requirements for publication. The relevance of the following reported analysis of 1 should not be overestimated and interpreted carefully.

Crystal data

$C_{22}H_{24}N_2O_4$	Z = 4
$M_r = 380.43$	F(000) = 808
Orthorhombic, $P2_12_12_1$	$D_{\rm x} = 1.305 {\rm ~Mg~m^{-3}}$
a = 5.9832 (4) Å	Cu $K\alpha$ radiation, $\lambda = 1.54178$ Å
<i>b</i> = 11.8099 (7) Å	$\mu = 0.73 \text{ mm}^{-1}$
<i>c</i> = 27.4081 (17) Å	<i>T</i> = 140 K
$V = 1936.7 (2) Å^3$	$0.12 \times 0.03 \times 0.03 \text{ mm}^3$

Data collection

16751 measured reflections θ	$\theta_{\text{max}} = 44.9^{\circ}, \theta_{\text{min}} = 3.2^{\circ}$
------------------------------	--

1538 independent reflections	$h = -5 \rightarrow 5$
1484 reflections with $I > 2\sigma(I)$	$k = -10 \rightarrow 10$
$R_{\rm int} = 0.051$	<i>l</i> = -25→24

Refinement

Refinement on F^2	Hydrogen site location: mixed			
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement			
$R[F^2 > 2\sigma(F^2)] = 0.022$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0353P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$			
$wR(F^2) = 0.053$	$(\Delta/\sigma)_{\rm max} = 0.109$			
<i>S</i> = 1.12	$\Delta angle_{max} = 0.002 \text{ e} \text{ Å}^{-3}$			
1538 reflections	$\Delta\rangle_{\rm min} = -0.001 \text{ e } \text{\AA}^{-3}$			
263 parameters	Absolute structure: Flack x determined using 561 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, ActaCryst. B69 (2013) 249-259).			
0 restraints	Absolute structure parameter: -0.14 (10)			

Figure S68. Section of the packing diagram of **1** showing the intermolecular H-bond (orange dashed line), which connects two symmetry equivalent molecules. Details for intermolecular H-bond:O4-H41.00 Å, H4···O3ⁱ1.72 Å, O4···O3ⁱ2.71 Å, O4-H4···O3ⁱ 171 °, Symmetry code: (i) 1+x, y, z.

Figure S69. Section of the packing diagram of 1 along the *a*-plane.

Figure S70. Section of the packing diagram of 1 showing short C-H··· π distances (orange dashed lines), Symmetry code: (i) 1/2+x, 3/2-y, 1–z.

parameters	(11))0/1			
	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.7399 (4)	0.34906 (17)	0.64836 (7)	0.0909 (11)
02	0.3774 (4)	0.31137 (19)	0.63605 (7)	0.0945 (11)
03	0.4813 (4)	0.64653 (17)	0.74768 (8)	0.0954 (11)
04	1.0531 (4)	0.59272 (17)	0.72463 (7)	0.0919 (11)
H4	1.206 (7)	0.614 (3)	0.7363 (12)	0.138*
N1	0.8953 (4)	0.6281 (2)	0.54317 (10)	0.0904 (11)
N2	0.6705 (4)	0.5395 (2)	0.69261 (10)	0.0829 (12)
C1	0.5235 (7)	0.3746 (3)	0.64940 (10)	0.0836 (12)
C1'	0.6583 (6)	0.6107 (3)	0.73038 (12)	0.0816 (12)
C2	0.4785 (5)	0.4938 (2)	0.66719 (10)	0.0836 (12)
H2A	0.349909	0.491273	0.690481	0.100*
C2'	0.8812 (5)	0.6445 (2)	0.75231 (11)	0.0868 (12)
H2'	0.888295	0.613592	0.786246	0.104*
C3	0.4106 (5)	0.5676 (2)	0.62314 (10)	0.0872 (12)
H3A	0.272345	0.536166	0.608656	0.105*
H3B	0.376498	0.644986	0.634843	0.105*
C3'	0.9070 (6)	0.7730 (2)	0.75521 (11)	0.0902 (12)
H3'A	0.785967	0.803460	0.776048	0.108*
H3'B	1.050747	0.790365	0.771485	0.108*
C4	0.5855 (5)	0.5748 (3)	0.58442 (11)	0.0835 (12)
C4'	0.9013 (6)	0.8338 (2)	0.70702 (11)	0.0875 (12)
C5	0.6170 (6)	0.4994 (3)	0.54359 (11)	0.0840 (12)
C5'	0.7087 (6)	0.8873 (3)	0.69095 (15)	0.0965 (13)
H5'	0.577497	0.884189	0.710434	0.116*
C6	0.4996 (6)	0.4054 (3)	0.52583 (12)	0.0917 (12)
Н6	0.367778	0.379614	0.541631	0.110*
C6'	0.7037 (7)	0.9451 (3)	0.64715 (17)	0.1066 (14)
H6'	0.570499	0.981659	0.636781	0.128*
C7	0.5797 (7)	0.3513 (3)	0.48497 (13)	0.0979 (13)
H7	0.501918	0.287306	0.472672	0.118*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2) for **1**

