Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting Information for:

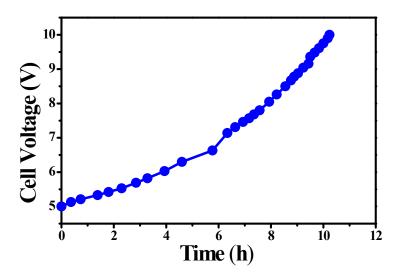
Reactive Electrochemical Filter System with an Excellent Penetration Flux Porous Ti/SnO₂-Sb Filter for Efficient Contaminant Removal from Waters

Kui Yang^{a, b}, Hui Lin^{b*}, Shangtao Liang^c, Ruzhen Xie^d, Sihao Lv^b, Junfeng Niu^b, Jie

Chen^b, Yongyou Hu^{a, e*}

^a School of Environment and Energy, South China University of Technology,

Guangzhou 510006, P.R. China


^b School of Environment and Civil Engineering, Dongguan University of Technology,

Dongguan 523808, P.R. China

^c AECOM Inc., Environment, Atlanta, Georgia 30309, United States ^d College of Architecture and Environment, Sichuan University, Chengdu 610065,

P.R. China

^e The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China

Fig. S1 Cell potential variation with time in accelerated life tested performed in 0.5 M H₂SO₄ solution under 1 A cm⁻² at 25 °C.

Table S1 Comparison of the service life of different Ti/SnO₂-Sb electrodes in the literature

	Current density	Accelerated service	Actual service life (year)
	(A cm ⁻²)	life (h)	(under 10 mA cm ⁻²)
Our study	0.5	10.23	2.92
Sun et al.1	0.5	2	0.57
Yang et al. ²	0.1	100	1.14
Wang et al. ³	0.1	160	1.83
Zhang et al.4	1	0.95	1.08

Text. S1-The calculation details of mass transfer performance

At sufficiently high anodic potentials, the limiting anodic current density (I_{lim}) can be described by the following equation:⁵

$$I_{\text{lim}} = \frac{D_{\text{Fe(CN)}_{6}^{3}} zF}{2\delta} C_{\text{b}} = k_{\text{d}} C_{\text{b}}$$
 (S1)

where $D_{\rm Fe(CN)6/3-}$ is the diffusion coefficient for Fe(CN)₆³⁻ (m s⁻¹), z=1 is the number of electrons transferred for Fe(CN)₆⁴⁻ oxidation, F is the Faraday constant (96485 C mol⁻¹), δ is the boundary layer thickness (m), and $C_{\rm b}$ is the bulk concentration of Fe(CN)₆⁴⁻ (mol m⁻³). Thus, the observed rate constant ($k_{\rm obs}$, m s⁻¹) for Fe(CN)₆⁴⁻

oxidation at the reactive electrochemical filter system was determined using the limiting current approach, 6,7 and the $k_{\rm obs}$ was calculated by the following equation:

$$k_{\rm obs} = \frac{I_{\rm lim}}{zFAC_{\rm b}} \tag{S2}$$

where A is the anode geometric surface area (m²). However, the measured I_{lim} by electrochemical station also contains other streams such as charging current and cause an overestimation of k_{obs} . To measure k_{obs} more precisely, additional Fe(CN)₆³-oxidation experiments at sufficiently high anodic potentials, which determined by measuring the anodic current density – potentials curves at a scan rate of 10 mV s⁻¹, were conducted in a flow-through mode at a constant penetration flux. The k_{obs} can be calculated by the following equation.

$$k_{\text{obs}} = 10^{-2} \frac{V}{A} \frac{\int dC_{\text{b}}}{\int C_{\text{b}} dt}$$
 (S3)

