Supporting Information

Intramolecular Hydrogen Bond Directed Stable Conformations of Benzoyl Phenyl Oxalamides: Unambiguous Evidence by Extensive NMR Studies and DFT Based Computations

P. Dhanishta^{a,b}, P. Sai Sivakumar^c, Sandeep Kumar Mishra^{a,b} and N. Suryaprakash^{a,b,*}

^aNMR Research Centre, ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India.

^cDepartment of Chemistry, University of Missouri, Kansas City, USA

E-mail: nsp@iisc.ac.in; suryaprakash1703@gmail.com; Tel: +91-80-23607344; +91-80-22933300; +919845124802; Fax: +91-80-23601550

INDEX

S1: The general structural frameworks of N¹-benzoyl-N²-phenyl oxalamide derivatives. The substituents X and X¹ for different derivatives are defined for the molecules **1-6**.

S2: Selected regions of the 400 MHz ¹H-NMR spectra of molecules 1-6 (from bottom trace to top trace), recorded in the solvent CDCl₃ at 298 K and the spectra were referenced to internal Tetramethylsilane.

S3: 400 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule 1 in the solvent CDCl_{3.}

S4: Expanded region of HSQC spectrum of molecule 1 (Fig. S3) pertaining to NH(1) region, showing the scalar coupling ${}^{1}J_{\text{NH}}$.

S5: Expanded region of HSQC spectrum of molecule 1 (Fig. S3) pertaining to NH(2) region, showing the scalar coupling ${}^{1}J_{\text{NH}}$.

S6: 400 MHz proton decoupled 2D ¹⁵N-¹H HSQC spectrum of molecule 1 in the solvent CDCl_{3.}

S7: 800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule 1 in the solvent DMSO-d₆.

S8: Expanded region of HSQC spectrum of molecule **1** (Fig. S7) pertaining to NH(1) proton, showing the scalar coupling ${}^{1}J_{\text{NH}}$

S9: Expanded region of HSQC spectrum of molecule 1 (Fig. S7) pertaining to NH(2) proton, showing the scalar coupling ${}^{1}J_{\text{NH}}$.

S10: 800 MHz proton decoupled 2D $^{15}\mathrm{N}\text{-}^{1}\mathrm{H}$ HSQC spectrum of molecule 1 in the solvent DMSO-d₆.

S11: 400 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule 2 in the solvent CDCl₃.

S12: 400 MHz proton decoupled 2D ¹⁵N-¹H HSQC spectrum of molecule 2 in the solvent CDCl₃.

S13: 800 MHz proton decoupled 2D 15 N- 1 H HSQC spectrum of molecule **2** in the solvent DMSOd₆ showing the NH(1) region.

S14: 800 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule **2** in the solvent DMSOd₆ showing the NH(2) region.

S15: 800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **3** in the solvent CDCl₃.

S16: Expanded region of 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **3 (Fig. S15)** pertaining to NH(1) region showing scalar coupling ${}^{1}J_{NH}$.

S17: Expanded region of 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **3 (Fig. S15)** pertaining to NH(2) region showing scalar coupling ${}^{1}J_{\text{NH}}$.

S18: 800 MHz proton decoupled 2D ¹⁵N-¹H HSQC spectrum of molecule 3 in the solvent CDCl₃.

S19: 800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **3** in the solvent DMSO-d₆.

S20: Expanded region pertaining to NH(1) of 2D ¹⁵N-¹H HSQC spectrum of molecule **3 (Fig. S19)** showing scalar coupling ${}^{1}J_{\text{NH}}$.

S21: Expanded region pertaining to NH(2) of 2D ¹⁵N-¹H HSQC spectrum of molecule **3 (Fig. S19)** showing scalar coupling ${}^{1}J_{\text{NH}}$.

S22: 800 MHz proton decoupled 2D 15 N- 1 H HSQC spectrum of molecule **3** in the solvent DMSOd₆ showing region pertaining to NH(1).

S23: 800 MHz proton decoupled 2D 15 N- 1 H HSQC spectrum of molecule **3** in the solvent DMSOd₆ showing region pertaining to NH(2).

S24: 400 MHz 2D ¹⁹F-¹H HOESY spectrum of molecule **4** in the solvent CDCl₃ showing strong correlation between F and NH proton.