C7'	0.8941 (9)	0.9495 (3)	0.61842 (13)	0.1069 (13)
H7'	0.891743	0.988855	0.588197	0.128*
C8	0.7730 (7)	0.3883 (3)	0.46108 (12)	0.1003 (13)
H8	0.823619	0.348991	0.432935	0.120*
C8'	1.0863 (7)	0.8967 (3)	0.63383 (14)	0.0998 (13)
H8'	1.217081	0.899732	0.614213	0.120*
С9	0.8907 (6)	0.4804 (3)	0.47759 (13)	0.0952 (12)
Н9	1.021989	0.505636	0.461436	0.114*
С9'	1.0901 (6)	0.8393 (3)	0.67758 (14)	0.0928 (12)
Н9'	1.223776	0.802880	0.687774	0.111*
C10	0.8101 (6)	0.5353 (3)	0.51892 (12)	0.0859 (12)
C11	1.0860 (5)	0.6943 (3)	0.52737 (12)	0.1017 (13)
H11A	1.217021	0.645014	0.524475	0.153*
H11B	1.116301	0.753975	0.551336	0.153*
H11C	1.053512	0.728786	0.495626	0.153*
C12	0.7584 (6)	0.6502 (3)	0.58223 (12)	0.0876 (12)
H12	0.781007	0.710081	0.604827	0.105*
C13	0.7951 (5)	0.2372 (3)	0.63082 (12)	0.1049 (13)
H13A	0.733066	0.226758	0.598035	0.157*
H13B	0.731790	0.180286	0.652883	0.157*
H13C	0.957931	0.228532	0.629644	0.157*
H2	0.811 (6)	0.520 (3)	0.6831 (12)	0.126*

Atomic displacement parameters $(Å^2)$ for **1**.

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0855 (19)	0.0889 (17)	0.0982 (17)	0.0025 (11)	-0.0020 (11)	-0.0061 (12)
O2	0.0917 (19)	0.0958 (17)	0.0960 (16)	-0.0110 (12)	-0.0008 (12)	-0.0061 (11)
O3	0.0770 (18)	0.1059 (17)	0.1031 (16)	-0.0009 (12)	0.0050 (11)	-0.0147 (12)
O4	0.0755 (16)	0.0964 (16)	0.1039 (16)	0.0030 (11)	-0.0009 (12)	-0.0090 (10)
N1	0.085 (2)	0.095 (2)	0.091 (2)	-0.0040 (18)	0.0018 (17)	0.0051 (16)
N2	0.074 (2)	0.0886 (18)	0.0865 (19)	-0.0033 (14)	-0.0033 (16)	-0.0085 (16)
C1	0.081 (3)	0.092 (3)	0.079 (2)	-0.005 (2)	0.0023 (17)	0.0034 (18)
C1'	0.078 (3)	0.083 (2)	0.085 (2)	-0.0017 (19)	0.002 (2)	0.0008 (19)

