Fluorinated Polymer Surfactants Bearing Alternating Peptide Skeleton Prepared by Three-Component Polycondensation

Yasuhito Koyama ${ }^{\text {a* }}$, Abu Bin Ihsan ${ }^{\text {a }}$, Toshiaki Taira ${ }^{\text {b }}$, and Tomohiro Imura ${ }^{\text {b }}$
aDepartment of Pharmaceutical Engineering, Faculty of Engineering Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
${ }^{\text {b }}$ Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
E-mail: ykoyama@pu-toyama.ac.jp

Contents

General methods 2
Synthetic procedures to give alternating peptides 3
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19}$ F NMR, DOSY, and IR spectra 7
Calibration curve in CDCl_{3} for M_{w} prediction 19
DSC profiles 20
Comparison of IR spectra of cotton gauze before and after modification 23
UV spectra of P6 24
TGA profiles 25
References 27

General methods:

Materials. Compound 1 was prepared according to the literature. ${ }^{1}$ Trifluoromethanesulfonic acid (TfOH, Kanto chemicals), isobutyraldehyde (TCI), benzaldehyde (Kanto), biphenyl-4carboxaldehyde (TCI), 1H,1H-heptafluorobutylamine (TCI), 1H,1H-pentadecafluorooctylamine (Wako), i-propylalcohol (Taiyo), chloroform (Kanto), and hexane (Kanto) were used as obtained. PANAM dendrimer generation 4 (core type: ethylenediamine, sigma-aldrich) MeOH solution was used as obtained for the DOSY measurement. ${ }^{2}$

Measurements. ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (100 MHz), and ${ }^{19} \mathrm{~F}$ NMR (376 MHz) spectra were recorded on a Bruker AVANCE II 400 spectrometer using CDCl_{3}, DMSO- d_{6}, and $\mathrm{CD}_{3} \mathrm{OD}$ as the solvent. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$ NMR spectra were calibrated using residual undeuterated solvent and tetramethylsilane as the internal standard, while ${ }^{19} \mathrm{~F}$ spectra were calibrated using $\mathrm{CF}_{3} \mathrm{COOH}$ as a standard. DOSY measurements were carried out using 3.0 mg of compound in $600 \mu \mathrm{~L}$ of CDCl_{3} to estimate the diffusion coefficients. DOSY spectra were recorded on a Bruker AVANCE II 400 spectrometer. All experiments were run without spinning to avoid convection. The standard Bruker pulse program, ledbpgp2s, employing simulated echo and longitudinal eddy delay with bipolar gradients and two spoil gradients, was utilized. The obtained DOSY spectra were processed by Topspin 3.2 software. Diffusion dimension was generated using the inversion of Laplace transform driven by the CONTIN method. ${ }^{3}$ Diffusion coefficients of a chosen narrow chemical shift in the spectra of the compounds were extracted by using Dynamics center software (ver. 2.4.8, Bruker). FTIR spectra using a KBr pellet were measured using a Thermo Fischer Scientific Nexus 870 spectrometer. FT-IR spectra via an attenuated total reflection (ATR) method were measured using a Perkin Elmer spectrum 100 spectrometer. SEC analyses were carried out using a chromatographic system consisting of a Shimadzu LC-20AT pump with a Shimadzu SPD-20A (UV detector) equipped with two consecutive linear polystyrene gel columns (Tosoh TSKgel $\mathrm{GMH}_{\mathrm{HR}}-\mathrm{H}$ and TSKgel $\mathrm{G} 3000 \mathrm{H}_{\mathrm{HR}}$) at room temperature according to polystyrene standards using DMF as an eluent (flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$). Differential scanning calorimetry analyses (DSC) were carried out on DSC7020 EXSTAR (Seiko Instruments Inc.) for P1, P2, P3, and P6 and DSC-60 plus (Shimadzu Co. Ltd.) for $\mathbf{P 4}$ and $\mathbf{P 5}$ under N_{2} atmosphere (flow rate: $150 \mathrm{~mL} / \mathrm{min}$). Thermogravimetric analyses (TGA) were carried out on TG/DTA 7300 EXSTAR (Seiko Instruments Inc.) under N_{2} atmosphere (flow rate: 50 $\mathrm{mL} / \mathrm{min}$). The surface tensions of the surfactant solutions were determined by the Wilhelmy plate method at $25{ }^{\circ} \mathrm{C}$ using a DY-500 surface tension meter (Kyowa Kaimen Kagaku Co. Ltd.), the accuracy of which was intermittently checked with ultrapure water. The Pt plate was cleaned by flaming, and glassware was rinsed sequentially with ultrapure water and organic solvents. The size distribution of the assemblies of the P6 solution was measured with a DLS instrument (DLS-7000, Otsuka Electronics Co. Ltd.) using an Ar laser with a wavelength of 488 nm as the source at 75 mW
at $25^{\circ} \mathrm{C}$. The time-dependent correlation function of the scattered light intensity was measured at a scattering angle of 90°. The size distributions were determined using the software provided with the instrument. The critical micelle concentration of $\mathbf{P 6}$ was determined by UV spectra using a UV-3600 Plus UV-VIS-NIR spectrophotometer (Shimadzu Co. Ltd, Japan).