S25: 400 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule 4 in the solvent CDCl_{3.}

S26: Expanded region of (Fig. S25) pertaining to NH(1) showing scalar all the scalar couplings.

S27: Expanded region of (Fig. S25) pertaining to NH(2) showing scalar coupling ${}^{1}J_{\text{NH}}$.

S28: 400 MHz proton decoupled 2D ¹⁵N-¹H HSQC spectrum of molecule 4 in the solvent CDCl₃.

S29: 800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule 4 in the solvent DMSO-d₆.

S30: Expansion of (Fig.S29) pertaining to NH(1) region showing scalar coupling ${}^{1}J_{\text{NH.}}$

S31: Expansion of (Fig.S29) pertaining to NH(2) region showing scalar coupling ${}^{1}J_{\text{NH.}}$

S32: 800 MHz proton decoupled 2D 15 N- 1 H HSQC spectrum of molecule 4 in the solvent DMSOd₆ showing the region pertaining to NH(1).

S33: 800 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule 4 in the solvent DMSOd₆ showing the region pertaining to NH(2).

S34: 800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **5** in the solvent CDCl₃.

S35: Expansion of (Fig. S34) pertaining to NH(1) region showing the scalar coupling ${}^{1}J_{\text{NH}}$.

S36: Expansion of (Fig. S34) pertaining to NH(2) region showing all the scalar couplings .

S37: 800 MHz proton decoupled 2D ¹⁵N-¹H HSQC spectrum of molecule 5 in the solvent CDCl₃.

S38: 800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **5** in the solvent DMSO-d₆.

S39: 800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **5** in the solvent DMSO-d₆ pertaining to NH(1) region showing scalar coupling ${}^{1}J_{\text{NH}}$.

S40: 800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **5** in the solvent DMSO-d₆ pertaining to NH(2) region showing scalar coupling ${}^{1}J_{\text{NH.}}$

S41: 800 MHz proton decoupled 2D $^{15}\text{N-}^{1}\text{H}$ HSQC spectrum of molecule **5** in the solvent DMSO-d_6.

S42: 400 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule 6 in the solvent CDCl₃.

S43: Expansion of (Fig. S42) pertaining to NH(1) region showing scalar coupling ${}^{1}J_{\text{NH.}}$

S44: Expansion of (Fig. S42) pertaining to NH(1) region showing all the scalar couplings.

S45: 400 MHz proton decoupled 2D ¹⁵N-¹H HSQC spectrum of molecule 6 in the solvent CDCl₃.

S46: 800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **6** in the solvent DMSO-d₆ pertaining to NH(1) region showing scalar coupling ${}^{1}J_{NH}$.

S47: 800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **6** in the solvent DMSO-d₆ pertaining to NH(2) region showing scalar coupling ${}^{1}J_{\text{NH.}}$

S48: 800 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule **6** in the solvent DMSO-d₆.

S49: 400 MHz 2D 19 F- 1 H HOESY spectrum of molecule **6** in the solvent CDCl₃ showing strong correlation between F and NH proton.

S50: 400 MHz ¹³C-NMR spectra of molecule 1 in the solvent CDCl_{3.}

S51: 400 MHz 2D ¹³C-¹H HSQC spectrum of molecule 1 in the solvent CDCl_{3.}

S52: 400 MHz ¹³C-H-NMR spectra of molecule 2 in the solvent CDCl₃.

S53: 400 MHz 2D ¹³C-¹H HSQC spectrum of molecule 2 in the solvent CDCl_{3.}

S54: 400 MHz ¹³C-NMR spectra of molecule **3** in the solvent CDCl₃.

S55: 800 MHz 2D ¹³C-¹H HSQC spectrum of molecule **3** in the solvent CDCl₃.

S56: 400 MHz ¹³C-NMR spectra of molecule 4 in the solvent CDCl_{3.}

S57: 400 MHz 2D ¹³C-¹H HSQC spectrum of molecule 4 in the solvent CDCl_{3.}

S58: 400 MHz ¹³C-NMR spectra of molecule **5** in the solvent CDCl₃.

S59: 800 MHz 2D ¹³C-¹H HSQC spectrum of molecule 5 in the solvent CDCl_{3.}

S60: 400 MHz ¹³C-NMR spectra of molecule 6 in the solvent CDCl_{3.}

S61: 400 MHz 2D ¹³C-¹H HSQC spectrum of molecule 6 in the solvent CDCl_{3.}

S62-S64: Synthesis of Benzoyl Phenyl Oxalamides.