C2	0.081 (2)	0.087 (2)	0.083 (2)	-0.0026 (17)	0.0012 (17)	-0.0048 (18)
C2'	0.077 (3)	0.097 (2)	0.087 (2)	0.0001 (19)	0.0000 (19)	-0.0057 (17)
C3	0.084 (2)	0.088 (2)	0.090 (2)	-0.0010 (17)	0.0008 (19)	-0.0023 (17)
C3'	0.086 (2)	0.090 (2)	0.095 (2)	-0.0037 (17)	-0.0017 (18)	-0.0123 (18)
C4	0.081 (3)	0.084 (2)	0.086 (2)	0.000 (2)	-0.002 (2)	0.0040 (18)
C4'	0.087 (3)	0.080 (2)	0.095 (2)	-0.002 (2)	-0.003 (2)	-0.0084 (17)
C5	0.084 (3)	0.086 (2)	0.082 (2)	0.006 (2)	-0.003 (2)	0.004 (2)
C5'	0.088 (3)	0.087 (2)	0.115 (3)	0.000 (2)	-0.004 (2)	-0.009 (2)
C6	0.096 (3)	0.092 (2)	0.087 (2)	-0.002 (2)	-0.0053 (18)	-0.0007 (19)
C6'	0.100 (3)	0.089 (3)	0.131 (3)	-0.0008 (19)	-0.016 (3)	0.003 (2)
C7	0.114 (3)	0.093 (2)	0.087 (2)	0.001 (2)	-0.005 (2)	-0.002 (2)
C7'	0.115 (4)	0.092 (2)	0.114 (3)	-0.013 (2)	-0.013 (3)	0.0082 (19)
C8	0.111 (3)	0.104 (3)	0.086 (2)	0.016 (2)	0.005 (2)	0.002 (2)
C8'	0.100 (3)	0.097 (2)	0.103 (3)	-0.011 (2)	0.001 (2)	0.002 (2)
С9	0.091 (3)	0.103 (3)	0.092 (3)	0.006 (2)	0.002 (2)	0.006 (2)
C9'	0.087 (3)	0.092 (2)	0.100 (2)	-0.0044 (18)	-0.001 (2)	-0.007 (2)
C10	0.086 (3)	0.088 (3)	0.084 (2)	0.0054 (19)	0.000 (2)	0.003 (2)
C11	0.086 (3)	0.109 (3)	0.111 (2)	-0.011 (2)	0.0017 (18)	0.0147 (19)
C12	0.090 (3)	0.087 (2)	0.085 (2)	0.004 (2)	0.000 (2)	-0.0001 (18)
C13	0.108 (3)	0.089 (3)	0.117 (2)	0.016 (2)	-0.0051 (19)	-0.0199 (19)

Geometric parameters (Å, °) for 1

O1—C1	1.330 (4)	C4'—C9'	1.390 (4)
O1—C13	1.444 (3)	С5—С6	1.402 (4)
O2—C1	1.207 (3)	C5—C10	1.404 (4)
O3—C1'	1.235 (4)	C5'—C6'	1.381 (4)
O4—C2'	1.417 (3)	С5'—Н5'	0.9500
O4—H4	1.00 (4)	С6—С7	1.375 (4)
N1—C12	1.373 (4)	С6—Н6	0.9500
N1—C10	1.380 (4)	C6'—C7'	1.386 (5)
N1—C11	1.449 (4)	С6'—Н6'	0.9500
N2—C1'	1.336 (4)	C7—C8	1.398 (4)
N2—C2	1.448 (4)	С7—Н7	0.9500

N2—H2	0.91 (4)	C7'—C8'	1.375 (5)
C1—C2	1.514 (4)	С7'—Н7'	0.9500
C1'—C2'	1.516 (4)	С8—С9	1.372 (4)
C2—C3	1.543 (4)	С8—Н8	0.9500
C2—H2A	1.0000	C8'—C9'	1.378 (4)
C2'—C3'	1.528 (4)	C8'—H8'	0.9500
C2'—H2'	1.0000	C9—C10	1.391 (4)
C3—C4	1.493 (4)	С9—Н9	0.9500
С3—НЗА	0.9900	С9'—Н9'	0.9500
С3—Н3В	0.9900	C11—H11A	0.9800
C3'—C4'	1.504 (4)	C11—H11B	0.9800
С3'—Н3'А	0.9900	C11—H11C	0.9800
С3'—Н3'В	0.9900	C12—H12	0.9500
C4—C12	1.366 (4)	C13—H13A	0.9800
C4—C5	1.442 (4)	С13—Н13В	0.9800
C4'—C5'	1.387 (4)	С13—Н13С	0.9800
C1—O1—C13	115.9 (2)	C10—C5—C4	107.2 (3)
C2'—O4—H4	112 (2)	C6'—C5'—C4'	121.3 (3)
C12—N1—C10	107.8 (3)	С6'—С5'—Н5'	119.4
C12—N1—C11	126.9 (3)	C4'—C5'—H5'	119.4
C10—N1—C11	125.1 (3)	C7—C6—C5	118.4 (3)
C1'—N2—C2	124.3 (3)	С7—С6—Н6	120.8
C1'—N2—H2	116 (2)	С5—С6—Н6	120.8
C2—N2—H2	120 (2)	C5'—C6'—C7'	119.7 (3)
O2—C1—O1	123.9 (3)	С5'—С6'—Н6'	120.2
O2—C1—C2	123.0 (3)	С7'—С6'—Н6'	120.2
O1—C1—C2	113.1 (3)	C6—C7—C8	121.6 (3)
O3—C1'—N2	124.0 (3)	С6—С7—Н7	119.2
O3—C1'—C2'	120.8 (3)	С8—С7—Н7	119.2
N2—C1'—C2'	115.1 (3)	C8'—C7'—C6'	119.7 (3)
N^2 C^2 C^1	111.1 (3)	C8'—C7'—H7'	120.1

