Revealing the unusual rigid diamond net analogues in superhard tita nium carbides

Chunhong Xu^a, Kuo Bao^{*a}, Shuailing Ma^a, Da Li^a, Defang Duan^a, Hongyu Yu^a, Xilian Jin^a, Fubo Tian^a, Bingbing Liu^a, Tian Cui^{*a}

State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

Figure S1. The simulated power X-ray diffraction (λ = 0.5608 Å and the diffraction data are obtained from powder diffraction and not single crystal) for experiment structures (a) cubic TiC and (c) cubic Ti₂C at ambient pressure, our predicted corresponding structures (b) TiC and (d) Ti₂C at ambient pressure.

	Space Group	Lattice Parameters (Å,°)	Atoms	X	у	Z
Ti ₂ C	Fd-3m	a=b=c=8.641	Ti(32e) C(16c)	-0.6312 -0.8750	0.1312 0.3750	0.1312 0.3750
Ti ₂ C	R-3m	a=b=3.087,c=14.471	Ti(6c) C(3b)	0.3333 0.3333	0.6667 0.6667	0.4212 0.1667
Ti ₂ C	<i>I</i> 4/ <i>m</i>	a=b=5.551,c=4.555	Ti(8h) C(4e)	0.6604 0	0.8258 0	0.5 0.3249
Ti ₂ C	<i>I</i> 4/ <i>m</i> (Calc, Ref 1)	a=b=5.552,c=4.554	Ti(8h) C(4e)	0.340 0	0.174 0	0 0.825
Ti ₃ C ₂	C2/m	a=c=5.321,b=9.203 α=γ=90,β=70.197	Ti(8j) Ti(4i) C(2b) C(2c) C(2c) C(4h)	0.2476 0.2348 0 0.5 0	0.3400 0.5 0.5 0.5 0.6676	-0.2662 -0.7428 0 -0.5 -0.5
Ti ₃ C ₂	C2/m (Calc, Ref 2)	a=c=5.219,b=9.038 α=γ=90,β=109.47	Ti(8j) Ti(4i) C(2a) C(4g) C(2d)	0.2531 0.7379 0 0 0	0.1614 0 0.3327 0.5	0.2373 0.2439 0 0 0.5
Ti ₃ C ₂	P4/mbm	a=b=5.315,c=2.855 α=γ=90,β=70.197	Ti(2b) Ti(4g) C(4h)	0 0.1821 0.1029	0 0.6821 0.3972	0.5 0 0.5
Ti ₃ C ₂	P4/mbm (Calc, Ref 1)	a=b=5.940,c=3.076 α=γ=90,β=144.898	Ti(2a) Ti(4h) C(4g)	0 0.1579 0.1520	0 0.6579 0.3480	0 0.5 0
Ti ₆ C ₅	<i>C</i> 2/ <i>m</i>	a=5.327,b=9.201,c=6.139 α=γ=90,β=125.202	Ti(8j) Ti(4i) C(2c) C(4h) C(4g)	-0.0065 0.0260 1.0 1.0 -0.5	-0.1752 -0.5 0 -0.3335 -0.1666	0.2544 0.2632 0.5 0.5 0
Ti ₆ C ₅	<i>C2/m</i> (Calc, Ref 2)	a=5.234,b=9.066,c=5.234 α=γ=90,β=109.47	Ti(8j) Ti(4i) C(2a) C(4h) C(4g)	0.2410 0.7603 0 0 0	0.1736 0 0 0.1665 0.3332	0.2462 0.2390 0 0.5 0
TiC	Fm-3m	a=b=c=4.336	Ti(4a) C(4b)	0.5 0.5	0.5 0	0 0
TiC	<i>Fm</i> -3 <i>m</i> (Exp, Ref 3)	a=b=c=4.328	Ti(4a) C(4b)	0 0.5	0 0.5	0 0.5
TiC ₂	R-3m	a=b=2.649,c=11.959	Ti(3b) C(6c)	0.3333 0	0.6667 0	0.1667 0.3137
TiC ₃	R-3m	a=b=2.603,c=30.670	Ti(6c) C(6c) C(6c) C(6c)	0 0.6667 0.6667 0.3333	0 0.3333 0.3333 0.6667	0.1013 0.3075 0.1594 0.0421
TiC4	P-3m1	a=b=2.588,c=12.299	Ti(2d) C(2d) C(2d) C(2d) C(2d) C(2c)	0.3333 0.3333 0.3333 0.6667 0	0.6667 0.6667 0.6667 0.3333 0	0.1633 0.9818 0.4796 0.6473 0.6893

Table S1. Lattices parameters and atomic coordinates of Ti_2C , Ti_3C_2 , Ti_6C_5 , $TiC-TiC_4$ at ambient pressure.

Ref 1. C. Jiang and W. S. Jiang, Pressure–composition phase diagram of Ti–C from first principles, *Phys. Status Solidi B.*, 2014, **251**, 533–536.

Ref 2. P. A. Korzhavyi, L. V. Pourovskii, H. W. Hugosson, A. V. Ruban, and B. Johansson, Ab initio study of phase equilibria in TiC(x), *Phys. Rev. Lett.*, 2002, **88**, 015505.

