Electronic Supplementary Material

Nano Liquid Metal for the Preparation of a Thermally Conductive and Electrically Insulating Material with Superior Stability

Pan Fan^{1,2}, Ziqiao Sun¹, Yushu Wang², Hao Chang^{1,2}, Pengju Zhang², Siyuan Yao², Chennan Lu², Wei Rao^{2,3} (🖂), and Jing Liu ^{2,3,4} (🖂)

¹Beijing Engineering Research Center of Sustainable Energy and Buildings, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China

²Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China ³School of Future Technology, University of Chinese Academy of Sciences, Beijing,100049, China

⁴Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China

*Address correspondence to Wei Rao:

Technical Institute of Physics and Chemistry,

Chinese Academy of Sciences,

29 Zhongguancun East Road,

Haidian District, Beijing, 100190, P. R. China

Phone: +86-10-82543719

Email: weirao@mail.ipc.ac.cn

Figure S1. Average diameter of liquid metal particles under different sonication parameters. (a) Distribution of average diameter of nLM under different sonication power. (b) Distribution of average diameter of nLM under various sonication time.(c) Typical dynamic light scattering (DLS) data of nLM.

Figure S2. Morphology of nLM THEMs at different ratio. (a) 3:1, (b) 4:1, (c) 5:1 (d) 6:1

Figure S3. Size distribution for nLM-THEMs (6:1)

Figure S4. FEG-SEM image and element analysis of scraped nLM-THEMs from the aluminum surface after nine days of contact showing no Corrosion.