N2—C2—C3	112.0 (2)	С6'—С7'—Н7'	120.1
C1—C2—C3	108.6 (2)	С9—С8—С7	121.1 (3)
N2—C2—H2A	108.3	С9—С8—Н8	119.4
C1—C2—H2A	108.3	С7—С8—Н8	119.4
С3—С2—Н2А	108.3	C7'—C8'—C9'	120.3 (3)
O4—C2'—C1'	108.2 (2)	С7'—С8'—Н8'	119.9
O4—C2'—C3'	112.5 (3)	С9'—С8'—Н8'	119.9
C1'—C2'—C3'	111.8 (3)	C8—C9—C10	117.4 (3)
O4—C2'—H2'	108.1	С8—С9—Н9	121.3
C1'—C2'—H2'	108.1	С10—С9—Н9	121.3
C3'—C2'—H2'	108.1	C8'—C9'—C4'	121.0 (3)
C4—C3—C2	113.9 (2)	С8'—С9'—Н9'	119.5
С4—С3—НЗА	108.8	С4'—С9'—Н9'	119.5
С2—С3—НЗА	108.8	N1—C10—C9	129.4 (4)
С4—С3—Н3В	108.8	N1—C10—C5	108.1 (3)
С2—С3—Н3В	108.8	C9—C10—C5	122.5 (3)
НЗА—СЗ—НЗВ	107.7	N1—C11—H11A	109.5
C4'—C3'—C2'	115.2 (2)	N1—C11—H11B	109.5
C4'—C3'—H3'A	108.5	H11A—C11—H11B	109.5
C2'—C3'—H3'A	108.5	N1—C11—H11C	109.5
C4'—C3'—H3'B	108.5	H11A—C11—H11C	109.5
C2'—C3'—H3'B	108.5	H11B—C11—H11C	109.5
H3'A—C3'—H3'B	107.5	C4—C12—N1	111.3 (3)
C12—C4—C5	105.6 (3)	C4—C12—H12	124.4
C12—C4—C3	126.8 (3)	N1—C12—H12	124.4
C5—C4—C3	127.4 (3)	O1—C13—H13A	109.5
C5'—C4'—C9'	118.0 (3)	O1—C13—H13B	109.5
C5'—C4'—C3'	121.0 (3)	H13A—C13—H13B	109.5
C9'—C4'—C3'	120.9 (3)	O1—C13—H13C	109.5
C6—C5—C10	118.9 (3)	H13A—C13—H13C	109.5
C6—C5—C4	133.9 (3)	H13B—C13—H13C	109.5

Hydrogen-bond geometry (Å, °) for 1

<i>D</i> —H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
O4—H4⋯O3 ⁱ	1.00 (4)	1.72 (4)	2.714 (3)	171 (3)
C2—H2A⋯O4 ⁱⁱ	1.00	2.34	3.212 (4)	146
$C3'$ — $H3'$ A ···O 2^{iii}	0.99	2.60	3.462 (4)	145
C3' —H3' B ····O1 ^{iv}	0.99	2.62	3.500 (4)	148
N2—H2…O4	0.91 (4)	2.03 (3)	2.531 (3)	113 (3)

Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+1, y+1/2, -z+3/2; (iv) -x+2, y+1/2,

-z+3/2.

Results of X-ray analysis of compound 2

Crystal data

$C_{21}H_{22}N_2O_4$ ·CH ₄ O	F(000) = 848
$M_r = 398.45$	$D_{\rm x} = 1.283 {\rm ~Mg~m^{-3}}$
Monoclinic, C2	Cu $K\alpha$ radiation, $\lambda = 1.54178$ Å
a = 23.52 (2) Å	Cell parameters from 9974 reflections
<i>b</i> = 5.994 (5) Å	$\theta = 5.9 - 67.5^{\circ}$
c = 15.843 (13) Å	$\mu = 0.75 \text{ mm}^{-1}$
$\beta = 112.574 \ (17)^{\circ}$	<i>T</i> = 140 K
$V = 2063 (3) Å^3$	Needle, clear colourless
Z = 4	$0.20 \times 0.10 \times 0.05 \text{ mm}^3$