Synthetic procedures to give alternating peptides Synthesis of P1

To a mixture of $1 \mathrm{H}, 1 \mathrm{H}$-heptafluorobutylamine $(1.07 \mathrm{~mL}, 8.00 \mathrm{mmol})$ in $i-\mathrm{PrOH}(4.0 \mathrm{~mL})$ was added TfOH ($708 \mu \mathrm{~L}, 8.00 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, which was followed by the addition of $\mathbf{1}(985 \mathrm{mg}, 8.00 \mathrm{mmol})$. After the dissolution of $\mathbf{1}$, isobutylaldehyde $(730 \mu \mathrm{~L}, 8.00 \mathrm{mmol})$ was added to the mixture at the same temperature. The mixture was warmed to room temperature, stirred for 4 d , and concentrated in vacuo. The resulting crude was further stirred for 2.5 d at room temperature and diluted with CHCl_{3}. The reaction was quenched by the addition of water. The products were extracted with CHCl_{3}. The combined organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude was diluted with a small amount of CHCl_{3} and the solution was reprecipitated in hexane to give hexaneinsoluble part ($\mathbf{P 1}, 2.30 \mathrm{~g}, 85 \%$) as a pale yellow oil and hexane-soluble part ($534 \mathrm{mg}, 18 \%$) as a pale yellow oil: $M_{\mathrm{w}} 7,400 \mathrm{Da}$ (estimated by DOSY); $M_{\mathrm{w}} / M_{\mathrm{n}} 1.5$ (estimated by SEC on the basis of polystyrene standards); $T_{\mathrm{g}}-23.6^{\circ} \mathrm{C}$; $T_{\mathrm{d} 5} 203.6{ }^{\circ} \mathrm{C}$; $T_{\mathrm{d} 10} 221.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.63$ (brd, NH), 7.40 (brd, NH), 6.97 (brd, NH), 4.16-3.94 (m, 3H, CH, CH ${ }_{2}$), 3.33-3.10 (m, 2H, CH_{2}), 2.16 (brd, $1 \mathrm{H}, \mathrm{CH}$), 1.03-0.90 (m, 6H, CH3 $) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 174.8$, $174.0,172.2,169.9,116.0(\mathrm{~m}), 68.3,68.2,47.9\left(\mathrm{td}, J_{\mathrm{CF}}=22,7.1 \mathrm{~Hz}\right), 43.0,41.0,38.7\left(\mathrm{t}, J_{\mathrm{CF}}=22 \mathrm{~Hz}\right)$, 31.6, 31.5, 19.3, $17.4 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta-81.37,-81.29,-81.41,-81.45$, $-81.48,-81.72,-81.74,-81.77,-117.73,-117.89,-120.00,-128.47,-128.54,-128.72 \mathrm{ppm} ;$ IR $(\mathrm{KBr}) ~ v 3315,3086,2969,2939,2880,2615,2536,1733,1655,1538,1471,1394,1376,1354,1222$, $1119,1030,994,958,914,787,759,739,668,639 \mathrm{~cm}^{-1}$.

