Supporting information

Synthesis of novel cyclosiloxane monomers containing push-pull moieties and their anionic ring opening polymerization

Elena Perju,^{a,b} Eduardo Cuervo-Reyes,^c Sergiu Shova,^b and Dorina M. Opris^a*

^{a.} Swiss Federal Laboratories for Materials Science and Technology Empa, Laboratory for Functional Polymers, Ueberlandstr. 129, Ch-8600, Dübendorf, Switzerland, Dorina.opris@empa.ch.

^{b.} "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Aleea Gr. Chica Voda, 41A, 700487, Iasi, Romania.

^c Swiss Federal Laboratories for Materials Science and Technology Empa, Laboratory for Energy Conversion, Ueberlandstr. 129, CH-8600, Dübendorf, Switzerland.

Figure S1: ¹H NMR spectra of D₄H, N-allyl-N-methyl-4-nitroaniline and the cyclosiloxane monomer **3**.

Figure S3: ¹³C NMR spectrum of N-allyl-N-methyl-4-nitroaniline **2**.

Figure S5: ¹³C NMR spectrum of **3**.

Figure S6: HSQC spectrum of 3.

Figure S7: ESI – mass spectrum of **3**.

(a)

(b)

Figure S8: X-ray structure of **3**.

Figure S9: ¹H NMR spectrum of **P-NA**.

Figure S11: ¹H NMR spectrum of *co*-P-NA (1:2).

Figure S12: ¹³C NMR spectrum of *co*-P-NA (1:2).

Figure S13: ¹H NMR spectrum of *co*-P-NA (1:1).

Figure S15: ¹H NMR spectrum of *co*-P-NA (2:1).

Figure S17: ¹H NMR spectrum of **5**.

Figure S18: ¹³C NMR spectrum of **5**.

Figure S19: ¹H NMR spectrum of **6**.

Figure S20: ¹³C NMR spectrum of **6**.

Figure S21: ESI – mass spectrum of 6.

Figure S22: ¹H NMR spectrum of **P-MNA**.

Figure S23: ¹³C NMR spectrum of **P-MNA**.

Figure S24: ¹H NMR spectrum of **8**.

Figure S25: ¹³C NMR spectrum of **8**.

Figure S27: ¹³C NMR spectrum of **9**.

Figure S28: ESI – mass spectrum of 9.

Figure S29: ¹H NMR spectrum of **P-MDR1**.

Figure S30: ¹³C NMR spectrum of **P-MDR1**.

Figure S31. GPC elugrams of P-NA, co-P-NA(x:y), P-MNA, and P-MDR1 in THF.

Figure S32. TGA (a) and DSC (b,c) traces of P-NA, co-P-NA(x:y), P-MNA, and P-MDR1.

Figure S33: Dielectric properties of the **P-NA** as function of frequency at different temperature.

Figure S34: Dielectric properties of the *co*-P-NA(1:2) as function of frequency at different temperature.

Figure S35: Dielectric properties of the *co-P-NA(1:1)* as function of frequency at different temperature.

Figure S36: Dielectric properties of the *co*-P-NA(2:1) as function of frequency at different temperature.

Figure S37: Dielectric properties of the P-MNA as function of frequency at different temperature.

Figure S38: Dielectric properties of the **P-MDR1** as function of frequency at different temperature.

Figure S39: Characteristic exponents α (left) and β (right) of the dipolar loss peak as function of temperature.

Figure 40: Frequency at the peak of dipolar loss and inverse of conductivity relaxation time as function of temperature for P-

Figure 41: Frequency at the peak of dipolar loss and inverse of conductivity relaxation time as function of temperature for *co*-P-NA(1:2).

Figure 42: Frequency at the peak of dipolar loss and inverse of conductivity relaxation time as function of temperature for co-P-

Figure 43: Frequency at the peak of dipolar loss and inverse of conductivity relaxation time as function of temperature for *co*-P-NA(2:1).

Figure 44: Frequency at the peak of dipolar loss and inverse of conductivity relaxation time as function of temperature for **P**-**MNA**.

Figure 45: Frequency at the peak of dipolar loss and inverse of conductivity relaxation time as function of temperature for **P**-MDR1.

Figure 46: Inverse of conductivity relaxation time as function of temperature for all polymers.

Table 1S. Bond distances (Å) and angles (°) for **3** and **9**.

Compound **3**.