Data collection

Bruker Kappa APEX-II CCD area detector diffractometer	3416 independent reflections
Radiation source: microfocus sealed tube	3283 reflections with $I > 2\sigma(I)$
Multilayer mirror monochromator	$R_{\rm int} = 0.027$
ω scans, ϕ scans	$\theta_{\text{max}} = 65.6^{\circ}, \theta_{\text{min}} = 5.9^{\circ}$
Absorption correction: multi-scan	$h = -27 \rightarrow 27$
(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.917, T_{\max} = 1.000$	$k = -7 \rightarrow 7$
11796 measured reflections	$l = -15 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = 0.025$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.067$	$w = 1/[\sigma^2(F_o^2) + (0.0393P)^2 + 0.5585P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
3416 reflections	$\Delta\rangle_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
276 parameters	$\Delta \rangle_{\rm min} = -0.20 \ e \ {\rm \AA}^{-3}$
1 restraint	Absolute structure: Flack x determined using 1433 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, ActaCryst. B69 (2013) 249-259).
Primary atom site location: structure-invariant direct methods	Absolute structure parameter: 0.00 (3)

Figure S71. Section of the packing diagram of **2** showing the intermolecular H-bonds (orange dashed line) with methanole, which connect three symmetry equivalent molecules. Details for intermolecular H-bonds:

O2-H2A0.85 Å, H2A···O5 1.76 Å, O2···O52.61 Å, O4-H4···O5 172 ° O5-H5 0.81 Å, H5···O1ⁱ2.03 Å, O5···O1ⁱ2.80 Å, O5-H5···O1ⁱ 158 ° O4ⁱ-H4ⁱ 0.84 Å, H4ⁱ···O3ⁱⁱ1.92 Å, O4ⁱ···O3ⁱⁱ2.74 Å, O4ⁱ-H4ⁱ···O3ⁱⁱ 169 ° Symmetry codes: (i) 3/2-x, 1/2+y, 1-z, (ii) 3/2-x, -1/2+y, 1-z.

Figure S72. Sections of the packing diagram of 2 along the *b*-plane.

Figure S73. Section of the packing diagram of 2 showing short inter- and intramolecular C-H $\cdots \pi$ distances (orange dashed lines). Symmetry code: (i) 3/2–x, 1/2+y, 2–z.

unicient to av	old the prime no	tation, that is C	13 C13, C2 13 C	14 (10.)
	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.65940 (5)	0.4911 (2)	0.55654 (9)	0.0217 (3)
H1	0.5844 (11)	0.409 (5)	0.6253 (16)	0.033*
C1'	0.50817 (8)	0.5468 (3)	0.60666 (12)	0.0152 (4)
C1	0.65075 (8)	0.6794 (3)	0.57838 (12)	0.0178 (4)
N1	0.71816 (7)	0.3323 (3)	0.86983 (11)	0.0250 (4)
C2'	0.47682 (7)	0.3204 (3)	0.60061 (12)	0.0169 (4)
H2'	0.446506	0.299653	0.536476	0.020*
H4	0.5045 (10)	0.027 (5)	0.6078 (15)	0.025*
C2	0.60559 (8)	0.7325 (3)	0.62335 (13)	0.0165 (4)
H2	0.577918	0.855216	0.587885	0.020*
02	0.67925 (6)	0.8600 (2)	0.56768 (10)	0.0265 (3)
H2A	0.7028 (12)	0.838 (5)	0.5390 (19)	0.040*
N2	0.56793 (6)	0.5381 (2)	0.61929 (10)	0.0160 (3)
03	0.47819 (5)	0.7223 (2)	0.59769 (9)	0.0200 (3)
C3'	0.44174 (7)	0.3112 (3)	0.66470 (13)	0.0199 (4)
Н3'А	0.409841	0.429202	0.646610	0.024*
H3'B	0.420496	0.165526	0.656917	0.024*
C3	0.63959 (7)	0.8138 (3)	0.72350 (12)	0.0178 (4)
H3A	0.663461	0.949722	0.723412	0.021*
НЗВ	0.608736	0.854038	0.749306	0.021*
C4'	0.48241 (8)	0.3414 (3)	0.76430 (13)	0.0209 (4)
C4	0.68242 (8)	0.6407 (3)	0.78355 (13)	0.0168 (4)
04	0.52225 (6)	0.1513 (2)	0.61967 (9)	0.0208 (3)
05	0.74323 (6)	0.7709 (2)	0.46887 (10)	0.0268 (3)
Н5	0.7733 (12)	0.847 (5)	0.4756 (18)	0.040*
C5'	0.48570 (9)	0.5465 (3)	0.80747 (15)	0.0278 (4)
H5'	0.462765	0.669628	0.773458	0.033*
C5	0.74738 (8)	0.6176 (3)	0.80238 (13)	0.0202 (4)
C6'	0.52212 (11)	0.5730 (4)	0.89961 (16)	0.0377 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for **2**(Note that the atomic numbering in the deposited cif file is different to avoid the prime notation, that is C1' is C13, C2' is C14 etc.)