Synthesis of P2

To a mixture of $1 \mathrm{H}, 1 \mathrm{H}$-heptafluorobutylamine $(1.07 \mathrm{~mL}, 8.00 \mathrm{mmol})$ in $i-\operatorname{PrOH}(4.0 \mathrm{~mL})$ was added TfOH ($708 \mu \mathrm{~L}, 8.00 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, which was followed by the addition of $\mathbf{1}(985 \mathrm{mg}, 8.00 \mathrm{mmol})$. After the dissolution of $\mathbf{1}$, benzaldehyde $(816 \mu \mathrm{~L}, 8.00 \mathrm{mmol})$ was added to the mixture at the same temperature. The mixture was warmed to room temperature, stirred for 4 d , and concentrated in vacuo. The resulting crude was further stirred for 2.5 d at room temperature and diluted with CHCl_{3}. The reaction was quenched by the addition of water. The products were extracted with CHCl_{3}. The combined organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude was diluted with a small amount of CHCl_{3} and the solution was reprecipitated in hexane to give hexaneinsoluble part ($\mathbf{P} 2,2.45 \mathrm{~g}, 82 \%$) as an orange oil and hexane-soluble part ($510 \mathrm{mg}, 17 \%$) as an orange oil: $M_{\mathrm{w}} 7,300 \mathrm{Da}$ (estimated by DOSY); $M_{\mathrm{w}} / M_{\mathrm{n}} 1.8$ (estimated by SEC on the basis of polystyrene
standards); $T_{\mathrm{g}}-13.3^{\circ} \mathrm{C} ; T_{\mathrm{d} 5} 217.2{ }^{\circ} \mathrm{C}$; $T_{\mathrm{d} 10} 246.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $293 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (brd, NH), 7.37 (brd, Ar, 5H), 6.73 (brd, NH), $4.40(\mathrm{~s}, \mathrm{CH}), 4.39(\mathrm{~s}, \mathrm{CH}), 4.13-3.85\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 3.36-3.16$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 172.8,172.3,172.0,169.6,137.3,137.2,129.2$, $129.1,128.9,128.3,127.5,127.4,119.0(\mathrm{~m}), 116.1(\mathrm{~m}), 66.4,66.3,46.5\left(\mathrm{td}, J_{\mathrm{CF}}=22.5,13 \mathrm{~Hz}\right), 42.9$, $41.2,38.6\left(\mathrm{t}, J_{\mathrm{CF}}=23.5 \mathrm{~Hz}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta-81.31,-81.33,-81.35$, $-81.38,-81.40,-81.69,-81.71,-81.74,-117.51,-120.09,-128.32,-128.41,-128.73 \mathrm{ppm} ;$ IR (KBr) v 3310, 3071, 3032, 2941, 1655, 1528, 1498, 1455, 1422, 1393, 1354, 1221, 1174, 1118, 1058, 1030, $1003,989,960,916,739,756,668,653 \mathrm{~cm}^{-1}$.