1.620(2)	Si4-C7	1.833(4)
1.615(3)	O5-N2	1.234(4)
1.838(4)	O6-N2	1.227(4)
1.843(3)	N1-C10	1.457(4)
1.609(2)	N1-C11	1.457(4)
1.609(3)	N1-C12	1.363(4)
1.831(4)	N2-C15	1.439(4)
1.837(5)	C8-C9	1.527(5)
1.607(3)	C9-C10	1.516(4)
1.606(3)	C12-C13	1.402(4)
	1.620(2) 1.615(3) 1.838(4) 1.843(3) 1.609(2) 1.609(3) 1.831(4) 1.837(5) 1.607(3) 1.606(3)	1.620(2)Si4-C71.615(3)O5-N21.838(4)O6-N21.843(3)N1-C101.609(2)N1-C111.609(3)N1-C121.831(4)N2-C151.837(5)C8-C91.607(3)C9-C101.606(3)C12-C13

Si3-C4	1.829(5)	C12-C17	1.407(4)	
Si3-C5	1.831(4)	C13-C14	1.367(4)	
Si4-03	1.609(3)	C14-C15	1.381(5)	
Si4-04	1.609(2)	C15-C16	1.383(4)	
Si4-C6	1.833(4)	C16-C17	1.365(4)	
		1		
01-Si1-C1	109.90(19)	Si2-O1-Si1	153.73(16)	
01-Si1-C8	108.57(14)	Si3-O2-Si2	158.94(19)	
04-Si1-01	108.95(14)	Si3-O3-Si4	158.8(2)	
04-Si1-C1	110.25(18)	Si4-O4-Si1	158.64(17)	
O4-Si1-C8	108.59(15)	C11-N1-C10	115.4(3)	
C1-Si1-C8	110.53(17)	C12-N1-C10	122.6(3)	
01-Si2-C2	107.91(17)	C12-N1-C11	120.8(3)	
01-Si2-C3	109.32(19)	O5-N2-C15	118.5(3)	
02-Si2-O1	109.98(14)	06-N2-05	122.5(3)	
02-Si2-C2	108.9(2)	O6-N2-C15	119.0(3)	
O2-Si2-C3	109.3(2)	C9-C8-Si1	115.5(2)	
C2-Si2-C3	111.3(2)	C10-C9-C8	112.0(3)	
O2-Si3-C4	108.55(19)	N1-C10-C9	114.2(3)	
02-Si3-C5	109.8(2)	N1-C12-C13	121.1(3)	
03-Si3-O2	110.05(14)	N1-C12-C17	121.1(3)	
O3-Si3-C4	108.1(2)	C13-C12-C17	117.9(3)	
03-Si3-C5	109.7(2)	C14-C13-C12	120.9(3)	
C4-Si3-C5	110.6(2)	C13-C14-C15	120.1(3)	
03-Si4-04	109.59(13)	C14-C15-N2	120.1(3)	
O3-Si4-C6	109.88(19)	C14-C15-C16	120.3(3)	
03-Si4-C7	107.71(19)	C16-C15-N2	119.5(3)	
04-Si4-C6	109.25(19)	C17-C16-C15	119.9(3)	
04-Si4-C7	109.30(17)	C16-C17-C12	121.0(3)	
C7-Si4-C6	111.1(2)			

Compound 9.

Si1-01	1.612(4)	N1-C16	1.369(6)	
Si1-04	1.598(4)	N4-C25	1.436(7)	
Si1-C1	1.848(8)	C8-C9	1.467(8)	
Si1-C8	1.847(6)	C9-C10	1.545(8)	
Si2-01	1.620(4)	C9-C11	1.519(7)	
Si2-C2	1.818(8)	C12-C13	1.482(8)	
Si2-C3	1.827(8)	C14-C15	1.510(9)	
Si2-O2	1.626(6)	C16-C17	1.399(6)	
Si3-O2	1.618(6)	C16-C21	1.397(7)	
Si3-O3	1.628(5)	N2-N3	1.239(12)	
Si3-C4	1.837(9)	N2-C19	1.405(9)	
Si3-C5	1.833(10)	N3-C22	1.446(10)	
Si4-04	1.620(4)	C17-C18	1.382(7)	
Si4-C6	1.835(9)	C18-C19	1.395(7)	

