Supplementary information

Improving the Anti-icing/frosting Property of

Nanostructured Superhydrophobic Surface by Optimum

Selection of Surface Modifier

Zhiping Zuo^{1,2*}, Ruijin Liao², Xiaoyu Song³, Xuetong Zhao², Yuan Yuan⁴

Fig. S1 The layout of the Peltier-based platform.

Fig. S2 XRD patterns of the as-prepared substrates before and after annealing treatment. It could be found that the peaks centered at $2\theta = 36.38^{\circ}$, 38.96° , 43.22° , 54.42° , 70.24° , and 70.64° were assigned to (002), (100), (101), (102), (103) and (110) planes of Zn [1]. However, different peaks were found after annealing treatment in the muffle furnace. The peaks centered at $2\theta = 31.70^{\circ}$, 34.36° , 36.24° , 47.6° , 56.58° , 62.86° , 66.42° , 67.98° and 69.10° were assigned to (100), (002), (101), (102), (103), (200), (112) and (201) planes of hexagonal ZnO [2, 3].

PDMS	G502	HDTMS	FAS-17	ZnO
CA=93.7°	CA=94.3°	CA=101.7°	CA=108.9°	CA=8.6°
	9	Y	9	
SA>90°	SA>90°	SA=66.8°	SA=17.6°	SA>90°

Fig. S3 CA and SA of bare glass modified with PDMS, G502, HDTMS and FAS17 and ZnO surface without modification

Fig. S4 Geometries of FAS-17, G502, HDTMS and PDMS

Fig. S5 EDS(a) and XPS(b) spectrum of the ZnO nanostructures before and after surface modification

Fig. S6 The detailed description of the artificial climate laboratory: (a) the layout of the artificial climate laboratory. (b) the inner schematic of the artificial climate laboratory to simulate the snowy weather of glaze ice.(c-d) schematic of sample holder

Fig. S7 Freezing process of bare glass modified with FAS-17 and SHP-FAS

Fig. S8 Frosting process of glass modified with PDMS, G502, HDTMS, FAS-17 and the ZnO surface without

modification.

Fig. S9 Frost propagation on as-prepared SHP ZnO surfaces modified with FAS-17, G502, HDTMS and PDMS.

Fig. S10 Conversion diagram of the ZnO nanostructures into cylindrical structures. Given that $f_s = 0.041$

 $h = 7.5 \mu m$ and d = 82.4 nm, we can calculate $n \approx 9$. Therefore, the surface roughness r can be calculated to

be 16.39 according to $r = \frac{n\pi dh + lb}{lb}$.

Table. S1 Surface roughness of the FAS-17, G502, HDTMS and PDMS modified SHP surfaces

	SHP-FAS	SHP-G502	SHP-HDTMS	SHP-PDMS
Ra (nm)	430.1 ± 80.4	455.1 ± 84.4	438.4 ± 82.7	462.4 ± 52.4
Rq (nm)	546.8 ± 105.1	554.6 ± 97.0	560.7 ± 95.5	610.4 ± 68.8

Table. S2 CAs and SAs of the FAS-17, G502, HDTMS and PDMS modified SHP surfaces

	SHP-FAS	SHP-G502	SHP-HDTMS	SHP-PDMS
CA	166.7 ± 2.2	162.1 ± 2.1	164.1 ± 1.8	162.8 ± 3.4
(°)				

SA() 1.5 2.4 1.4 0.1	SA(°)	1.5	2.4	1.4	6.1
----------------------	-------	-----	-----	-----	-----

Supplementary Video. S1 recorded the self-transfer phenomenon on the SHP surface modified with FAS-17 condensing at -5°C in 5min. The frame rate was 1000 frame per second. Supplementary Video.

References:

- Y.M. Huang, Q.-I. Ma, B.-g. Zhai, A simple method to grow one-dimensional ZnO nanostructures in air, Materials Letters, 93 (2013) 266-268.
- [2] G.J. Fang, D. Li, B.-L. Yao, Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target, Thin Solid Films, 418 (2002) 156-162.
- [3] S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn, Applied Physics Letters, 75 (1999) 2761-2763.