Synthesis of P3

To a mixture of $1 \mathrm{H}, 1 \mathrm{H}$-heptafluorobutylamine $(1.07 \mathrm{~mL}, 8.00 \mathrm{mmol})$ in $i-\mathrm{PrOH}(4.0 \mathrm{~mL})$ was added $\mathrm{TfOH}(708 \mu \mathrm{~L}, 8.00 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, which was followed by the addition of $\mathbf{1}(985 \mathrm{mg}, 8.00 \mathrm{mmol})$. After the dissolution of $\mathbf{1}$, biphenyl-4-carboxaldehyde ($1.46 \mathrm{mg}, 8.00 \mathrm{mmol}$) was added to the mixture at the same temperature. The mixture was warmed to room temperature, stirred for 4 d , and concentrated in vacuo. The resulting crude was further stirred for 2.5 d at room temperature and diluted with CHCl_{3}. The reaction was quenched by the addition of water. The products were extracted with CHCl_{3}. The combined organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude was diluted with a small amount of CHCl_{3} and the solution was reprecipitated in hexane to give hexane-insoluble part ($\mathbf{P} 3,2.25 \mathrm{~g}, 63 \%$) as a yellow solid and hexane-soluble part ($1.39 \mathrm{~g}, 38 \%$) as a yellow solid: $M_{\mathrm{w}} 7,100 \mathrm{Da}$ (estimated by DOSY); $M_{\mathrm{w}} / M_{\mathrm{n}} 1.5$ (estimated by SEC on the basis of polystyrene standards); $T_{\mathrm{g}} 31.4^{\circ} \mathrm{C}$; $T_{\mathrm{d} 5} 234.6^{\circ} \mathrm{C}$; $T_{\mathrm{d} 10} 264.0^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) δ 7.47-7.33 (m, Ar, NH), 6.65 (brd, NH), 4.45 (s, CH), 4.44 (s, CH), 4.20-3.89 (m, CH CH_{2}), 3.39-3.23 $\left(\mathrm{m}, \mathrm{CH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 172.8,172.3,169.5,141.9,141.8,140.2,136.1$, $135.9,128.8,127.94,127.89,127.79,127.65,127.61,127.07,127.01,126.95,66.0,46.5\left(\mathrm{t}, J_{\mathrm{CF}}=20.5\right.$ $\mathrm{Hz}), 43.0,41.2,38.6\left(\mathrm{t}, J_{\mathrm{CF}}=25 \mathrm{~Hz}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta-81.29,-81.31$, $-81.34,-81.36,-81.38,-81.71,-81.73,-81.76,-117.45,-120.05,-128.22,-129.32,-128.73 \mathrm{ppm} ;$ IR (KBr) v 3319, 2970, 1667, 1523, 1227, 1119, 1008, 951, 817, 761, 739, 699, 642, 562, 533, 514 cm^{-1}.

Synthesis of P4

To a mixture of $1 \mathrm{H}, 1 \mathrm{H}$-pentadecafluorooctylamine ($582 \mu \mathrm{~L}, 2.50 \mathrm{mmol}$) in $i-\mathrm{PrOH}(1.25 \mathrm{~mL})$ was added TfOH ($221 \mu \mathrm{~L}, 2.50 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, which was followed by the addition of $\mathbf{1}(308 \mathrm{mg}, 2.50$ $\mathrm{mmol})$. After the dissolution of $\mathbf{1}$, isobutylaldehyde ($228 \mu \mathrm{~L}, 2.50 \mathrm{mmol}$) was added to the mixture at the same temperature. The mixture was warmed to room temperature, stirred for 4 d , and concentrated in vacuo. The resulting crude was further stirred for 3 d at room temperature and diluted with CHCl_{3}. The reaction was quenched by the addition of water. The products were extracted with CHCl_{3}. The
combined organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude was diluted with a small amount of CHCl_{3} and the solution was reprecipitated in hexane to give hexaneinsoluble part ($\mathbf{P 4}, 583 \mathrm{mg}, 43 \%$) as a white solid and hexane-soluble part ($848 \mathrm{mg}, 63 \%$) as a white solid: $M_{\mathrm{w}} 7,600 \mathrm{Da}$ (estimated by DOSY); $M_{\mathrm{w}} / M_{\mathrm{n}} 1.2$ (estimated by SEC on the basis of polystyrene standards); $T_{\mathrm{g}}-1.3{ }^{\circ} \mathrm{C} ; T_{\mathrm{d} 5} 217.3^{\circ} \mathrm{C}$; $T_{\mathrm{d} 10} 236.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 177.0,171.8,70.03,69.99,42.97,32.84,19.83,18.83,18.73 \mathrm{ppm}$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta-81.58,-81.60,-81.64,-81.67,-81.69,-81.73,-81.75$, $-117.06,-122.59,-122.90,-123.67,-124.16,-124.25,-127.04 \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}) v 3319,2988,1692$, $1653,1525,1204,1148,1104,1020,790,701,668,567,531 \mathrm{~cm}^{-1}$.