Si4-C7	1.815(7)	C19-C20	1.390(6)	
Si4-03	1.626(5)	C20-C21	1.387(7)	
05-C11	1.195(6)	C23-C24	1.39	
O6-C11	1.341(7)	C23-C22	1.39	
O6-C12	1.461(6)	C24-C25	1.39	
07-N4	1.213(6)	C25-C26	1.39	
08-N4	1.224(6)	C26-C27	1.39	
N1-C13	1.482(6)	C27-C22	1.39	
N1-C14	1.441(7)			
	(00.0(0))			
01-Si1-C1	109.3(3)	C8-C9-C10	114.3(5)	
01-511-68	110.6(2)	C8-C9-C11	113.0(5)	
04-Si1-01	108.8(2)	C11-C9-C10	108.2(5)	
04-Si1-C1	109.0(3)	05-C11-O6	123.4(5)	
04-Si1-C8	111.2(3)	05-C11-C9	126.6(5)	
C8-Si1-C1	107.9(3)	06-C11-C9	109.9(5)	
01-Si2-C2	110.0(3)	06-C12-C13	111.0(5)	
01-Si2-C3	108.7(3)	N1-C13-C12	108.8(5)	
01-Si2-O2	109.0(4)	N1-C14-C15	113.7(5)	
C2-Si2-C3	110.5(5)	N1-C16-C17	117.1(6)	
02-Si2-C2	102.4(6)	N1-C16-C21	125.3(6)	
02-Si2-C3	116.1(6)	C21-C16-C17	117.3(7)	
02-Si3-O3	106.5(6)	Si3-O2-Si2	148.0(9)	
02-Si3-C4	98.6(9)	Si4-O3-Si3	149.9(8)	
02-Si3-C5	123.8(9)	N3-N2-C19	113.1(9)	
03-Si3-C4	97.8(9)	N2-N3-C22	112.9(8)	
03-Si3-C5	122.9(9)	C18-C17-C16	120.6(10)	
C5-Si3-C4	99.4(12)	C17-C18-C19	122.1(10)	
04-Si4-C6	110.2(4)	C18-C19-N2	117.2(8)	
04-Si4-C7	107.6(3)	C20-C19-N2	125.8(9)	
04-Si4-O3	110.4(3)	C20-C19-C18	117.0(8)	
C7-Si4-C6	110.3(5)	C21-C20-C19	121.4(10)	
03-Si4-C6	101.3(5)	C20-C21-C16	121.2(9)	
03-Si4-C7	116.9(5)	C24-C23-C22	120.0	
Si1-O1-Si2	153.3(3)	C25-C24-C23	120.0	
Si1-O4-Si4	150.8(3)	C24-C25-N4	123.4(6)	
C11-06-C12	116.2(4)	C24-C25-C26	120.0	
C14-N1-C13	116.8(5)	C26-C25-N4	116.5(6)	
C16-N1-C13	120.3(4)	C27-C26-C25	120.0	
C16-N1-C14	122.6(4)	C22-C27-C26	120.0	
07-N4-08	123.7(6)	C23-C22-N3	124.4(6)	
07-N4-C25	116.6(6)	C27-C22-N3	115.5(6)	
08-N4-C25	119.6(7)	C27-C22-C23	120.0	
C9-C8-Si1	117.6(4)			

Substanz: **2** Molekularformel: C10 H12 N2 O2 Bestimmungen: C H N O

Mr = 192,22 g/mol

M - 2	L60916								
Bere	chnete Gewi	chtsan	teile:						
[C]	62,49%	[H]	6,29%	[N]	14,57%	[0]	16,65%		
Gefu	ndene Gewic	htsant	eile:						
Einwa [C]	aage: 1,058 62,47%	Bmg [H]	6,27%	[N]	LECO TruSpec 14,74%	Micı	ro		
Einwa [0]	aage: 2,758 16,53%	Bmg			LECO RO-478				
Subs Mole Best	tanz: 3 kularformel immungen: C	: C17 H N	H34 N2 O6	Si4			Mr	= 474.81	Lg/mol
M-1	63811						070.00	1. J. 199	
Bere	chnete Gewi	chtsar	nteile:						
[C]	43.00%	[H]	7.22%	[N]	5.90%	[0]	20.22%	[Si]	23.66%
Gefu	undene Gewic	htsant	ceile:						
Einw [C]	vaage: 0.997 42.97%	mg [H]	7.18%	[N]	LECO TruS 6.02%	pec N	Micro		

Elemental analysis of **3**.