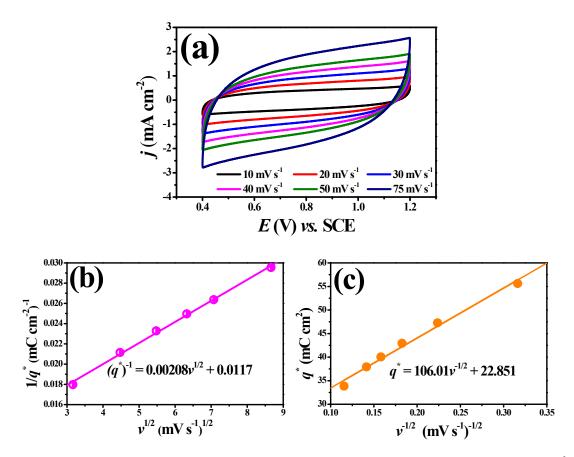
where V is the treatment solution volume (m³). Based on the measured $k_{\rm obs}$ values at various penetration fluxes, a simple model accounts for the competition between kinetics and mass transfer reported by Chaplin was used to fit the $k_{\rm obs}$ values (blue line in Fig. 4) by the following equation:⁶

$$k_{\text{obs}} = \frac{kk_{\text{m}}}{k + k_{\text{m}}} \tag{S4}$$

where $k_{\rm m}$ is the normalized mass transfer rate constant (m s⁻¹) and it was set equal to J (m s⁻¹), k is the normalized kinetic rate constant (m s⁻¹).

Text S2-The calculation details of electrochemically active surface

Total voltammetric charge $(q_T^*, \text{mC cm}^{-2})$ is the entire electroactive surface of an electrode, which is obtained when the scan rate (v) tends is approaching zero.^{8,9} Specifically, q_T^* can be obtained by plotting the reciprocal of q^* against the square root of the potential scan rate (equation S4).


$$(q^*)^{-1} = (q_T^*)^{-1} + kv^{1/2}$$
 (S4)

where k is a constant. Total voltammetric charge q_T^* is composed of two fractions, outer voltammetric charge (q_O^*) and inner voltammetric charge (q_I^*) , which represent the charge related to the outer geometric and inner unattainable electrode areas, respectively. Among them, q_O^* is related to the most accessible electroactive surface area, and can be obtained according to the following equation:

$$q^* = q_0^* + k v^{-1/2} \tag{S5}$$

Additionally, the ratio between the inner voltammetric charge (q_I^* , mC cm⁻²) and the total voltammetric charge (q_T^* , mC cm⁻²) was defined as the electrochemical porosity (q_I^*/q_T^* , %).¹⁰ And the roughness factor (R_f), which was calculated by comparing the determine capacitance of the electrode with the average double-layer capacitance of a smooth oxide surface (60 μ F),¹¹, was defined the electroactive area per geometrical area.¹²

The q_T^* and q_O^* for the porous Ti/SnO₂-Sb filter are investigated as a function of different scan rates (v) as presented in Fig. S2(b) and (c), respectively.

Fig. S2 (a) CV curves of porous Ti/SnO₂-Sb filter at different scan rate, penetration flux: 12.3 m³ m⁻² h⁻¹; (b) Reciprocal voltammetric charge *vs.* the square root of scan rate; (c) Voltammetric charge *vs.* the reciprocal square root of scan rate.

Table S2 Total, Outer and Inner charge, q_I^*/q_T^* and R_f of the porous Ti/SnO₂-Sb filter

$q_T^*/(\text{mC cm}^{-2})$	$q_{O}^{*}/(\text{mC cm}^{-2})$	$q_1^*/(\text{mC cm}^{-2})$	$q_{I}^{*}/q_{T}^{*}(\%)$	R_f
85.7 ± 2.2	22.9±1.4	62.8	73.3%	1428.2 ± 37.2

