Electronic Supplementary Information

Enhanced performance of tin halide perovskite solar cell by addition

of lead thiocyanate

Fengqiang Gao, Chunhai Li, Liang Qin, Lijie Zhu, Xin Huang, Huan Liu, Liming Liang, Yanbing Hou^a, Zhidong Lou, Yufeng Hu, and Feng Teng^a

a) Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiao tong University, Beijing, 100044, China E-mail:ybhou@bjtu.edu.cn

Figure S1. Images of 10% Pb(SCN)₂ films with the vacuum assisted annealing (VAA) (left) and without VAA(right)

Figure S2.SEM images of 10% Pb(SCN)₂ film with VAA (a)and without VAA(b)

Figure S3. Top view SEM images of MASnI₃ films with (a) 0%, (b) 5%, (c) 10%, (d) 15%, (e) 20%, (f) 25% and (g)30% Pb(SCN)₂ in the precursors deposited on PEDOT:PSS HTLs at different magnifications.

Figure S4. Intensity of PbI_2 peak at 12.8° with various amounts of $Pb(SCN)_2$ additives in the precursors.

Figure S5. the peak positions at the (110) planes of $MASnI_3$ with various amounts of Pb(SCN)₂ additives in the precursors.

Figure S6. SEM-EDS spectra taken from the surface of perovskite film

Figure S7. Intensity of PbI_2 peak at 12.8° with various treatment condition coated on ITO substrates.

Figure S8. Photoluminescence spectra of MASnI₃ films with various amounts of Pb(SCN)₂ additives in the precursors.

Table S1. Summary of typical photovoltaic parameters for the solar cells prepared using MASnI₃ with various amounts of Pb(SCN)₂ additives in the precursor and measured under reverse and forward voltage scanning

	J_{sc} [mA cm ⁻²]	V _{0C} [V]	FF [%]	PCE [%]
0% Pb(SCN)2 (forward)	5.37	0.30	54	0.87
0% Pb(SCN)2 (reverse)	5.40	0.32	48	0.83
5% Pb(SCN)2 (forward)	6.28	0.42	59	1.54
5% Pb(SCN)2 (reverse)	6.50	0.39	59	1.50
10% Pb(SCN)2 (forward)	6.46	0.46	65	2.00
10% Pb(SCN)2 (reverse)	4.88	0.47	65	1.53
15% Pb(SCN)2 (forward)	10.48	0.48	64	3.22
15% Pb(SCN)2 (reverse)	9.77	0.48	62	2.89
20% Pb(SCN)2 (forward)	17.69	0.50	64	5.69
20% Pb(SCN)2 (reverse)	16.89	0.51	61	5.10
25% Pb(SCN)2 (forward)	13.55	0.52	63	4.46
25% Pb(SCN)2 (reverse)	13.68	0.51	62	4.47
30% Pb(SCN)2 (forward)	10.81	0.64	64	4.30
30% Pb(SCN)2 (reverse)	11.13	0.63	65	4.53

Figure S9. J-V curves of the perovskite solar cells, prepared using $MASnI_3$ with various amounts of $Pb(SCN)_2$ additives in the precursors, measured under reverse voltage scanning

Figure S10. J–V curves of the perovskite solar cells using $MASnI_3$ with VAA and without VAA and add 20% Pb(SCN)₂ in the perovskite precursor , under reverse and forward voltage scanning.

Figure S11. Normalized PCE of the unencapsulated device based on MASnI₃ and 20% Pb(SCN)₂-doped perovskite film stored in the air for over 110 min.

Figure S12. Statistics of the PCE distribution when the MASnI₃ films is doped with (a) 0%, (b) 5%, (c) 10%, (d) 15%,(e) 20%, (f) 25% and (g)30% Pb(SCN)₂ in the precursors. Black solid line denotes the Gaussian distribution fitting. (h) the best PCE distribution of MASnI₃ films for various Pb(SCN)₂ concentrations.

Figure S13. J-V curves of the best performance cell with 20% Pb(SCN)₂ in the precursor measured under forward and reverse voltage scanning

Table S2.The photovoltaic parameters of the best solar cells prepared with 20% Pb(SCN)₂ additives in the precursor and measured under reverse and forward voltage scanning

Figure S14. EQE spectra of the solar cells using MASnI₃ with 20% Pb(SCN)₂ additives in the precursors

Figure S15. Open circuit voltage (V_{OC}) of perovskite PV device with 20% Pb(SCN)₂ additive plotted against incident light intensity.