Substanz: 5 Molekularformel: C13 H16 N2 O4 Mr = 264.28q/molBestimmungen: C H N M-163825 Berechnete Gewichtsanteile: [C] 59.08% [H] 6.10% [N] 10.60% [0] 24.22% Gefundene Gewichtsanteile: Einwaage: 1.128mg LECO TruSpec Micro [C] 58.81% [H] 6.14% [N] 10.64% Elemental analysis of 5. Substanz: 6 Molekularformel: C20 H38 N2 O8 Si4 Mr = 546.87 g/molBestimmungen: C H N M-163832 Berechnete Gewichtsanteile: [H] 7.00% [N] [C] 43.93% 5.12% [0] 23.41% [Si] 20.54% Gefundene Gewichtsanteile: Einwaage: 1.253mg LECO TruSpec Micro [C] 43.71% [H] 6.94% [N] 5.00% Elemental analysis of **6**. Substanz: 8 Molekularformel: C20 H22 N4 O4 Mr = 382.42g/molBestimmungen: C H N M-163826 Berechnete Gewichtsanteile: [C] 62.82% [H] 5.80% [N] 14.65% [0] 16.73% Gefundene Gewichtsanteile: Einwaage: 1.015mg LECO TruSpec Micro [C] 62.84% [H] 5.89% [N] 14.36%

Elemental analysis of 8.

Substanz: 9 Molekularformel: C27 H44 N4 O8 Si4 Bestimmungen: C H N

M-163821

Berechnete Gewichtsanteile: [C] 48.77% [H] 6.67% [N] 8.42% [O] 19.25% [Si] 16.89% Gefundene Gewichtsanteile: Einwaage: 0.919mg LECO TruSpec Micro [C] 49.03% [H] 6.72% [N] 8.44%

Mr = 665.01g/mol

Elemental analysis of **9**.

Substanz: **P-NA** Molekularformel: Bestimmungen: C H N

M-160927

Berechnete Gewichtsanteile: ---

 Gefundene Gewichtsanteile:

 Einwaage: 1,539mg
 LECO TruSpec Micro

 [C] 43,16%
 [H] 7,45%
 [N] 6,54%

 Einwaage: 1,546mg
 LECO TruSpec Micro

 [C] 43,33%
 [H] 7,41%
 [N] 6,43%

Elemental analysis of **P-NA**.

Substanz: co-P-NA(1:2) Molekularformel: Bestimmungen: C H N

M-160930

Berechnete Gewichtsanteile: --+

Gefundene Gewichtsanteile:

 Einwaage: 1,557mg
 LECO TruSpec Micro

 [C] 41,30%
 [H] 7,83%
 [N] 4,71%

 Einwaage: 1,559mg
 LECO TruSpec Micro

 [C] 41,14%
 [H] 7,76%
 [N] 4.67%

Elemental analysis of co-P-NA(1:2).

Substanz: co-P-NA(1:1) Molekularformel: Bestimmungen: C H N

M-160928

Berechnete Gewichtsanteile: ---

 Gefundene Gewichtsanteile:

 Einwaage: 1,474mg
 LECO TruSpec Micro

 [C] 38,98%
 [H] 7,80%
 [N] 4,05%

 Einwaage: 1,519mg
 LECO TruSpec Micro

 [C] 38,93%
 [H] 7,86%
 [N] 3,89%

Elemental analysis of **co-P-NA(1:1)**.

Substanz: co-P-NA(2:1) Molekularformel: Bestimmungen: C H N

M-160929

Berechnete Gewichtsanteile: ---Gefundene Gewichtsanteile: Einwaage: 1,539mg LECO TruSpec Micro [C] 37,67% [H] 8,12% [N] 2,76% Einwaage: 1,522mg LECO TruSpec Micro [C] 37,48% [H] 8,19% [N] 2,93% Elemental analysis of co-P-NA(2:1). Substanz: P-MNA Molekularformel: C20 H38 N2 O8 Si4 Mr = 546.87 g/molBestimmungen: C H N M-163828 Berechnete Gewichtsanteile: [C] 43.93% [H] 7.00% [N] 5.12% [0] 23.41% [Si] 20.54% Gefundene Gewichtsanteile: Einwaage: 1.013mg LECO TruSpec Micro [C] 43.81% [H] 7.07% [N] 5.20% Elemental analysis of **P-MNA**. Substanz: P-MDR1 Molekularformel: C27 H44 N4 O8 Si4 Mr = 665.01g/molBestimmungen: C H N M-163813 Berechnete Gewichtsanteile: [C] 48.77% [H] 6.67% [N] 8.42% [0] 19.25% [Si] 16.89% Gefundene Gewichtsanteile: Einwaage: 0.880mg LECO TruSpec Micro [C] 48.64% [H] 6.75% [N] 8.67%

Elemental analysis of **P-MDR1**.