Н6'	0.523658	0.713658	0.928073	0.045*
C6	0.79002 (9)	0.7470 (4)	0.78148 (15)	0.0297 (5)
Н6	0.777465	0.879753	0.746484	0.036*
C7'	0.55615 (10)	0.3964 (4)	0.95023 (15)	0.0375 (5)
H7'	0.580928	0.415035	1.013260	0.045*
C7	0.85081 (10)	0.6769 (5)	0.81295 (16)	0.0432 (6)
H7	0.880124	0.763811	0.799645	0.052*
С9	0.82937 (9)	0.3510 (4)	0.88650 (15)	0.0359 (5)
Н9	0.842420	0.218217	0.921334	0.043*
C9'	0.51729 (9)	0.1636 (3)	0.81604 (14)	0.0249 (4)
Н9'	0.515962	0.022713	0.787889	0.030*
C8	0.86993 (9)	0.4796 (5)	0.86422 (17)	0.0443 (7)
Н8	0.911732	0.434395	0.883824	0.053*
C8'	0.55377 (10)	0.1914 (4)	0.90802 (15)	0.0324 (5)
H8'	0.577237	0.069541	0.942298	0.039*
C13	0.70283 (11)	0.7748 (5)	0.37583 (17)	0.0506 (7)
H13A	0.726817	0.769836	0.337146	0.076*
H13B	0.678308	0.911986	0.363240	0.076*
H13C	0.675366	0.645225	0.362641	0.076*
C11	0.72095 (11)	0.1406 (3)	0.92782 (15)	0.0360 (5)
H11A	0.679408	0.104344	0.924008	0.054*
H11B	0.747256	0.175992	0.991249	0.054*
H11C	0.738067	0.012336	0.907200	0.054*
C12	0.66742 (8)	0.4651 (3)	0.82618 (13)	0.0209 (4)
H12	0.627514	0.438347	0.825792	0.025*
C10	0.76795 (8)	0.4230 (3)	0.85592 (13)	0.0239 (4)

Atomic displacement parameters $(Å^2)$ for **2**(Note that the atomic numbering in the deposited cif file is different to avoid the prime notation, that is C1' is C13, C2' is C14 etc.)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0213 (6)	0.0195 (7)	0.0275 (8)	-0.0002 (5)	0.0130 (5)	-0.0035 (5)
C1'	0.0184 (8)	0.0161 (9)	0.0117 (9)	0.0006 (7)	0.0062 (6)	-0.0004 (6)

