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Fig. S1 The layout of the Peltier-based platform.

Fig. S2 XRD patterns of the as-prepared substrates before and after annealing treatment. It could be found that the 

peaks centered at 2θ = 36.38o, 38.96o, 43.22o, 54.42o, 70.24o, and 70.64o were assigned to (002), (100), (101), 

(102), (103) and (110) planes of Zn [1]. However, different peaks were found after annealing treatment in the 

muffle furnace. The peaks centered at 2θ = 31.70o, 34.36o, 36.24o, 47.6o, 56.58o, 62.86o, 66.42o, 67.98o and 69.10o 

were assigned to (100), (002), (101), (102), (110), (103), (200), (112) and (201) planes of hexagonal ZnO [2, 3].
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Fig. S3 CA and SA of bare glass modified with PDMS, G502, HDTMS and FAS17 and ZnO surface without 

modification

Fig. S4 Geometries of FAS-17, G502, HDTMS and PDMS

     

(a)                            (b) 

Fig. S5 EDS(a) and XPS(b) spectrum of the ZnO nanostructures before and after surface modification
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Fig. S6 The detailed description of the artificial climate laboratory: (a) the layout of the artificial climate 

laboratory. (b) the inner schematic of the artificial climate laboratory to simulate the snowy weather of glaze 

ice.(c-d) schematic of sample holder

Fig. S7 Freezing process of bare glass modified with FAS-17 and SHP-FAS

Fig. S8 Frosting process of glass modified with PDMS, G502, HDTMS, FAS-17 and the ZnO surface without 

modification.
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Fig. S9 Frost propagation on as-prepared SHP ZnO surfaces modified with FAS-17, G502, HDTMS and PDMS.
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Fig. S10 Conversion diagram of the ZnO nanostructures into cylindrical structures. Given that  0.041sf 

and , we can calculate . Therefore, the surface roughness r can be calculated to 7.5μmh  82.4d nm 9n 

be 16.39 according to .
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Table. S1 Surface roughness of the FAS-17, G502, HDTMS and PDMS modified SHP surfaces

Table. S2 CAs and SAs of the FAS-17, G502, HDTMS and PDMS modified SHP surfaces

SHP-FAS SHP-G502 SHP-HDTMS SHP-PDMS

Ra (nm) 430.1 ± 80.4 455.1 ± 84.4 438.4 ± 82.7 462.4 ± 52.4

Rq (nm) 546.8 ± 105.1 554.6 ± 97.0 560.7 ± 95.5 610.4 ± 68.8

SHP-FAS SHP-G502 SHP-HDTMS SHP-PDMS

CA 

(°)

166.7 ± 2.2 162.1 ± 2.1 164.1 ± 1.8 162.8 ± 3.4
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Supplementary Video. S1 recorded the self-transfer phenomenon on the SHP surface modified with 
FAS-17 condensing at -5oC in 5min. The frame rate was 1000 frame per second. Supplementary Video. 
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