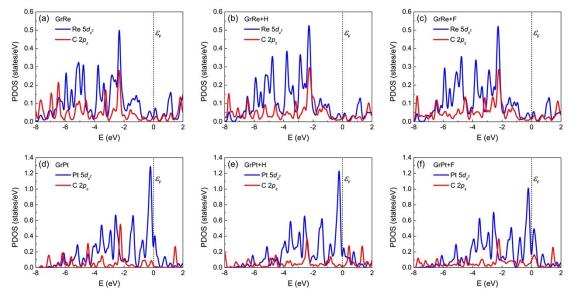
Supporting Information


Tune the chemical activity of graphene via the transition metal substrate

Yuan Ma^a, Lei Gao^{a*}, Yu Yan^a, Yanjing Su^a, and Lijie Qiao^a

^a Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083, China Corresponding author: gaolei@ustb.edu.cn

DOS prior to and after the adsorption of H or F atom

The density of states prior to and after the adsorption of H or F atom on the graphene/Re(0001) and graphene/Pt(111) are presented in Fig. S1. Here, one of the three nearest neighbor C atoms around the adsorption site and the substrate Re (or Pt) atom beneath were selected to calculate the partial density of states (PDOSs) of C atom $2p_z$ orbital and Re (or Pt) atom $5d_{z^2}$ orbital. The calculated PDOSs confirm the variations of charge transfer between the C atoms and substrate metal atoms after the adsorption of H or F atom.

Fig. S1 (a)-(c) The PDOSs of C atom $2p_z$ and Re atom $5d_{z^2}$ orbitals prior to and after the adsorption of H or F atom. (d)-(f) The PDOSs of C atom $2p_z$ and Pt atom $5d_{z^2}$ orbitals prior to and after the adsorption of H or F atom.