The chemical structures of N¹-benzoyl-N²-phenyl oxalamide and its derivatives. The molecules 1-6 differ in their substituents, X and X^1 as mentioned in the scheme.

Selected regions of the 400 MHz ¹H-NMR spectra of molecules 1-6 (from bottom trace to top trace), recorded in the solvent CDCl₃ at 298 K and the spectra were referenced to internal tetramethylsilane.

400 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **1** in the solvent CDCl₃.

Expanded region of HSQC spectrum of molecule 1 (Fig. S3) pertaining to NH(1) region, showing the scalar coupling ${}^{1}J_{\text{NH}}$.

Expanded region of HSQC spectrum of molecule 1 (Fig. S3) pertaining to NH(2) region, showing the scalar coupling ${}^{1}J_{\text{NH}}$.

400 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule 1 in the solvent CDCl_{3.}

800 MHz 2D 15 N-¹H coupled HSQC spectrum of molecule 1 in the solvent DMSO-d₆.

Expanded region of HSQC spectrum of molecule 1 (Fig. S7) pertaining to NH(1) proton, showing the scalar coupling ${}^{1}J_{NH}$.

Expanded region of HSQC spectrum of molecule 1 (Fig. S7) pertaining to NH(2) proton, showing the scalar coupling ${}^{1}J_{NH}$.

800 MHz proton decoupled 2D ¹⁵N-¹H HSQC spectrum of molecule **1** in the solvent DMSO-d₆.

400 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **2** in the solvent CDCl_{3.}

400 MHz proton decoupled 2D ¹⁵N-¹H HSQC spectrum of molecule **2** in the solvent CDCl_{3.}

800 MHz proton decoupled 2D $^{15}\rm N-^{1}H$ HSQC spectrum of molecule 2 in the solvent DMSO-d_6 showing the NH(1) region.

800 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule **2** in the solvent DMSO-d₆ showing the NH(2) region.

800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **3** in the solvent CDCl₃.

Expanded region of 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **3 (Fig. S15)** pertaining to NH(1) region showing scalar coupling ${}^{1}J_{NH}$.

Expanded region of 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **3 (Fig. S15)** pertaining to NH(2) region showing scalar coupling ${}^{1}J_{NH}$.

800 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule **3** in the solvent CDCl_{3.}

800 MHz 2D 15 N-¹H coupled HSQC spectrum of molecule **3** in the solvent DMSO-d₆.

Expanded region pertaining to NH(1) of 2D 15 N-¹H HSQC spectrum of molecule 3 (Fig. S19) showing scalar coupling $^{1}J_{NH}$.

Expanded region pertaining to NH(2) of 2D 15 N-¹H HSQC spectrum of molecule **3 (Fig. S19)** showing scalar coupling $^{1}J_{NH}$.

800 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule **3** in the solvent DMSO-d₆ showing region pertaining to NH(1).

800 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule **3** in the solvent DMSO-d₆ showing region pertaining to NH(2).

400 MHz 2D $^{19}\text{F-}^{1}\text{H}$ HOESY spectrum of molecule 4 in the solvent CDCl3 showing strong correlation between F and NH proton.

400 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **4** in the solvent CDCl_{3.}

Expanded region of (Fig. S25) pertaining to NH(1) showing scalar couplings ${}^{1}J_{NH,}{}^{1h}J_{FH}$ and ${}^{2h}J_{NF.}$

Expanded region of (Fig. S25) pertaining to NH(2) showing scalar coupling ${}^{1}J_{\text{NH}}$.

400 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule 4 in the solvent CDCl_{3.}

800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule 4 in the solvent DMSO-d₆.

Expansion of (Fig.S29) pertaining to NH(1) region showing scalar coupling ${}^{1}J_{\text{NH.}}$

Expansion of (Fig.S29) pertaining to NH(2) region showing scalar coupling ${}^{1}J_{\text{NH.}}$

800 MHz proton decoupled 2D 15 N- 1 H HSQC spectrum of molecule 4 in the solvent DMSO-d₆ showing the region pertaining to NH(1).

S32

800 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule **4** in the solvent DMSO-d₆ showing the region pertaining to NH(2).