C1	0.0174 (8)	0.0212 (9)	0.0140 (10)	-0.0016 (7)	0.0048 (7)	0.0003 (7)
N1	0.0295 (8)	0.0200 (8)	0.0196 (9)	0.0003 (6)	0.0027 (6)	0.0021 (6)
C2'	0.0173 (8)	0.0133 (8)	0.0194 (9)	0.0009 (6)	0.0063 (7)	0.0012 (7)
C2	0.0191 (8)	0.0132 (8)	0.0185 (10)	0.0002 (6)	0.0086 (7)	0.0010 (6)
02	0.0315 (7)	0.0230 (7)	0.0346 (9)	-0.0073 (6)	0.0236 (6)	-0.0033 (6)
N2	0.0166 (7)	0.0130 (7)	0.0193 (8)	0.0012 (6)	0.0080 (6)	0.0006 (6)
03	0.0188 (6)	0.0148 (6)	0.0278 (8)	0.0018 (5)	0.0105 (5)	0.0015 (5)
C3'	0.0175 (8)	0.0174 (8)	0.0261 (10)	-0.0014 (7)	0.0099 (7)	0.0018 (7)
C3	0.0200 (8)	0.0145 (8)	0.0203 (10)	-0.0002 (7)	0.0092 (7)	-0.0020 (7)
C4'	0.0201 (8)	0.0232 (9)	0.0248 (11)	-0.0044 (7)	0.0145 (7)	0.0022 (8)
C4	0.0170 (8)	0.0164 (8)	0.0167 (9)	-0.0019 (6)	0.0064 (7)	-0.0039 (7)
O4	0.0210 (6)	0.0105 (6)	0.0321 (8)	0.0013 (5)	0.0115 (6)	0.0000 (5)
05	0.0298 (7)	0.0242 (7)	0.0339 (9)	-0.0046 (5)	0.0205 (6)	0.0015 (6)
C5'	0.0362 (10)	0.0241 (10)	0.0278 (12)	-0.0037 (8)	0.0174 (8)	0.0014 (8)
C5	0.0196 (9)	0.0251 (9)	0.0153 (10)	-0.0022 (7)	0.0061 (7)	-0.0070 (7)
C6'	0.0554 (14)	0.0295 (11)	0.0322 (14)	-0.0120 (10)	0.0213 (11)	-0.0052 (9)
C6	0.0243 (9)	0.0434 (12)	0.0234 (11)	-0.0091 (9)	0.0113 (8)	-0.0080 (9)
C7'	0.0433 (12)	0.0448 (13)	0.0222 (12)	-0.0189 (10)	0.0104 (9)	-0.0002 (10)
C7	0.0221 (10)	0.0788 (18)	0.0320 (13)	-0.0113 (11)	0.0139 (9)	-0.0155 (12)
С9	0.0299 (10)	0.0456 (13)	0.0239 (11)	0.0139 (10)	0.0010 (8)	-0.0102 (10)
C9'	0.0248 (9)	0.0238 (10)	0.0290 (12)	-0.0009 (7)	0.0136 (8)	0.0040 (8)
C8	0.0177 (9)	0.0797 (19)	0.0316 (13)	0.0090 (10)	0.0052 (8)	-0.0190 (13)
C8'	0.0305 (10)	0.0365 (11)	0.0280 (12)	-0.0044 (9)	0.0088 (9)	0.0120 (9)
C13	0.0437 (13)	0.0762 (19)	0.0324 (14)	-0.0214 (13)	0.0149 (11)	-0.0051 (13)
C11	0.0502 (13)	0.0218 (10)	0.0263 (12)	-0.0008 (9)	0.0039 (10)	0.0046 (9)
C12	0.0194 (8)	0.0208 (9)	0.0204 (10)	-0.0023 (7)	0.0053 (7)	-0.0007 (7)
C10	0.0239 (9)	0.0269 (10)	0.0170 (10)	0.0044 (7)	0.0035 (7)	-0.0071 (7)

Geometric parameters $(\mathring{A}, \, \circ)$ for **2**(Note that the atomic numbering in the deposited cif file is different to avoid the prime notation, that is C1' is C13, C2' is C14 etc.)

O1—C1	1.220 (2)	O5—C13	1.415 (3)
C1'—O3	1.244 (2)	О5—Н5	0.81 (3)
C1'—N2	1.343 (3)	C5'—C6'	1.389 (3)

C1'—C2'	1.529 (3)	С5'—Н5'	0.9500
C1—O2	1.318 (2)	С5—С6	1.404 (3)
C1—C2	1.523 (3)	C5—C10	1.414 (3)
N1—C12	1.379 (3)	C6'—C7'	1.383 (3)
N1—C10	1.383 (3)	С6'—Н6'	0.9500
N1—C11	1.457 (3)	С6—С7	1.387 (3)
C2'—O4	1.419 (2)	С6—Н6	0.9500
C2'—C3'	1.536 (3)	C7'—C8'	1.390 (4)
C2'—H2'	1.0000	С7'—Н7'	0.9500
C2—N2	1.450 (2)	С7—С8	1.407 (4)
C2—C3	1.556 (3)	С7—Н7	0.9500
С2—Н2	1.0000	С9—С8	1.374 (4)
O2—H2A	0.85 (3)	C9—C10	1.404 (3)
N2—H1	0.85 (3)	С9—Н9	0.9500
C3'—C4'	1.510 (3)	C9'—C8'	1.388 (3)
С3'—Н3'А	0.9900	С9'—Н9'	0.9500
С3'—Н3'В	0.9900	С8—Н8	0.9500
C3—C4	1.503 (2)	С8'—Н8'	0.9500
С3—НЗА	0.9900	C13—H13A	0.9800
С3—НЗВ	0.9900	C13—H13B	0.9800
C4'—C5'	1.395 (3)	С13—Н13С	0.9800
C4'—C9'	1.401 (3)	C11—H11A	0.9800
C4—C12	1.368 (3)	C11—H11B	0.9800
C4—C5	1.447 (3)	C11—H11C	0.9800
O4—H4	0.84 (3)	C12—H12	0.9500
O3—C1'—N2	124.38 (16)	C4'—C5'—H5'	119.6
O3—C1'—C2'	120.32 (15)	C6—C5—C10	119.08 (18)
N2—C1'—C2'	115.28 (15)	C6—C5—C4	133.80 (18)
O1—C1—O2	125.08 (17)	C10—C5—C4	107.07 (17)
O1—C1—C2	123.25 (16)	C7'—C6'—C5'	120.5 (2)
O2—C1—C2	111.66 (15)	С7'—С6'—Н6'	119.7