Table S3 Comparison of mass transfer performance of different electrode

	Anode	Standard probing molecule	Initial concentration (mM)	k _{obs} (m s ⁻¹)	k (m s ⁻¹)
Our study	porous Ti/SnO ₂ - Sb filter	K ₄ Fe(CN) ₆	5	4.35×10 ⁻⁴	4.7×10 ⁻⁴
Guo et al. ¹³	TiO ₂ magnéli phase membrane	K_4 Fe(CN) ₆	5	1.4×10 ⁻⁴	1.7×10 ⁻⁴
Tsierkezos et al.14	CNT filter	$K_4Fe(CN)_6$	1	1×10 ⁻⁴	-
Li et al. ¹⁵	Ti/SnO ₂ -Sb tubular	Pyridine	1.3	2.24×10 ⁻⁵	-

Table S4 Comparison of oxidation performance of different electrode

	Anode	Model pollutant	Initial concentration (mM)	Oxidation (%)	time (t, h)	Oxidation Flux (OF, mol m ⁻² h ⁻¹)
	porous					
Our study	Ti/SnO ₂ -Sb	RhB	0.10	99%	0.25	0.044
	filter					
Liu et al.16	CNT-filter	Tetracycline	0.2	>99%	-	0.024
Li et al. ¹⁵	tubular Ti/SnO ₂ -Sb	Pyridine	1.3	About 99%	3	0.024
Santos	Porous Ti ₄ O ₇	Phenol	1 About	About 60%	3	0.024
et al. ¹⁷	membrane	rnenoi		A0001 0070	<i></i>	0.024

References

- 1 Z. Sun, H. Zhang, X. Wei, X. Ma and X. Hu, J. Solid State Electr., 2015, 19, 2445.
- B. Yang, C. Jiang, G. Yu, Q. Zhuo, S. Deng, J. Wu and H. Zhang, *J. Hazard. Mater.*, 2015, 299,
 417.
- 3 Y. Wang, C. Shen, M. Zhang, B. T. Zhang and Y. G. Yu, Chem. Eng. J., 2016, 296, 79.
- 4 L. Zhang, L. Xu, J. He and J. Zhang, *Electrochim. Acta*, 2014, **117**, 192.
- 5 J. B. Hiskey and V. M. Sanchez, J. Appl. Electrochem., 1990, 20, 479.
- 6 L. Guo, Y. Jing and B. P. Chaplin, *Environ. Sci. Technol.*, 2016, **50**, 1428.
- 7 Y. Bessekhouad, R. Brahimi, F. Hamdini and M. Trari, J. Photoch. Photobio. A., 2012, 248, 15.
- 8 H. Vogt, *Electrochim. Acta*, 1994, **39**, 1981.
- 9 S. Ardizzone, G. Fregonara and S. Trasatti, *Electrochim. Acta*, 1990, **35**, 263.
- 10 D. Rosestolato, R. Amadelli and A. B. Velichenko, J. Solid. State. Electr., 2016, 20, 1181.
- 11 R. Geng, G. H. Zhao, M. C. Liu and Y. Z. Lei, Acta Phys-chim. Sin., 2010, 26, 1493.
- 12 W. Zhang, H. Kong, H. Lin, H. Lu, W. Huang, J. Yin, Z. Lin and J. Bao, J. Alloy. Compod., 2015, 650, 705.
- 13 L. Guo, Y. Jing and B. P. Chaplin, Environ. Sci. Technol., 2016, 50, 1428.
- 14 N. G. Tsierkezos and U. Ritter, J. Chem. Thermodyn., 2012, 54, 35.
- 15 D. Li, J. Tang, X. Zhou, J. Li, X. Sun, J. Shen, L. Wang and W. Han, Chemosphere, 2016, 149,

49.

- Y. Liu, H. Liu, Z. Zhou, T. Wang, C. N. Ong and C. D. Vecitis, *Environ. Sci. Technol.*, 2015,
 49, 7974.
- 17 M. C. Santos, Y. A. Elabd, J. Yin, B. P. Chaplin and F. Lei, *Aiche J.*, 2016, **62**, 508.