Synthesis of P5

To a mixture of $1 \mathrm{H}, 1 \mathrm{H}$-pentadecafluorooctylamine ($582 \mu \mathrm{~L}, 2.50 \mathrm{mmol}$) in $i-\mathrm{PrOH}(1.25 \mathrm{~mL})$ was added TfOH $(221 \mu \mathrm{~L}, 2.50 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, which was followed by the addition of $\mathbf{1}(308 \mathrm{mg}, 2.50$ $\mathrm{mmol})$. After the dissolution of $\mathbf{1}$, benzaldehyde $(255 \mu \mathrm{~L}, 2.50 \mathrm{mmol})$ was added to the mixture at the same temperature. The mixture was warmed to room temperature, stirred for 4 d , and concentrated in vacuo. The resulting crude was further stirred for 3 d at room temperature and diluted with CHCl_{3}. The reaction was quenched by the addition of water. The products were extracted with CHCl_{3}. The combined organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude was diluted with a small amount of CHCl_{3} and the solution was reprecipitated in hexane to give hexaneinsoluble part ($\mathbf{P 5}, 956 \mathrm{mg}, 67 \%$) as a yellow solid and hexane-soluble part ($651 \mathrm{mg}, 45 \%$) as a yellow solid: $M_{\mathrm{w}} 7,400 \mathrm{Da}$ (estimated by DOSY); $M_{\mathrm{w}} / M_{\mathrm{n}} 1.3$ (estimated by SEC on the basis of polystyrene standards); $T_{\mathrm{g}} 0.7{ }^{\circ} \mathrm{C} ; T_{\mathrm{d} 5} 231.7{ }^{\circ} \mathrm{C}$; $T_{\mathrm{d} 10} 254.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $293 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.0,172.8,171.9,139.5,139.4,130.5,130.3,129.8,129.7$, $129.41,129.35,128.9,127.8,67.5,45.3,43.2,41.9 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) δ $-81.51,-81.54,-81.59,-81.62,-81.65,-81.67,-116.50,-119.08,-122.62,-122.94,-123.65$, $-124.06,-124.36,-127.04 \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}) v 3315,2960,1651,1524,1143,1053,1020,884,736$, $700,665,567,531 \mathrm{~cm}^{-1}$.

Synthesis of P6

To a mixture of $1 \mathrm{H}, 1 \mathrm{H}$-pentadecafluorooctylamine ($582 \mu \mathrm{~L}, 2.50 \mathrm{mmol}$) in $i-\mathrm{PrOH}(1.25 \mathrm{~mL})$ was added $\mathrm{TfOH}(221 \mu \mathrm{~L}, 2.50 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, which was followed by the addition of $\mathbf{1}(308 \mathrm{mg}, 2.50$ mmol). After the dissolution of $\mathbf{1}$, biphenyl-4-carboxaldehyde ($456 \mathrm{mg}, 2.50 \mathrm{mmol}$) was added to the mixture at the same temperature. The mixture was warmed to room temperature, stirred for 4 d , and concentrated in vacuo. The resulting crude was further stirred for 3 d at room temperature and diluted with CHCl_{3}. The reaction was quenched by the addition of water. The products were extracted with CHCl_{3}. The combined organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo. The
crude was diluted with a small amount of CHCl_{3} and the solution was reprecipitated in hexane to give hexane-insoluble part ($\mathbf{P 6}, 1.04 \mathrm{~g}, 64 \%$) as a white solid and hexane-soluble part ($0.95 \mathrm{mg}, 41 \%$) as a white solid: $M_{\mathrm{w}} 8,800 \mathrm{Da}$ (estimated by DOSY); $M_{\mathrm{w}} / M_{\mathrm{n}} 1.2$ (estimated by SEC on the basis of polystyrene standards); $T_{\mathrm{g}} 45.5^{\circ} \mathrm{C}$; $T_{\mathrm{d} 5} 199.8^{\circ} \mathrm{C} ; T_{\mathrm{d} 10} 235.4^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) δ 7.46-7.32 (m, Ar, NH), $6.80(\mathrm{brd}, \mathrm{NH}), 4.46(\mathrm{~s}, \mathrm{CH}), 4.45(\mathrm{~s}, \mathrm{CH}), 4.19-3.88\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 3.39-3.24$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 172.8,172.30,172.27,169.5,141.9,141.8$, $140.2,140.1,136.1,136.0,128.8,128.0,127.9,127.81,127.79,127.65,127.61,127.0,66.1,46.8(t$, $J_{\mathrm{CF}}=22.5 \mathrm{~Hz}$), 43.1, $41.2 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta-81.44,-81.55,-81.58$, $-81.61,-81.64,-116.51,-119.18,-122.57,-122.86,-123.63,-123.92,-124.37,-127.03 \mathrm{ppm} ;$ IR $(\mathrm{KBr}) \cup 3318,3033,1662,1533,1488,1413,1217,1146,1009,882,837,808,763,735,721,699$, $661,565 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR, DOSY, and IR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 1}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S3. ${ }^{19}$ F NMR spectrum of P1 ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S4. DOSY correlations of $\mathbf{P 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S5. IR spectrum of $\mathbf{P 1}(\mathrm{KBr})$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} 2\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S7. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 2}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S8. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{P} 2\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S9. DOSY correlations of $\mathbf{P 2}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S10. IR spectrum of $\mathbf{P} 2(\mathrm{KBr})$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P} 3\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S13. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{P} 3\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S14. DOSY correlations of $\mathbf{P 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S15. IR spectrum of P3(KBr).