C12—N1—C10	108.42 (17)	С5'—С6'—Н6'	119.7
C12—N1—C11	126.31 (18)	C7—C6—C5	118.7 (2)
C10—N1—C11	125.05 (18)	С7—С6—Н6	120.7
O4—C2'—C1'	108.35 (14)	С5—С6—Н6	120.7
O4—C2'—C3'	112.68 (14)	C6'—C7'—C8'	119.4 (2)
C1'—C2'—C3'	111.02 (15)	С6'—С7'—Н7'	120.3
O4—C2'—H2'	108.2	С8'—С7'—Н7'	120.3
C1'—C2'—H2'	108.2	С6—С7—С8	121.3 (2)
C3'—C2'—H2'	108.2	С6—С7—Н7	119.4
N2—C2—C1	109.60 (15)	С8—С7—Н7	119.4
N2—C2—C3	111.28 (15)	C8—C9—C10	117.6 (2)
C1—C2—C3	111.40 (15)	С8—С9—Н9	121.2
N2—C2—H2	108.1	С10—С9—Н9	121.2
С1—С2—Н2	108.1	C8'—C9'—C4'	120.7 (2)
С3—С2—Н2	108.1	С8'—С9'—Н9'	119.7
C1—O2—H2A	114 (2)	С4'—С9'—Н9'	119.7
C1'—N2—C2	124.22 (15)	С9—С8—С7	121.4 (2)
C1'—N2—H1	117.1 (16)	С9—С8—Н8	119.3
C2—N2—H1	118.7 (16)	С7—С8—Н8	119.3
C4'—C3'—C2'	113.64 (15)	C9'—C8'—C7'	120.4 (2)
С4'—С3'—Н3'А	108.8	С9'—С8'—Н8'	119.8
С2'—С3'—Н3'А	108.8	С7'—С8'—Н8'	119.8
C4'—C3'—H3'B	108.8	O5—C13—H13A	109.5
С2'—С3'—Н3'В	108.8	O5—C13—H13B	109.5
H3'A—C3'—H3'B	107.7	H13A—C13—H13B	109.5
C4—C3—C2	112.74 (15)	O5—C13—H13C	109.5
С4—С3—НЗА	109.0	H13A—C13—H13C	109.5
С2—С3—НЗА	109.0	H13B—C13—H13C	109.5
С4—С3—Н3В	109.0	N1—C11—H11A	109.5
С2—С3—Н3В	109.0	N1—C11—H11B	109.5
НЗА—СЗ—НЗВ	107.8	H11A—C11—H11B	109.5
C5'—C4'—C9'	118.27 (19)	N1—C11—H11C	109.5

C5'—C4'—C3'	120.78 (17)	H11A—C11—H11C	109.5
C9'—C4'—C3'	120.94 (18)	H11B—C11—H11C	109.5
C12—C4—C5	106.08 (16)	C4—C12—N1	110.73 (17)
C12—C4—C3	127.31 (16)	C4—C12—H12	124.6
C5—C4—C3	126.48 (17)	N1—C12—H12	124.6
C2'—O4—H4	108.4 (16)	N1—C10—C9	130.3 (2)
С13—О5—Н5	109.2 (19)	N1—C10—C5	107.70 (16)
C6'—C5'—C4'	120.79 (19)	C9—C10—C5	122.0 (2)
Сб'—С5'—Н5'	119.6		

Hydrogen-bond geometry (Å, °) for 2

D—H···A	D—H	Н…А	$D \cdots A$	<i>D</i> —H···A
O2—H2…O5	0.85 (3)	1.76 (3)	2.609 (2)	172 (3)
O4—H4····O3 ⁱ	0.85 (3)	1.91 (3)	2.744 (3)	169 (2)
N2—H2A…O4	0.84 (3)	2.11 (2)	2.557 (3)	112.6 (18)
C2—H2B····O4 ⁱⁱ	1.00	2.37	3.172 (3)	136
$C2' -H2' \cdots O1^{iii}$	1.00	2.62	3.375 (3)	132
O5—H5…O1 ^{iv}	0.81 (3)	2.03 (3)	2.803 (3)	158 (3)

Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+1, y, -z+1; (iv) -x+3/2, y+1/2, -z+1.