Supporting Information

Fabrication of magnetite/diazonium functionalized-reduced graphene oxide hybrid as an easily regenerative adsorbent for efficient removal of chlorophenols from aqueous solution

Xiaoqin Shen^a, Xiaolei Chen^b, Dejun Sun^b, Tao Wu^{b,*}, and Yujiang Li^{a,*}

^aShandong Provincial Research Center for Water Pollution Control, School of Environmental Science & Engineering, Shandong University, Jinan, 250100, PR China

^bKey Laboratory of Colloid & Interface Science of Education Ministry, Shandong University, Jinan, 250100, PR China

Correspondence to either author:

* Tao Wu: Tel/Fax: +86-531-88365437; E-mail: wutao@sdu.edu.cn.

* Yujiang Li: Tel/Fax: +86-531-88363358; E-mail: yujiang@sdu.edu.cn.

Appendix A. Supplementary data

Table S1.	Freundlich isotherm	parameters fo	r adsorption	of CPs onto	M-DF-RGO at
298 K.		•	1		

Dhanalias	A da anh an ta	Freundlich			
Phenolics	Adsorbents	R ²	$\begin{matrix} K_F \\ mg^{1\text{-}n\text{-}}L^{n\text{-}}g^{\text{-}1} \end{matrix}$	n	
4-chlorophenol (4-CP)	M-DF-RGO	0.9896	3.270	1.54	
2,4-dichlorophenol (2,4-DCP)	M-DF-RGO	0.9885	2.693	1.78	

Fig S1. AFM images of (a) GO, (b) RGO, (c) DF-RGO, (d) M-DF-RGO, and (e) XRD spectra of Fe_3O_4 .

Figure S2. High resolution Fe 2p core level XPS spectrum of M-DF-RGO.

Figure S3. Zeta potential of GO, and M-DF-RGO as a function of pH.

Theoretical Calculations

The diazonium functionalized-reduced graphene oxide is constructed by a *p*-carboxyphenyl group at the plane of graphene, and the graphene model is built by the unit cell parameters of a = b = 2.460 Å, c = 162 6.800 Å; $\alpha = \beta = 90$ °, $\gamma = 120$ °, and a 5 × 4 supercell was built.

Figure S4. Molecular models of DF-RGO (carbon atom: yellow; oxygen atom: red; hydrogen atom: blue): (a) top view, and (b) side view.

Figure S5. Chlorophenols uptakes of Fe_3O_4 nanoparticles (experimental conditions: initial chlorophenols concentration = 0-300 mg/L, pH = 6, Fe_3O_4 dosage = 1.0 g/L, contact time = 12 h at 298 K).