Electronic Supplementary Material

Polymeric ionic liquid gels composed of hydrophilic and

hydrophobic units for high adsorption selectivity of

perrhenate

Dong Han,^{‡a} Xingxiao Li,^{‡a} Yu Cui,^a Xin Yang,^a Xibang Chen,^a Ling Xu,^b Jing

Peng,*a Jiuqiang Lia and Maolin Zhai*a

^a Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. E-mail: jpeng@pku.edu.cn; mlzhai@pku.edu.cn

^b State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen Fujian 161102, China.

‡ These authors contributed equally to this work.

1. IR and XPS of PC₂-C₁₂vimNO₃-A

Before the measure of *SF* of the adsorbent towards ReO_4^- against NO_3^- , the anion of the gel should be exchanged into NO_3^- in order to get rid of the effect of Br⁻. PC₂-C₁₂vimBr-A was immersed into excess *ca*. 1.5 M HNO₃ to equilibrium for 2 times, then into water for 3 times and dried. To confirm the exchange was complete and the polycation of the gel had no change in the ion-exchange process, IR and XPS were performed to the resulted PC₂-C₁₂vimNO₃-A (Fig. S1).

Fig. S1 (a.) IR and (b.) XPS of PC₂-C₁₂vimNO₃-A prepared from PC₂-C₁₂vimBr-A.

The absorption peak at 1327 and 829 cm⁻¹ of NO₃⁻ occurred in the IR spectrum of PC₂-C₁₂vimNO₃-A, while the other part of the spectrum was similar to that of PC₂-C₁₂vimBr-A, indicating that NO₃⁻ had been exchanged onto the gel and the polycation showed no change. In the XPS of PC₂-C₁₂vimNO₃-A, the peak of Br disappeared, and the peak of N was divided into double peaks, which belonged to the N atoms in NO₃⁻ and imidazolium respectively.

2. IR spectra of C₂vimBr, C₁₂vimBr, C₆vim₂Br₂, PC₂vimBr, PC₂-C₁₂vimBr-A and PC₁₂vimBr.

Fig. S2 IR spectra of C₂vimBr, C₁₂vimBr, C₆vim₂Br₂, PC₂vimBr, PC₂-C₁₂vimBr-A and PC₁₂vimBr.

IR was performed to the monomers, crosslinker and the resulted gels (Fig. S2). The IR spectra of C_2vimBr , $C_6vim_2Br_2$ and PC_2vimBr were similar to those we reported before¹. The IR spectrum of $C_{12}vimBr$ was similar to that of C_2vimBr , but the peak of the alkyl chain at 2916 and 2850 cm⁻¹ were much stronger. The IR spectra of PC_2 - $C_{12}vimBr$ -A and $PC_{12}vimBr$ were similar to those of the monomers and the crosslinker, but the peaks of vinyl around 1649-1660 cm⁻¹ and in 900-100 cm⁻¹ disappeared in the resultant gels, indicating the successful synthesis of gels.

3. TGA of PC₂vimBr, PC₂vimNO₃, PC₂-C₁₂vimBr-A and PC₂-C₁₂vimNO₃-A

Fig. S3 TGA of (a) PC₂vimBr, (b) PC₂vimNO₃, (c) PC₂-C₁₂vimBr-A and (d) PC₂-C₁₂vimNO₃-A.

TGA was performed for different gels (Fig. S3). The gels with Br⁻ anion had good thermal stability under 250°C, while those with NO₃⁻ began to decompose at lower temperature of *ca*. 220°C. Since all gels were stable under 200°C and a flat curve were obtained at that temperature, the gels at 200°C was considered as dried completely, and the w/w_0 at those points was marked in the figures.

Table S1 EA of PC ₂ -C ₁₂ vimBr gels			
Sample	N (wt%)	C (wt%)	H (wt%)
PC ₁₂ vimBr	7.78	57.1	9.12
PC_2 - $C_{12}vimBr$ -A	8.40	55.4	8.66
PC_2 - $C_{12}vimBr$ -B	9.31	51.2	8.14
PC_2 - $C_{12}vimBr$ - C	10.1	47.8	7.52
PC_2 - $C_{12}vimBr$ -D	11.3	43.5	6.74

4. EA of PC₂-C₁₂vimBr gels

N contents of $PC_2-C_{12}vimBr$ gels increased from $PC_{12}vimBr$ to $PC_2-C_{12}vimBr-D$, corresponding to the increasing ratio between C_2vimBr units and $C_{12}vimBr$ units, while the C and H content decreased.

5. XPS of PC₂-C₁₂vimBr gels

Fig. S4 XPS of PC₂-C₁₂vimBr gels

The XPS of C element in $PC_2-C_{12}vimBr$ gels were shown in Fig. S4. The C 1s peaks in the XPS showed that the C in the gels could be divided into 2 kinds, namely C (C-N) and C (C-C). The C (C-N) atoms have higher B. E. than those of the C (C-C) atoms on the alkyl chains². As the C₂vimBr content increased from 0 in $PC_{12}vimBr$ to 80 mol% in $PC_2-C_{12}vimBr-D$, the relative intensity of C-C peak *vs.* C-N peak decreased. It agreed with their composition of the gels, because C₁₂vimBr units had more C (C-C) atoms in the alkyl chains.

6. SF of PC₂-C₁₂vimNO₃ gels

The c_0 was 700 ppm and HNO₃ was 0.0500 mol·kg⁻¹. Phase ratio was 1 mg gel / 1 g solution.

 $PC_2-C_{12}vimNO_3$ gels were exchanged into $PC_2-C_{12}vimNO_3$ gels by HNO₃, then the *SF* were measured in a similar way as described in the paper. The *q* and *SF* decreased as the content of the hydrophobic units decreased, from $PC_2-C_{12}vimNO_3-A$ to $PC_2-C_{12}vimNO_3-D$. Though the hydrophilic cation unit, C_2vim^+ , has smaller molecular weight, the *q* still decreased as its content increased. So it was illustrated that the hydrophobic cation unit, $C_{12}vim^+$, would bring a higher adsorption selectivity towards ReO_4^- against NO_3^- .

References:

- 1. D. Han, X. Li, J. Peng, L. Xu, J. Li, H. Li and M. Zhai, *Rsc Advances*, 2016, **6**, 69052-69059.
- 2. I. J. Villar-Garcia, E. F. Smith, A. W. Taylor, F. L. Qiu, K. R. J. Lovelock, R. G. Jones and P. Licence, *Physical Chemistry Chemical Physics*, 2011, **13**, 2797-2808.