Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Fig. S1 SEM images of a) air- In_2O_3 and b) H_2 - In_2O_3 .

Fig. S2 Survey XPS spectra of air- \ln_2O_3 and H_2 - \ln_2O_3 (a). In 3d core level XPS spectra of air- \ln_2O_3 and H_2 - \ln_2O_3 (b). XPS spectra of 0 1s peak of air- \ln_2O_3 (c) and H_2 - \ln_2O_3 (d). Black lines are the experimental XPS data, which are further fitted into two peaks (shown by red lines).

The XPS has been employed to detect the chemical states of air- and H_2 - In_2O_3 samples. Only O, In and C (used as reference) signals appear in XPS survey acquired from air- and H_2 - In_2O_3 (Fig. S2 a). As shown in Fig. S2 b In 3d peaks of H_2 - In_2O_3 are very closed to the In 3d peaks of air- In_2O_3 . However, after hydrogen treatment In 3d peaks at lower binding energy could be mainly ascribed to oxygen vacancies.^{1, 2} Fig. S2 c and d presents the XPS spectrum for O 1s airand H_2 - In_2O_3 respectively and each O 1s curve can be fitted into two peaks. In both samples, highest binding energy peak located at 529 eV is corresponded to indium oxygen bond (In-O). In air- In_2O_3 the peak at 531.2 eV can be attributed to the O²⁻ ions in the oxygen deficient region or to the surface adsorbed oxygen.³ Whereas, in H_2 - In_2O_3 the peak centered at 531.4 eV can be assigned to the oxygen defects.⁴ Furthermore, In 3d and O 1s regions evidenced no significant differences in the particle surface of air- and H_2 - In_2O_3 . This could be the reason that the green emission intensity is lower than blue emission.

Fig. S3 (a) FT-IR spectra of H_2 - In_2O_3 at 400 °C for 12 h and (b and c) after oxidative treatment at 200 °C for 6 h and 400 °C for 12 h, respectively. After oxidative treatment (from top to bottom b and c), there is a continuous decrease in IR absorption signals.

FT-IR spectroscopy is a useful technique to monitor the CB and shallow state electrons in n-type semiconductors. According to Drude theory the resonance frequency of electrons depends upon the number of free electrons (e^{-}) N. The absorbance at a particular wavelength (λ) is proportional to number of electron (N) in conduction band.

$$A(\lambda) \sim N$$
 eq (1)

The increased absorption in IR spectra (Fig. 3S a) can directly attributed to the CB and shallow state electrons in H₂-In₂O₃, as a result of reducing atmosphere. In order to test this hypothesis the respective sample (H₂-In₂O₃) was oxidized at 200 °C for 6 h and 400 °C for 12 h (Fig. 3S b and c). The intensity of broad absorption in IR spectra decreased upon oxygen adsorption. The electrons in CB and shallow state combine with hole and cause recombination process. However adsorbed O₂ can act as an electron sink and prevent such recombination process.⁵ The adsorbed O₂ clearly affect or decrease the CB electrons and represent inactive IR species. Thus, the broad absorbance is quenched upon introduction of oxygen, which acts as an excellent electron (e⁻) scavenger.

Fig. S4 Methyl orange degradation under irradiation > 400 nm with an optical power density 150 mW cm⁻² using H₂O₂ as an oxidant. For blank experiment all parameters are same except sample addition.

References

- 1 R. X. Wang, C. D. Beling, S. Fung, A. B. Djurišić, C. C. Ling and S. Li, J. Appl. Phys., 2005, 97, 033504.
- 2 D. Wei, L. Yao, S. Yang, Z. Cui, B. Wei, M. Cao and C. Hu, ACS Appl. Mater. Interfaces, 2015, 7, 20761-20768.
- 3 R. R. Krishnan, S. R. Chalana, S. Suresh, S. K. Sudheer, C. Sudarsanakumar, M. C. S. Kumar, and V. P. M. Pillai, Phys. Status Solidi C. 2017, 14, 2–15.
- 4 S. -H. Kim, H. -S. Choi and K. -D. Jung, Cryst. Growth Des., 2016, 16, 1387-1394.
- 5 A. L. Linsebigler, G. Lu and J. T. Yates, *Chem. Rev.*, 1995, **95**, 735-758.