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 4}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$.

Figure S18. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{P} 4\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S19. DOSY correlations of $\mathbf{P 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S20. IR spectrum of $\mathbf{P 4}(\mathrm{KBr})$.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 5}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 5}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$.

Figure S23. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{P 5}$ ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S24. DOSY correlations of P5 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S25. IR spectrum of $\mathbf{P 5}$ (KBr).

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 6}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S27. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 6}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S28. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{P 6}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S29. DOSY correlations of P6 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S30. IR spectrum of $\mathbf{P 6}$ (KBr).

Calibration curve in CDCl_{3} for $\boldsymbol{M}_{\mathrm{w}}$ prediction

\qquad

A

B

PAMAM dendrimer

Figure S31. Calibration curve in CDCl_{3} for M_{w} prediction using imine \mathbf{A} (MW: $175.23, \log \mathrm{D}:-8.55$), unit model B (MW: 376.45, $\log \mathrm{D}:-8.70$), and PAMAM dendrimer (MW: $14214.17, \log \mathrm{D}:-9.15$) as standards. Imine \mathbf{A} and unit model \mathbf{B} were prepared according to the literature. ${ }^{\text {a a }}$

DSC profiles

Figure S32. DSC profile of P1.

Figure S33. DSC profile of P2.

Figure S34. DSC profile of P3.

Figure S35. DSC profile of P4.

Figure S36. DSC profile of P5.

Figure S37. DSC profile of P6.

Comparison of IR spectra of cotton gauze before and after modification.

Figure S38. IR spectrum of modified gauze (ATR).

UV spectra of P6

Figure S39. UV spectra of $\mathbf{P 6}$ at various concentrations $\left(\mathrm{CHCl}_{3}\right.$, room temperatures).

Figure S40. Normalized absorbance of $\mathbf{P 6}$ at $337,340,350$, and 360 nm as a function of concentration (wt\%).

Figure S41. TGA profile of P1.

Figure S42. TGA profile of $\mathbf{P} \mathbf{2}$.

Figure S43. TGA profile of P3.

Figure S44. TGA profile of P4.

Figure S45. TGA profile of P5.

Figure S46. TGA profile of P6.

References

1. (a) Y. Koyama, P. G. Gudeangadi, Chem. Commun. 2017, 53, 3486. (b) R. J. Spandl, H. Rudyk,
D. R. Spring, Chem. Commun. 2008, 44, 3001. (c) B. R. Galan, K. P. Kalbarczyk, S. Szczepankiewicz, J. B. Keister, S. T. Diver, Org. Lett. 2007, 9, 1203. (d) D. Bonne, M. Dekhane, J. Zhu, Org. Lett. 2004, 6, 4771.
2. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117.
3. (a) S. W. Provencher, Comp. Phys. Commun. 1982, 27, 213. (b) S. W. Provencher, Comp. Phys. Commun. 1982, 27, 229.