800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **5** in the solvent CDCl_{3.}

S34

Expansion of (Fig. S34) pertaining to NH(1) region showing the scalar coupling ${}^{1}J_{\text{NH.}}$

Expansion of (Fig. S34) pertaining to NH(2) region showing all the scalar couplings.

800 MHz proton decoupled 2D ¹⁵N-¹H HSQC spectrum of molecule **5** in the solvent CDCl_{3.}

800 MHz 2D 15 N-¹H coupled HSQC spectrum of molecule **5** in the solvent DMSO-d₆.

800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **5** in the solvent DMSO-d₆ pertaining to NH(1) region showing scalar coupling ${}^{1}J_{NH}$.

800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **5** in the solvent DMSO-d₆ pertaining to NH(2) region showing scalar coupling ${}^{1}J_{\text{NH}}$.

800 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule **5** in the solvent DMSO-d₆.

400 MHz 2D 15 N-¹H coupled HSQC spectrum of molecule 6 in the solvent CDCl_{3.}

S42

Expansion of (Fig. S42) pertaining to NH(1) region showing scalar coupling ${}^{1}J_{\rm NH}$

Expansion of (Fig. S42) pertaining to NH(2) region showing all the scalar couplings.

400 MHz proton decoupled 2D ¹⁵N-¹H HSQC spectrum of molecule 6 in the solvent CDCl_{3.}

800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **6** in the solvent DMSO-d₆ pertaining to NH(1) region showing scalar coupling ${}^{1}J_{\text{NH}}$.

S46

800 MHz 2D ¹⁵N-¹H coupled HSQC spectrum of molecule **6** in the solvent DMSO-d₆ pertaining to NH(2) region showing scalar coupling ${}^{1}J_{\text{NH.}}$

800 MHz proton decoupled 2D 15 N-¹H HSQC spectrum of molecule **6** in the solvent DMSO-d₆.

S48

400 MHz 2D $^{19}\rm{F}{\mathchar`lembcar}{\mathchar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar'}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar`lembcar}{\mathchar}{\math$

S49

400 MHz ¹H-NMR spectra of molecules 1 in the solvent CDCl_{3.}

400 MHz 2D ¹³C-¹H HSQC spectrum of molecule 1 in the solvent CDCl_{3.}

400 MHz ¹H-NMR spectra of molecules 2 in the solvent CDCl_{3.}

400 MHz 2D ¹³C-¹H HSQC spectrum of molecule 2 in the solvent CDCl_{3.}

400 MHz ¹H-NMR spectra of molecules **3** in the solvent CDCl_{3.}

800 MHz 2D $^{13}C^{-1}H$ HSQC spectrum of molecule 3 in the solvent CDCl_{3.}

400 MHz ¹H-NMR spectra of molecules 4 in the solvent CDCl_{3.}

400 MHz 2D $^{13}C^{-1}H$ HSQC spectrum of molecule 4 in the solvent CDCl_{3.}

400 MHz ¹H-NMR spectra of molecules $\mathbf{5}$ in the solvent CDCl_{3.}

800 MHz 2D ¹³C-¹H HSQC spectrum of molecule **5** in the solvent CDCl₃.

400 MHz ¹H-NMR spectra of molecules 6 in the solvent CDCl_{3.}

S60

400 MHz 2D ¹³C-¹H HSQC spectrum of molecule 6 in the solvent CDCl_{3.}

Materials

Benzamide, 2-Fluorobenzamide, 2-Chlorobenzamide, 2-Bromobenzamide, 2trifluoromethylbenzamide, Aniline, 2-Fluoroaniline, 2-Chloroaniline, Oxalylchloride, Tetrahydrofuran.

Synthesis of Benzoyl Phenyl Oxalamides

Commercially available reactants of high purity were purchased and used without any further purification. The AR grade solvent THF was used in the synthesis. All the reactants were taken in 1:1:1 ratio. The calculated amount of oxalyl chloride (C) dissolved in tetrahydrofuran (THF) was taken in a round bottom flask. The calculated amounts of benzamide (A) and aniline (B) derivatives were also separately dissolved in THF. Firstly, the solution (A) was added to solution (C), followed by the solution (B). The RBF was fitted with a CaCl₂ guard tube to vent the HCl gas. The reaction was monitored by TLC on regular intervals. The reaction was carried out under dilute conditions in order to minimize the reaction between two amides or anilines. The product was purified by column chromatography using ethyl acetate/hexane solvent system with polarity gradient. The elaborate details of the synthesis of six benzoyl phenyl oxalamides given in the supporting information. To the best of our knowledge this method of synthesis of benzoyl phenyl oxalamides has not been reported in literature.

