Supplementary Information

One-Pot Synthesis of Cu-Pt Nanodendrites with Enhanced Activity towards Methanol Oxidation Reaction

Hongcheng Peng¹, Weihong Qi^{1, 2, *}, Haofei Wu¹, Jieting He¹, Yejun Li^{3*}, and Haipeng Xie³

¹ School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R.

China

² Key Laboratory of Non-ferrous Materials Science and Engineering, Ministry of Education, Changsha, 410083, P. R. China

³ Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China

* Corresponding author: <u>qiwh216@csu.edu.cn</u>; <u>yejun.li@csu.edu.cn</u>

Fig. S1. TEM image of Cu-Pt nanodendrites measured at different positions and with different magnifications, demonstrating a highly branched structures of the synthesized samples.

Fig. S2. Cyclic voltammetry (CV) curves of the products with different reducing agent (a), and with different reaction times (b) in 0.5 M NaOH and 0.5 M CH₃OH at a scan rate of 50 mV·s⁻¹.