Ref 3. G. Amirthan, K. Nakao, M. Balasubramanian, H. Tsuda and S. Mori, Influence of N and Fe on α -Ti precipitation in the in situ TiC–titanium alloy composites, *J. Mater. Sci.*, 2011, **46**, 1103-1109.

Figure S2. The curves of phonon dispersion for TiC_n (n>1) compounds. TiC₂ (a) at 0 GPa, (b) at 100 GPa; TiC₃ (c) at 0 GPa, (d) at 100 GPa; TiC₄ (e) at 0 GPa, (f) at 100 GPa, respectively.

Figure S3. The calculated three-dimensional representations of linear compressibility, Poisson's ratio, shear ratio and Young's modulus for the TiC structure.

Figure S4. The calculated three-dimensional representations of linear compressibility, Poisson's ratio, shear ratio and Young's modulus for the TiC₃ structure.

Figure S5. The calculated three-dimensional representations of linear compressibility, Poisson's ratio, shear ratio and Young's modulus for the TiC_4 structure.

Table S2.	The calculated	formation e	enthalpies A	AH of TM	$IC_4 (TM = $	V, Zr,	Nb,	Hf and
Ta).								

	VC ₄	ZrC ₄	NbC ₄	HfC ₄	TaC ₄
ΔΗ					
(eV/atom)	-0.46234	-0.39428	-0.17959	-0.71717	-0.14002

Table S3. Calculated elastic constants C_{ij} (GPa), bulk modulus *B* (GPa), shear modulus *G* (GPa), Young's modulus Y (GPa), *B/G* and Poisson's ratio *v* of TMC₄ (TM= V, Zr, Nb, Hf and Ta).

C ₃₃	C44	C ₆₆	C ₁₂	C ₁₃	В	G	Y	B/G	v
687	315	357	166	126	362	332	762	0.92	0.15
623	269	298	125	102	301	282	645	1.07	0.14
567	264	265	197	172	342	256	615	0.75	0.20
632	2.72	304	131	96	305	288	656	1.06	0 14
576	255	273	190	174	345	257	617	0.74	0.20
	C ₃₃ 687 623 567 632 576	C ₃₃ C ₄₄ 687 315 623 269 567 264 632 272 576 255	C ₃₃ C ₄₄ C ₆₆ 687 315 357 623 269 298 567 264 265 632 272 304 576 255 273	C ₃₃ C ₄₄ C ₆₆ C ₁₂ 687 315 357 166 623 269 298 125 567 264 265 197 632 272 304 131 576 255 273 190	C ₃₃ C ₄₄ C ₆₆ C ₁₂ C ₁₃ 687 315 357 166 126 623 269 298 125 102 567 264 265 197 172 632 272 304 131 96 576 255 273 190 174	C ₃₃ C ₄₄ C ₆₆ C ₁₂ C ₁₃ B 687 315 357 166 126 362 623 269 298 125 102 301 567 264 265 197 172 342 632 272 304 131 96 305 576 255 273 190 174 345	C ₃₃ C ₄₄ C ₆₆ C ₁₂ C ₁₃ B G 687 315 357 166 126 362 332 623 269 298 125 102 301 282 567 264 265 197 172 342 256 632 272 304 131 96 305 288 576 255 273 190 174 345 257	C_{33} C_{44} C_{66} C_{12} C_{13} B G Y 68731535716612636233276262326929812510230128264556726426519717234225661563227230413196305288656576255273190174345257617	C_{33} C_{44} C_{66} C_{12} C_{13} B G Y B/G 6873153571661263623327620.926232692981251023012826451.075672642651971723422566150.75632272304131963052886561.065762552731901743452576170.74

Figure S6. The curves of phonon dispersion for TMC₄ (TM= V, Zr, Nb, Hf and Ta) at ambient pressure. (a) VC₄, (b) ZrC₄, (c) NbC₄, (d) HfC₄ and (e) TaC₄.

	Space Group	Lattice Parameters (Å)	Atoms	X	у	Z
VC ₄	<i>P</i> -3 <i>m</i> 1	a=b=2.5600,c=12.0099	C (2d)	0.66667	0.33333	0.52106
			C (2d)	0.66667	0.33333	0.01867
			C (2d)	0.33333	0.66667	0.34908
			C (2c)	0	0	0.69451
			V (2d)	0.66667	0.33333	0.84012
ZrC ₄	<i>P</i> -3 <i>m</i> 1	a=b=2.6833,c=13.0102	C(2d)	0.66667	0.33333	0.51939
			C (2d)	0.66667	0.33333	0.01657
			C (2d)	0.66667	0.33333	0.36162
			C (2c)	0	0	0.67810
			Zr (2d)	0.66667	0.33333	0.83111
NbC ₄	<i>P</i> -3 <i>m</i> 1	a=b=2.6529,c=12.7689	C (2d)	0.66667	0.33333	0.51979
			C (2d)	0.66667	0.33333	0.01824
			C (2d)	0.33333	0.66667	0.35865
			C (2c)	0	0	0.68201
			Nb (2d)	0.66667	0.33333	0.83333
HfC ₄	<i>P</i> -3 <i>m</i> 1	a=b=2.6740,c=12.8550	C (2d)	0.66667	0.33333	0.51966
			C (2d)	0.66667	0.33333	0.01780
			C (2d)	0.33333	0.66667	0.36005
			C (2c)	0	0	0.68065
			Hf (2d)	0.66667	0.33333	0.83245
TaC ₄	<i>P</i> -3 <i>m</i> 1	a=b=2.6577,c=12.7097	C (2d)	0.66667	0.33333	0.51992
			C (2d)	0.66667	0.33333	0.01958
			C (2d)	0.66667	0.33333	0.35818