S62

66

Synthesis of N¹-benzoyl-N²-phenyloxalamide (1):

A solution of benzamide (500 mg, 4.12 mmol) in 10 mL of THF and aniline (376 μ L, 4.12 mmol) in 10 mL of THF were prepared separately. The benzamide solution was added to a solution of oxalyl chloride (353 μ L, 4.12 mmol) in 10 mL THF, followed by aniline solution. The reaction was stirred under ambient conditions for 12 hours, monitored by TLC at regular intervals. The reaction mixture was concentrated in vacuo to obtain a colorless solid and chromatographed on silica gel using ethyl acetate/hexane eluent (30% v/v). The product (91 % yield) is confirmed by nmr and mass spectrometry (m/z: 268.267).

Synthesis of N¹-(2-fluorobenzoyl)-N²-(2-fluorophenyl)oxalamide (2):

A pre-weighed amount of 2-fluorobenzamide (500 mg, 3.59 mmol) in 10 mL THF and 2-fluoroaniline (346 μ L, 3.59 mmol) in 10 mL of THF were added to oxalyl chloride solution (308 μ L, 3.59 mmol in 10 mL THF) in a sequence respectively. The mixture was stirred overnight at room temperature. The solvent was evaporated, and the fluffy solid was subjected to column chromatography on silica gel with 30 % v/v EtOAc in Hexane. The purified product (82% yield) was confirmed by nmr and mass spectrometry (m/z: 304.248).

Synthesis of N¹-(2-chlorobenzoyl)-N²-(2-chlorophenyl)oxalamide (3):

The solution of 2-chlorobenzamide (500 mg, 3.21 mmol in 10 mL of THF) was added to oxalyl chloride solution (275 μ L, 3.21 mmol in 10 mL THF) which is followed by the immediate addition of already made 2-chloroaniline solution (338 μ L, 3.21 mmol in 10 mL THF). The reaction was stirred under ambient conditions for 12 hrs, then concentrated in vacuo to obtain a white solid. The latter was flash chromatographed on silica gel with 30 % v/v EtOAc in Hexane. The product (78%

yield) was characterized by nmr and mass spectrometry (m/z: 337.15). Synthesis of N¹-(2-fluorobenzoyl)-N²-(2-chlorophenyl)oxalamide (4):

To a solution of oxalyl chloride (308 μ L, 3.59 mmol in 10 mL THF), a solution of 2fluorobenzamide (500 mg, 3.59 mmol in 10 mL THF) and 2-chloroaniline (378 μ L, 3.59 mmol in 10 mL THF) were added in consecutive steps and stirred for 12 hrs. The solvent was evaporated in vacuum, and the residue was chromatographed on silica gel with 30% v/v EtOAc in Hexane. The product (yield 78%) was confirmed by nmr and mass spectrometry (m/z: 320.036).

Synthesis of N¹-(2-fluorophenyl)-N²-(2-(trifluoromethyl)benzoyl)oxalamide (5):

The 2-(trifluoromethyl)benzamide solution (100 mg, 0.53 mmol in 5 mL THF) was added to oxalyl chloride (45 μ L, 0.53 mmol) in 10 mL THF, followed by the addition of 2-fluoroaniline (51 μ L, 0.53 mmol in 5 mL THF). The mixture was stirred for 12 hrs, concentrated in vacuo and purified by column chromatography on silica gel with 30% EtOAc in hexane eluent. The yield of the product was determined to be 72% and confirmed by nmr and mass spectrometry (m/z: 354.260).

Synthesis of N¹-(2-bromobenzoyl)-N²-(2-fluorophenyl)oxalamide (6):

2-bromobenzamide (500 mg, 2.45 mmol in 10 mL THF) and 2-fluoroaniline (241 μ L, 2.45 mmol in 10 mL THF) were added one after the other respectively to oxalyl chloride solution (214 μ L, 2.45 mmol in 10 mL THF). It was stirred overnight, THF solvent was evaporated using rotaevaporator and the residue was chromatographed on silica gel with 30% v/v EtOAc/Hexane solution. The product (yield 88%) was confirmed by mass spectrometry (m/z: 365.154) and nmr.