Electronic supplementary information

FeCl₃ as a low-cost and efficient p-type dopant of Spiro-OMeTAD for high performance perovskite solar cells[†]

Xiaoyu Gu,^{a,b} Yang Li,^{b,c} Yanfei Mu,^{a,b} Min Zhang,*^a Tongbu Lu^a and Peng Wang^b

^a Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China. Email: zm2016@email.tjut.edu.cn.

^b Department of Chemistry, Zhejiang University, Hangzhou, 310028, China.

^c Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.

Fig. S1 Images of solutions: (a) Spiro-OMeTAD in chlorobenzene (60 mM), (b) FeCl₃ in acetonitrile (100 mg/ml), and (c) adding solution b (8 μ L) into solution a (100 μ L).

Fig. S2 Root of current–voltage (J^{0.5}–V) curves with the hole-only device using (a) pure Spiro-OMeTAD (coded as Spiro), (b) Spiro-OMeTAD doped with LiTFSI and TBP (coded as Spiro/Li/TBP),
(c) Spiro-OMeTAD doped with LiTFSI, TBP and FeCl₃ (coded as Spiro/Li/TBP/FeCl₃).

The mobility (μ) was obtained through the fitting line of the *J*-*V* curves using Mott-Gurney equation,

$$J = \frac{9}{8}\varepsilon_0\varepsilon_r\mu\frac{V^2}{d^3}.$$

Here, ε_0 is the vacuum permittivity with the value of 8.85×10^{-12} F/m. ε_r is the dielectric constant of the materials, which has a value of 3 for most organic semiconductors. *d* is the film thickness (80 nm).

Fig. S3 Scatter diagram of mobility for Spiro-OMeTAD at doping concentration of 60%, 80%, 100%, 120%.

Doping concentration (%)	Hole mobility μ (cm ² V ⁻¹ S ⁻¹)
60	2.6×10 ⁻⁴
80	3.2×10^{-4}
100	1.2×10^{-3}
120	2.3×10^{-3}

Table S1 Summarized data for hole mobility of Spiro-OMeTAD as a function of doping concentration