Table S4. The optimized lattices parameters and atomic coordinates of TMC_4 (TM= V, Zr, Nb, Hf and Ta) at ambient pressure.

C (2c)	0	0	0.68322
Ta (2d)	0.66667	0.33333	0.83424

Table S5. Calculated bond parameters and Vicker hardness of $TMC_4(TM=V, Zr, Nb, Hf and Ta)$ structures.

Crystals	bond type	$d^{\mu}(\text{\AA})$	$v_b^{\mu}(\text{\AA}^3)$	Р	ſm	H _{v Gao} (GPa)
VC4	C-C	1.544	1.296	0.90		50.3
	C-C	1.560	1.337	0.79		
	C-C	1.562	1.342	0.87		
	C-C	1.568	1.357	0.88		
	V-C	2.250	4.011	0.08	1.157×10-3	
	V-C	2.290	4.228	0.08	1.157×10-3	
ZrC ₄	C-C	1.548	1.202	0.80		41.9
	C-C	1.609	1.350	0.85		
	C-C	1.630	1.404	0.83		
	C-C	1.634	1.414	0.83		
	Zr-C	2.514	5.149	0.08	1.848×10-4	
	Zr-C	2.519	5.180	0.08	1.848×10-4	
NbC4	C-C	1.554	1.249	0.80		43.9
	C-C	1.605	1.376	0.84		
	C-C	1.613	1.397	0.84		
	C-C	1.618	1.410	0.85		
	Nb-C	2.431	4.783	0.09	1.054×10-3	
	Nb-C	2.463	4.974	0.08	1.054×10-3	
HfC ₄	C-C	1.527	1.616	0.79		49.3
	C-C	1.608	1.356	0.86		
	C-C	1.622	1.391	0.83		
	C-C	1.627	1.404	0.84		
	Hf-C	2.484	5.688	0.12	3.907×10 ⁻⁴	

	Hf-C	2.502	5.106	0.12	3.907×10-4	
TaC ₄	C-C	1.527	1.178	0.80		59.2
	C-C	1.604	1.365	0.83		
	C-C	1.613	1.388	0.83		
	C-C	1.618	1.401	0.84		
	Ta-C	2.441	4.810	0.17	1.228×10-3	
	Ta-C	2.469	4.978	0.16	1.228×10-3	

Table S6. The different bond length d (Å) within the Ti-C and C-C bonds and their corresponding integrated crystal orbital Hamiltonian population values ((-ICOHP, eV per bond).

	Bond	d	ICOHP
TiC	Ti-C1	2.168	2.99
TiC ₂	Ti-C1	2.228	1.42
	Ti-C1	2.331	1.55
	C1-C1	1.600	8.65
TiC ₃	Ti-C2	2.228	1.42
	Ti-C1	2.315	0.97
	Ti-C2	2.329	1.50
	Ti-C3	2.357	1.54
	C1-C1	1.586	8.39
	C2-C2	1.568	9.12
	C1-C3	1.584	9.06
TiC ₄	Ti-C1	2.232	1.40
	Ti-C1	2.328	1.49
	Ti-C3	2.330	0.90
	Ti-C4	2.350	1.58
	C1-C1	1.559	9.26
	C2-C2	1.576	9.22
	C3-C4	1.560	9.11

Structure	Atom (Number)	Charge value (e)	δ(e)
TiC	Ti (32)	8.34	1.66
	C (32)	5.66	-1.66
TiC ₂	Ti (24)	8.99	1.01
	C (24)	4.50	-0.50
	C (24)	4.51	-0.51
TiC ₃	Ti (24)	9.01	0.99
	C (12)	4.02	-0.02
	C (12)	4.06	-0.06
	C (24)	4.46	-0.46
	C(9)	4.48	-0.48
	C (15)	4.49	-0.49
TiC ₄	Ti (16)	9.01	0.99
	C(8)	3.99	0.01
	C (8)	4.49	-0.49
	C (8)	4.00	0
	C(16)	4.03	-0.03
	C (24)	4.48	-0.48

Table S7. Bader charge analysis using supercell calculations $2 \times 2 \times 2$ of TiC, $2 \times 2 \times 2$ of TiC₂, $2 \times 2 \times 1$ of TiC₃ and $2 \times 2 \times 2$ of TiC₄ at ambient pressure.